Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1980 May;65(5):1024–1031. doi: 10.1172/JCI109754

Liver Necrosis and Lipid Peroxidation in the Rat as the Result of Paraquat and Diquat Administration

EFFECT OF SELENIUM DEFICIENCY

Raymond F Burk 1,2, Richard A Lawrence 1,2, James M Lane 1,2
PMCID: PMC371432  PMID: 7364936

Abstract

Paraquat and diquat facilitate formation of superoxide anion in biological systems, and lipid peroxidation has been postulated to be their mechanism of toxicity. Paraquat has been shown to be more toxic to selenium-deficient mice than to controls, presumably as the result of decreased activity of the selenoenzyme glutathione peroxidase. The present study was designed to measure lipid peroxidation and to assess toxicity in control and selenium-deficient rats given paraquat and diquat. Lipid peroxidation was measured by determining ethane production rates of intact animals; toxicity was assessed by survival and by histological and serum enzyme evidence of liver and kidney necrosis. Paraquat and diquat were both much more toxic to selenium-deficient rats than to control rats. Diquat (19.5 μmol/kg) caused rapid and massive liver and kidney necrosis and very high ethane production rates in selenium-deficient rats. The effect of paraquat (78 μmol/kg) was similar to that of diquat but was not as severe. Acutely lethal doses of paraquat (390 μmol/kg) and diquat (230 μmol/kg) in control rats caused very little ethane production and no evidence of liver necrosis. These findings suggest that paraquat and diquat exert their acute toxicity largely through lipid peroxidation in selenium-deficient rats. Selenium deficiency had no effect on superoxide dismutase activity in erythrocytes or in 105,000 g supernate of liver or kidney. Glutathione peroxidase, which represents the only well-characterized biochemical function of selenium in animals, was dissociated from the protective effect of selenium against diquat-induced lipid peroxidation and toxicity by a time-course study in which selenium-deficient rats were injected with 50 μg of selenium and later given diquat (19.5 μmol/kg). Within 10 h, the selenium injection provided significant protection against diquat-induced lipid peroxidation and mortality even though this treatment resulted in no rise in glutathione peroxidase activity of liver, kidney, lung, or plasma at 10 h. This suggests that a selenium-dependent factor in addition to glutathione peroxidase exists that protects against lipid peroxidation.

Full text

PDF
1024

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benedetti A., Casini A. F., Ferrali M., Comporti M. Effects of diffusible products of peroxidation of rat liver microsomal lipids. Biochem J. 1979 May 15;180(2):303–312. doi: 10.1042/bj1800303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burk R. F., Lane J. M. Ethane production and liver necrosis in rats after administration of drugs and other chemicals. Toxicol Appl Pharmacol. 1979 Sep 30;50(3):467–478. doi: 10.1016/0041-008x(79)90400-9. [DOI] [PubMed] [Google Scholar]
  3. Burk R. F. Selenium in nutrition. World Rev Nutr Diet. 1978;30:88–106. doi: 10.1159/000401237. [DOI] [PubMed] [Google Scholar]
  4. Bus J. S., Aust S. D., Gibson J. E. Superoxide- and singlet oxygen-catalyzed lipid peroxidation as a possible mechanism for paraquat (methyl viologen) toxicity. Biochem Biophys Res Commun. 1974 Jun 4;58(3):749–755. doi: 10.1016/s0006-291x(74)80481-x. [DOI] [PubMed] [Google Scholar]
  5. Buttar H. S., Nera E. A., Downie R. H. Serum enzyme activities and hepatic triglyceride levels in acute and subacute acetaminophen-treated rats. Toxicology. 1976 Jun;6(1):9–20. doi: 10.1016/0300-483x(76)90003-2. [DOI] [PubMed] [Google Scholar]
  6. CENTURY B., WITTING L. A., HARVEY C. C., HORWITT M. K. INTERRELATIONSHIPS OF DIETARY LIPIDS UPON FATTY ACID COMPOSITION OF BRAIN MITOCHONDRIA, ERYTHROCYTES AND HEART TISSUE IN CHICKS. Am J Clin Nutr. 1963 Dec;13:362–368. doi: 10.1093/ajcn/13.6.362. [DOI] [PubMed] [Google Scholar]
  7. Cagen S. Z., Gibson J. E. Liver damage following paraquat in selenium-deficient and diethyl maleate-pretreated mice. Toxicol Appl Pharmacol. 1977 May;40(2):193–200. doi: 10.1016/0041-008x(77)90090-4. [DOI] [PubMed] [Google Scholar]
  8. Clark D. G., Hurst E. W. The toxicity of diquat. Br J Ind Med. 1970 Jan;27(1):51–55. doi: 10.1136/oem.27.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Correia M. A., Burk R. F. Rapid stimulation of hepatic microsomal heme oxygenase in selenium-deficient rats. An effect of phenobarbital. J Biol Chem. 1978 Sep 10;253(17):6203–6210. [PubMed] [Google Scholar]
  10. Downey J. E., Irving D. H., Tappel A. L. Effects of dietary antioxidants on in vivo lipid peroxidation in the rat as measured by pentane production. Lipids. 1978 Jun;13(6):403–407. doi: 10.1007/BF02533709. [DOI] [PubMed] [Google Scholar]
  11. Dumelin E. E., Tappel A. L. Hydrocarbon gases produced during in vitro peroxidation of polyunsaturated fatty acids and decomposition of preformed hydroperoxides. Lipids. 1977 Nov;12(11):894–900. doi: 10.1007/BF02533308. [DOI] [PubMed] [Google Scholar]
  12. Farrington J. A., Ebert M., Land E. J., Fletcher K. Bipyridylium quaternary salts and related compounds. V. Pulse radiolysis studies of the reaction of paraquat radical with oxygen. Implications for the mode of action of bipyridyl herbicides. Biochim Biophys Acta. 1973 Sep 26;314(3):372–381. doi: 10.1016/0005-2728(73)90121-7. [DOI] [PubMed] [Google Scholar]
  13. Fisher H. K., Clements J. A., Wright R. R. Enhancement of oxygen toxicity by the herbicide paraquat. Am Rev Respir Dis. 1973 Feb;107(2):246–252. doi: 10.1164/arrd.1973.107.2.246. [DOI] [PubMed] [Google Scholar]
  14. Hafeman D. G., Hoekstra W. G. Lipid peroxidation in vivo during vitamin E and selenium deficiency in the rat as monitored by ethane evolution. J Nutr. 1977 Apr;107(4):666–672. doi: 10.1093/jn/107.4.666. [DOI] [PubMed] [Google Scholar]
  15. Hammer C. T., Wills E. D. The role of lipid components of the diet in the regulation of the fatty acid composition of the rat liver endoplasmic reticulum and lipid peroxidation. Biochem J. 1978 Aug 15;174(2):585–593. doi: 10.1042/bj1740585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hoekstra W. G. Biochemical function of selenium and its relation to vitamin E. Fed Proc. 1975 Oct;34(11):2083–2089. [PubMed] [Google Scholar]
  17. Ilett K. F., Stripp B., Menard R. H., Reid W. D., Gillette J. R. Studies on the mechanism of the lung toxicity of paraquat: comparison of tissue distribution and some biochemical parameters in rats and rabbits. Toxicol Appl Pharmacol. 1974 May;28(2):216–226. doi: 10.1016/0041-008x(74)90007-6. [DOI] [PubMed] [Google Scholar]
  18. Lawrence R. A., Burk R. F. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun. 1976 Aug 23;71(4):952–958. doi: 10.1016/0006-291x(76)90747-6. [DOI] [PubMed] [Google Scholar]
  19. Lawrence R. A., Burk R. F. Species, tissue and subcellular distribution of non Se-dependent glutathione peroxidase activity. J Nutr. 1978 Feb;108(2):211–215. doi: 10.1093/jn/108.2.211. [DOI] [PubMed] [Google Scholar]
  20. Lindstrom T. D., Anders M. W. Effect of agents known to alter carbon tetrachloride hepatotoxicity and cytochrome P-450 levels on carbon tetrachloride-stimulated lipid peroxidation and ethane expiration in the intact rat. Biochem Pharmacol. 1978 Feb 15;27(4):563–567. doi: 10.1016/0006-2952(78)90395-7. [DOI] [PubMed] [Google Scholar]
  21. Lutz R. W., Shires T. K. Polysomal changes in rats treated with lethal doses of carbon tetrachloride. Toxicol Appl Pharmacol. 1978 Sep;45(3):653–663. doi: 10.1016/0041-008x(78)90159-x. [DOI] [PubMed] [Google Scholar]
  22. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  23. Omaye S. T., Reddy K. A., Cross C. E. Enhanced lung toxicity of paraquat in selenium-deficient rats. Toxicol Appl Pharmacol. 1978 Feb;43(2):237–247. doi: 10.1016/0041-008x(78)90003-0. [DOI] [PubMed] [Google Scholar]
  24. Recknagel R. O., Ghoshal A. K. Lipoperoxidation as a vector in carbon tetrachloride hepatotoxicity. Lab Invest. 1966 Jan;15(1 Pt 1):132–148. [PubMed] [Google Scholar]
  25. Riely C. A., Cohen G., Lieberman M. Ethane evolution: a new index of lipid peroxidation. Science. 1974 Jan 18;183(4121):208–210. doi: 10.1126/science.183.4121.208. [DOI] [PubMed] [Google Scholar]
  26. Shu H., Talcott R. E., Rice S. A., Wei E. T. Lipid peroxidation and paraquat toxicity. Biochem Pharmacol. 1979;28(2):327–331. doi: 10.1016/0006-2952(79)90523-9. [DOI] [PubMed] [Google Scholar]
  27. Smith P., Heath D. Paraquat. CRC Crit Rev Toxicol. 1976 Oct;4(4):411–445. doi: 10.1080/10408447609164020. [DOI] [PubMed] [Google Scholar]
  28. Steffen C., Netter K. J. On the mechanism of paraquat action on microsomal oxygen reduction and its relation to lipid peroxidation. Toxicol Appl Pharmacol. 1979 Mar 15;47(3):593–602. doi: 10.1016/0041-008x(79)90529-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES