Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1980 May;65(5):1095–1103. doi: 10.1172/JCI109762

Diuretics stimulate H+ secretion in turtle urinary bladder.

P D Lief, B F Mutz, N Bank
PMCID: PMC371440  PMID: 7364939

Abstract

The effect of various diuretics on H+ secretion was studied in the isolated short-circuited urinary bladder of the turtle. Mucosal (urinary) chlorothiazide stimulated H+ secretion promptly, from 1.33 +/- 0.24 to 3.03 +/- 0.25 mueq/h (P less than 0.001). The effect was rapidly reversible upon washout of the drug, H+ returning to control levels, 1.37 +/- 0.26 mueq/h (P less than 0.001). Similar effects were observed with mucosal hydrochlorothiazide and mucosal ethacrynic acid/cysteine. Stimulation of H+ secretion occurred in the presence or the absence of exogenous CO2, in the presence or absence of mucosal Na+ and during inhibition of Na+ transport by ouabain. There was no stimulation of H+ secretion by uncomplexed ethacrynic acid or by mucosal furosemide. The nondiuretic sulfonamide, sulfasoxizole, and the nonsulfonamide buffer, borate, had no effect on H+ SECRETION. These observations indicate that the stimulatory effect of diuretics on H+ secretion is not related to active sodium transport, transepithelial electrical potential, or the buffering capacity of the drugs. Since the transepithelial pH gradient at which active H+ secretion was abolished was identical for chlorothiazide-treated tissues (2.68 pH U) as for control tissues (2.65 pH U, NS), the data suggest that the protonmotive force of the H+ pump was unaffected by the diuretic. This observation, plus the rapid onset and reversibility of the drugs, is consistent with an effect on the mucosal membrane to increase H+ conductance (K). The findings raise the possibility that direct enhancement of renal H+ secretion may play a role in the metabolic alkalosis induced by some diuretics.

Full text

PDF
1095

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Awqati Q. H + transport in urinary epithelia. Am J Physiol. 1978 Aug;235(2):F77–F88. doi: 10.1152/ajprenal.1978.235.2.F77. [DOI] [PubMed] [Google Scholar]
  2. Al-Awqati Q., Norby L. H., Mueller A., Steinmetz P. R. Characteristics of stimulation of H+ transport by aldosterone in turtle urinary bladder. J Clin Invest. 1976 Aug;58(2):351–358. doi: 10.1172/JCI108479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BANK N., SCHWARTZ W. B. The influence of anion penetrating ability on urinary acidification and the excretion of titratable acid. J Clin Invest. 1960 Oct;39:1516–1525. doi: 10.1172/JCI104171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BEYER K. H., BAER J. E., MICHAELSON J. K., RUSSO H. F. RENOTROPIC CHARACTERISTICS OF ETHACRYNIC ACID: A PHENOXYACETIC SALURETIC-DIURETIC AGENT. J Pharmacol Exp Ther. 1965 Jan;147:1–22. [PubMed] [Google Scholar]
  5. BEYER K. H., BAER J. E. Physiological basis for the action of newer diuretic agents. Pharmacol Rev. 1961 Dec;13:517–562. [PubMed] [Google Scholar]
  6. BEYER K. H. The mechanism of action of chlorothiazide. Ann N Y Acad Sci. 1958 Feb 3;71(4):363–379. doi: 10.1111/j.1749-6632.1958.tb46763.x. [DOI] [PubMed] [Google Scholar]
  7. Bosch J. P., Goldstein M. H., Levitt M. F., Kahn T. Effect of chronic furosemide administration on hydrogen and sodium excretion in the dog. Am J Physiol. 1977 May;232(5):F397–F404. doi: 10.1152/ajprenal.1977.232.5.F397. [DOI] [PubMed] [Google Scholar]
  8. Burg M. B. Tubular chloride transport and the mode of action of some diuretics. Kidney Int. 1976 Feb;9(2):189–197. doi: 10.1038/ki.1976.20. [DOI] [PubMed] [Google Scholar]
  9. CANNON P. J., HEINEMANN H. O., ALBERT M. S., LARAGH J. H., WINTERS R. W. "CONTRACTION" ALKALOSIS AFTER DIURESIS OF EDEMATOUS PATIENTS WITH ETHACRYNIC ACID. Ann Intern Med. 1965 May;62:979–990. doi: 10.7326/0003-4819-62-5-979. [DOI] [PubMed] [Google Scholar]
  10. Costanzo L. S., Weiner I. M. On the hypocalciuric action of chlorothiazide. J Clin Invest. 1974 Sep;54(3):628–637. doi: 10.1172/JCI107800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eknoyan G., Sawa H., Hyde S., 3rd, Wood J. M., Schwartz A., Suki W. Effect of diuretics on oxidative phosphorylation of dog kidney mitochondria. J Pharmacol Exp Ther. 1975 Sep;194(3):614–623. [PubMed] [Google Scholar]
  12. Györy A. Z., Edwards K. D. Effect of mersalyl, ethacrynic acid and sodium sulphate infusion on urinary acidification in hereditary renal tubular acidosis. Med J Aust. 1971 Nov 6;2(19):940–945. doi: 10.5694/j.1326-5377.1971.tb92642.x. [DOI] [PubMed] [Google Scholar]
  13. Györy A. Z., Lissner D. Independence of ethacrynic acid-induced renal hydrogen ion excretion of sodium-volume depletion in man. Clin Sci Mol Med. 1977 Aug;53(2):125–132. doi: 10.1042/cs0530125. [DOI] [PubMed] [Google Scholar]
  14. Kunau R. T., Jr, Frick A., Rector F. C., Jr, Seldin D. W. Micropuncture study of the proximal tubular factors responsible for the maintenance of alkalosis during potassium deficiency in the rat. Clin Sci. 1968 Apr;34(2):223–231. [PubMed] [Google Scholar]
  15. Kutzman N. A., White M. G., Rogers P. W. Pathophysiology of metabolic alkalosis. Arch Intern Med. 1973 May;131(5):702–708. doi: 10.1001/archinte.131.5.702. [DOI] [PubMed] [Google Scholar]
  16. Lief P. D., Mutz B. F., Bank N. Effect of stretch on passive transport in toad urinary bladder. Am J Physiol. 1976 Jun;230(6):1722–1729. doi: 10.1152/ajplegacy.1976.230.6.1722. [DOI] [PubMed] [Google Scholar]
  17. Manuel M. A., Weiner M. W. Effects of ethacrynic acid and furosemide on isolated rat kidney mitochondria: inhibition of electron transport in the region of phosphorylation site II. J Pharmacol Exp Ther. 1976 Jul;198(1):209–221. [PubMed] [Google Scholar]
  18. Manuel M. A., Weiner M. W. Effects of ethacrynic acid and furosemide on phosphorylation reactions of kidney mitochondria. Inhibition of the adenine nucleotide translocase. Biochim Biophys Acta. 1977 Jun 9;460(3):445–454. doi: 10.1016/0005-2728(77)90083-4. [DOI] [PubMed] [Google Scholar]
  19. Schwartz J. H., Steinmetz P. R. Metabolic energy and PCO2 as determinants of H+ secretion by turtle urinary bladder. Am J Physiol. 1977 Aug;233(2):F145–F149. doi: 10.1152/ajprenal.1977.233.2.F145. [DOI] [PubMed] [Google Scholar]
  20. Schwartz W. B., Van Ypersele de Strihou, Kassirer J. P. Role of anions in metabolic alkalosis and potassium deficiency. N Engl J Med. 1968 Sep 19;279(12):630–639. doi: 10.1056/NEJM196809192791204. [DOI] [PubMed] [Google Scholar]
  21. Seldin D. W., Rector F. C., Jr Symposium on acid-base homeostasis. The generation and maintenance of metabolic alkalosis. Kidney Int. 1972 May;1(5):306–321. doi: 10.1038/ki.1972.43. [DOI] [PubMed] [Google Scholar]
  22. Steinmetz P. R. Cellular mechanisms of urinary acidification. Physiol Rev. 1974 Oct;54(4):890–956. doi: 10.1152/physrev.1974.54.4.890. [DOI] [PubMed] [Google Scholar]
  23. Steinmetz P. R. Characteristics of hydrogen ion transport in urinary bladder of water turtle. J Clin Invest. 1967 Oct;46(10):1531–1540. doi: 10.1172/JCI105644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Steinmetz P. R., Omachi R. S., Frazier H. S. Independence of hydrogen ion secretion and transport of other electrolytes in turtle bladder. J Clin Invest. 1967 Oct;46(10):1541–1548. doi: 10.1172/JCI105645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]
  26. Weller J. M., Borondy M. Effects of chlorothiazide on glucose utilization, glycogen content, and lactic acid production of aorta. Proc Soc Exp Biol Med. 1976 Dec;153(3):483–485. doi: 10.3181/00379727-153-39573. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES