Abstract
The net renal metabolism of amino acids and ammonia in the post absorptive state was evaluated in subjects with normal renal function and in patients with chronic renal insufficiency by measuring renal uptake and release, and urinary excretion of free amino acids and ammonia. In normal subjects the kidney extracts glutamine, proline, citrulline, and phenylalanine and releases serine, arginine, taurine, threonine, tyrosine, ornithine, lysine, and perhaps alanine. The renal uptake of amino acids from arterial blood occurs by way of plasma only, whereas approximately a half of amino acid release takes place by way of blood cells. Glycine is taken up from arterial plasma, while similar amounts of this amino acid are released by way of blood cells. In the same subjects total renal ammonia production can be largely accounted for by glutamine extracted. In patients with chronic renal insufficiency (a) the renal uptake of phenylalanine and the release of taurine and ornithine disappear; (b) the uptake of glutamine and proline, and the release of serine and threonine are reduced by 80--90%; (c) the uptake of citrulline and the release of alanine, arginine, tyrosine, and lysine are reduced by 60--70%; (d) no exchange of glycine is detectable either by way of plasma or by way of blood cells; (e) exchange of any other amino acid via blood cells disappears, and (f) total renal ammonia production is reduced and not more than 35% of such production can be accounted for by glutamine extracted, so that alternative precursors must be used. A 140% excess of nitrogen release found in the same patients suggests an intrarenal protein and peptide breakdown, which eventually provides free amino acids for ammonia production.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRUN C. Thiosulfate determination in kidney function tests; a simple method for the determination of thiosulfate in blood and urine. J Lab Clin Med. 1950 Jan;35(1):152–154. [PubMed] [Google Scholar]
- Benyajati S., Goldstein L. Relation of ammonia excretion adaptation to glutaminase activity in acidotic, subtotalnephrectomized rats. Kidney Int. 1978 Jul;14(1):50–57. doi: 10.1038/ki.1978.88. [DOI] [PubMed] [Google Scholar]
- CHANEY A. L., MARBACH E. P. Modified reagents for determination of urea and ammonia. Clin Chem. 1962 Apr;8:130–132. [PubMed] [Google Scholar]
- Elwyn D. H. Distribution of amino acids between plasma and red blood cells in the dog. Fed Proc. 1966 May-Jun;25(3):854–861. [PubMed] [Google Scholar]
- Felig P., Owen O. E., Wahren J., Cahill G. F., Jr Amino acid metabolism during prolonged starvation. J Clin Invest. 1969 Mar;48(3):584–594. doi: 10.1172/JCI106017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felig P., Wahren J. Amino acid metabolism in exercising man. J Clin Invest. 1971 Dec;50(12):2703–2714. doi: 10.1172/JCI106771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Felig P., Wahren J., Räf L. Evidence of inter-organ amino-acid transport by blood cells in humans. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1775–1779. doi: 10.1073/pnas.70.6.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ganda O. P., Aoki T. T., Soeldner J. S., Morrison R. S., Cahill G. F., Jr Hormone-fuel concentrations in anephric subjects. Effect of hemodialysis (with special reference to amino acids). J Clin Invest. 1976 Jun;57(6):1403–1411. doi: 10.1172/JCI108409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gulyassy P. F., Aviram A., Peters J. H. Evaluation of amino acid and protein requirements in chronic uremia. Arch Intern Med. 1970 Nov;126(5):855–859. [PubMed] [Google Scholar]
- Katunuma N., Tomino I., Nishino H. Glutaminase isozymes in rat kidney. Biochem Biophys Res Commun. 1966 Feb 3;22(3):321–328. doi: 10.1016/0006-291x(66)90485-2. [DOI] [PubMed] [Google Scholar]
- Maack T. Renal handling of low molecular weight proteins. Am J Med. 1975 Jan;58(1):57–64. doi: 10.1016/0002-9343(75)90533-1. [DOI] [PubMed] [Google Scholar]
- McGale E. H., Pickford J. C., Aber G. M. Quantitative changes in plasma amino acids in patients with renal disease. Clin Chim Acta. 1972 May;38(2):395–403. doi: 10.1016/0009-8981(72)90131-3. [DOI] [PubMed] [Google Scholar]
- Nádvorníková H., Schück O., Malý J., Pechar J., Doberský P., Tomková D. Renal clearance of amino acids in patients with severe chronic renal failure. Nephron. 1978;20(2):83–89. doi: 10.1159/000181199. [DOI] [PubMed] [Google Scholar]
- OWEN E. E., ROBINSON R. R. Amino acid extraction and ammonia metabolism by the human kidney during the prolonged administration of ammonium chloride. J Clin Invest. 1963 Feb;42:263–276. doi: 10.1172/JCI104713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perry T. L., Hansen S. Technical pitfalls leading to errors in the quantitation of plasma amino acids. Clin Chim Acta. 1969 Jul;25(1):53–58. doi: 10.1016/0009-8981(69)90226-5. [DOI] [PubMed] [Google Scholar]
- Pitts R. F., Damian A. C., MacLeod M. B. Synthesis of serine by rat kidney in vivo and in vitro. Am J Physiol. 1970 Sep;219(3):584–589. doi: 10.1152/ajplegacy.1970.219.3.584. [DOI] [PubMed] [Google Scholar]
- Pitts R. F., Stone W. J. Renal metabolism of alanine. J Clin Invest. 1967 Apr;46(4):530–538. doi: 10.1172/JCI105554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RATNER S., PETRACK B. The mechanism of arginine synthesis from citrulline in kidney. J Biol Chem. 1953 Jan;200(1):175–185. [PubMed] [Google Scholar]
- Sekura R., Meister A. Glutathione turnover in the kidney; considerations relating to the gamma-glutamyl cycle and the transport of amino acids. Proc Natl Acad Sci U S A. 1974 Aug;71(8):2969–2972. doi: 10.1073/pnas.71.8.2969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skalsky M., Schindhelm K., Farrell P. C. Creatinine transfer between red cells and plasma: a comparison between normal and uremic subjects. Nephron. 1978;22(4-6):514–521. doi: 10.1159/000181522. [DOI] [PubMed] [Google Scholar]
- Smith H. W., Goldring W., Chasis H. THE MEASUREMENT OF THE TUBULAR EXCRETORY MASS, EFFECTIVE BLOOD FLOW AND FILTRATION RATE IN THE NORMAL HUMAN KIDNEY. J Clin Invest. 1938 May;17(3):263–278. doi: 10.1172/JCI100950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Squires E. J., Hall D. E., Brosnan J. T. Arteriovenous differences for amino acids and lactate across kidneys of normal and acidotic rats. Biochem J. 1976 Oct 15;160(1):125–128. doi: 10.1042/bj1600125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tizianello A., De Ferrari G., Garibotto G., Gurreri G. Effects of chronic renal insufficiency and metabolic acidosis on glutamine metabolism in man. Clin Sci Mol Med. 1978 Oct;55(4):391–397. doi: 10.1042/cs0550391. [DOI] [PubMed] [Google Scholar]
- Tizianello A., De Ferrari G., Gurreri G., Bertocchi I., Garibotto G. L'incapacità del rene ad utilizzare la glutamina per la produzione di ammoniaca nell'insufficienza renale cronica. Minerva Nefrol. 1975 Mar-Jun;22(2-3):138–147. [PubMed] [Google Scholar]
- Tourian A., Goddard J., Puck T. T. Phenylalanine hydroxylase activity in mammalian cells. J Cell Physiol. 1969 Apr;73(2):159–170. doi: 10.1002/jcp.1040730210. [DOI] [PubMed] [Google Scholar]
- Wahren J., Felig P., Hagenfeldt L. Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. J Clin Invest. 1976 Apr;57(4):987–999. doi: 10.1172/JCI108375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welbourne T., Weber M., Bank N. The effect of glutamine administration on urinary ammonium excretion in normal subjects and patients with renal disease. J Clin Invest. 1972 Jul;51(7):1852–1860. doi: 10.1172/JCI106987. [DOI] [PMC free article] [PubMed] [Google Scholar]