Abstract
We have previously reported that in hypothyroid turkeys the number of beta-adrenergic receptors in intact erythrocytes is reduced by ∼50% without any changes in the affinity of the receptor for the agonist, isoproterenol. In view of the physiological action of the catecholamines to stimulate bidirectional ion fluxes in these cells, we have now examined the possibility that the decrease in beta receptor number might be associated with concomitant changes in catecholamine-dependent potassium ion transport. Hypothyroid turkey erythrocytes display decreased sensitivity to isoproterenol-stimulated potassium influx. Half-maximal stimulation of potassium influx occurs at 9.2±1.7 nM in hypothyroid cells as opposed to only 3.8±0.4 nM in normal cells (P < 0.005). A maximal stimulatory concentration of isoproterenol (100 nM) leads to the same increment in ion flux in erythrocytes from hypothyroid and normal turkeys. Analysis of the quantitative relationship between isoproterenol concentration, receptor occupancy, and associated effects upon potassium influx shows that at low levels of isoproterenol, where occupancy is linear with agonist concentration, occupation of a given number of beta receptors leads to a stimulation of potassium transport that is identical in erythrocytes from normal and hypothyroid turkeys. Thus, decreased sensitivity to catecholamine-stimulated potassium transport in hypothyroidism can be attributed to the decrease in receptor number and the resulting two- to threefold higher isoproterenol concentration required for occupancy of the same number of beta receptors. Once a single receptor is occupied, however, the more distal components of the sequence of events mediating the physiological response to beta-adrenergic agonists in the hypothyroid cell function as they do under normal circumstances. It would appear, therefore, that the decrease in sensitivity to isoproterenol-dependent ion flux in the hypothyroid turkey erythrocyte can be accounted for solely by the decrease in receptor number. These changes are shown to occur in the absence of any modifications in the number of Na+-K+ ATPase effector units per cell.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alper S. L., Beam K. G., Greengard P. Hormonal control of Na+-K+ co-transport in turkey erythrocytes. Multiple site phosphorylation of goblin, a high molecular weight protein of the plasma membrane. J Biol Chem. 1980 May 25;255(10):4864–4871. [PubMed] [Google Scholar]
- Banerjee S. P., Kung L. S. beta-Adrenergic receptors in rat heart: effects of thyroidectomy. Eur J Pharmacol. 1977 May 15;43(2):207–208. doi: 10.1016/0014-2999(77)90134-0. [DOI] [PubMed] [Google Scholar]
- Beckman B. S., Hollenberg M. D. Beta-adrenergic receptors and adenylate cyclase activity in rat reticulocytes and mature erythrocytes. Biochem Pharmacol. 1979;28(2):239–248. doi: 10.1016/0006-2952(79)90510-0. [DOI] [PubMed] [Google Scholar]
- Bilezikian J. P., Loeb J. N., Gammon D. E. The influence of hyperthyroidism and hypothyroidism on the beta-adrenergic responsiveness of the turkey erythrocyte. J Clin Invest. 1979 Feb;63(2):184–192. doi: 10.1172/JCI109288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bilezikian J. P., Spiegel A. M., Brown E. M., Aurbach G. D. Identification and persistence of beta adrenergic receptors during maturation of the rat reticulocyte. Mol Pharmacol. 1977 Sep;13(5):775–785. [PubMed] [Google Scholar]
- Ciaraldi T., Marinetti G. V. Thyroxine and propylthiouracil effects of vivo on alpha and beta adrenergic receptors in rat heart. Biochem Biophys Res Commun. 1977 Feb 7;74(3):984–991. doi: 10.1016/0006-291x(77)91615-1. [DOI] [PubMed] [Google Scholar]
- DEYKIN D., VAUGHAN M. RELEASE OF FREE FATTY ACIDS BY ADIPOSE TISSUE FROM RATS TREATED WITH TRIIODOTHYRONINE OR PROPYLTHIOURACIL. J Lipid Res. 1963 Apr;4:200–203. [PubMed] [Google Scholar]
- Edelman I. S., Ismail-Beigi F. Thyroid thermogenesis and active sodium transport. Recent Prog Horm Res. 1974;30(0):235–257. doi: 10.1016/b978-0-12-571130-2.50010-9. [DOI] [PubMed] [Google Scholar]
- Furukawa H., Bilezikian J. P., Loeb J. N. Effects of ouabain and isoproterenol on potassium influx in the turkey erythrocyte. Quantitative relation to ligand binding and cyclic AMP generation. Biochim Biophys Acta. 1980 May 23;598(2):345–356. doi: 10.1016/0005-2736(80)90012-7. [DOI] [PubMed] [Google Scholar]
- Gardner J. D., Klaeveman H. L., Bilezikian J. P., Aurbach G. D. Effect of beta-adrenergic catecholamines on sodium transport in turkey erythrocytes. J Biol Chem. 1973 Aug 25;248(16):5590–5597. [PubMed] [Google Scholar]
- Gardner J. D., Mensh R. S., Kiino D. R., Aurbach G. D. Effects of beta-adrenergic catecholamines on potassium transport in turkey erythrocytes. J Biol Chem. 1975 Feb 25;250(4):1155–1163. [PubMed] [Google Scholar]
- Giudicelli Y. Thyroid-hormone modulation of the number of beta-adrenergic receptors in rat fat-cell membranes. Biochem J. 1978 Dec 15;176(3):1007–1010. doi: 10.1042/bj1761007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kempson S., Marinetti G. V., Shaw A. Hormone action at the membrane level. VII. Stimulation of dihydroalprenolol binding to beta-adrenergic receptors in isolated rat heart ventricle slices by triiodothyronine and thyroxine. Biochim Biophys Acta. 1978 May 3;540(2):320–329. doi: 10.1016/0304-4165(78)90145-9. [DOI] [PubMed] [Google Scholar]
- Kolterman O. G., Greenfield M., Reaven G. M., Saekow M., Olefsky J. M. Effect of a high carbohydrate diet on insulin binding to adipocytes and on insulin action in vivo in man. Diabetes. 1979 Aug;28(8):731–736. doi: 10.2337/diab.28.8.731. [DOI] [PubMed] [Google Scholar]
- Malbon C. C., Gill D. M. ADP-ribosylation of membrane proteins and activation of adenylate cyclase by cholera toxin in fat cell ghosts from euthyroid and hypothyroid rats. Biochim Biophys Acta. 1979 Sep 3;586(3):518–527. doi: 10.1016/0304-4165(79)90042-4. [DOI] [PubMed] [Google Scholar]
- Malbon C. C., Moreno F. J., Cabelli R. J., Fain J. N. Fat cell adenylate cyclase and beta-adrenergic receptors in altered thyroid states. J Biol Chem. 1978 Feb 10;253(3):671–678. [PubMed] [Google Scholar]
- McConnaughey M. M., Jones L. R., Watanabe A. M., Besch H. R., Jr, Williams L. T., Lefkowitz R. J. Thyroxine and propylthiouracil effects on alpha- and beta-adrenergic receptor number, ATPase activities, and sialic acid content of rat cardiac membrane vesicles. J Cardiovasc Pharmacol. 1979 Nov-Dec;1(6):609–623. doi: 10.1097/00005344-197911000-00002. [DOI] [PubMed] [Google Scholar]
- Mendelson C., Dufau M., Catt K. Gonadotropin binding and stimulation of cyclic adenosine 3':5'-monophosphate and testosterone production in isolated Leydig cells. J Biol Chem. 1975 Nov 25;250(22):8818–8823. [PubMed] [Google Scholar]
- Olefsky J. M. The insulin receptor: its role in insulin resistance of obesity and diabetes. Diabetes. 1976 Dec;25(12):1154–1162. doi: 10.2337/diab.25.12.1154. [DOI] [PubMed] [Google Scholar]
- Rudolph S. A., Schafer D. E., Greengard P. Effects of cholera enterotoxin on catecholamine-stimulated changes in cation fluxes, cell volume, and cyclic AMP levels in the turkey erythrocyte. J Biol Chem. 1977 Oct 25;252(20):7132–7139. [PubMed] [Google Scholar]
- Sachs J. R., Welt L. G. The concentration dependence of active potassium transport in the human red blood cell. J Clin Invest. 1967 Jan;46(1):65–76. doi: 10.1172/JCI105512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt W. F., 3rd, McManus T. J. Ouabain-insensitive salt and water movements in duck red cells. II. Norepinephrine stimulation of sodium plus potassium cotransport. J Gen Physiol. 1977 Jul;70(1):81–97. doi: 10.1085/jgp.70.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharma V. K., Banerjee S. P. beta-Adrenergic receptors in rat skeletal muscle. Effects of thyroidectomy. Biochim Biophys Acta. 1978 Apr 3;539(4):538–542. doi: 10.1016/0304-4165(78)90087-9. [DOI] [PubMed] [Google Scholar]
- Smith R. M., Osborne-White W. S., King R. A. Changes in the sarcolemma of the hypothyroid heart. Biochem Biophys Res Commun. 1978 Feb 28;80(4):715–721. doi: 10.1016/0006-291x(78)91303-7. [DOI] [PubMed] [Google Scholar]
- Terasaki W. L., Brooker G. [125I]Iodohydroxybenzylpindolol binding sites on intact rat glioma cells. Evidence for beta-adrenergic receptors of high coupling efficiency. J Biol Chem. 1978 Aug 10;253(15):5418–5425. [PubMed] [Google Scholar]
- Tsai J. S., Chen A. Effect of L-triiodothyronine on (--)3H-dihydroalprenolol binding and cyclic AMP response to (--)adrenaline in cultured heart cells. Nature. 1978 Sep 14;275(5676):138–140. doi: 10.1038/275138a0. [DOI] [PubMed] [Google Scholar]
- Williams L. T., Lefkowitz R. J., Watanabe A. M., Hathaway D. R., Besch H. R., Jr Thyroid hormone regulation of beta-adrenergic receptor number. J Biol Chem. 1977 Apr 25;252(8):2787–2789. [PubMed] [Google Scholar]
- Williams R. S., Guthrow C. E., Lefkowitz R. J. Beta-Adrenergic receptors of human lymphocytes are unaltered by hyperthyroidism. J Clin Endocrinol Metab. 1979 Mar;48(3):503–505. doi: 10.1210/jcem-48-3-503. [DOI] [PubMed] [Google Scholar]
