Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1980 Dec;66(6):1424–1427. doi: 10.1172/JCI109996

Disulfide reduction converts the insulin receptor of human placenta to a low affinity form.

S Jacobs, P Cuatrecasas
PMCID: PMC371629  PMID: 7440724

Abstract

Treatment of human placenta membranes with dithiothrietol (DTT) followed by N-ethylmaleimide results in a 60% reduction in insulin binding. Treatment with N-ethylmaleimide alone has little effect. The decrease in insulin binding that results from DTT treatment is due to a decrease in affinity for insulin, with little change in total receptor number. DTT has similar effects on receptor solubilized from placenta membranes with Triton X-100, indicating that its effects are not attributable to changes in the arrangement of receptors in the membrane. In contrast to placenta membranes, treatment of liver membranes with DTT does not decrease insulin binding. These results suggest that reduction of a critical disulfide bond in insulin receptors from human placenta converts the receptor to a low affinity form.

Full text

PDF
1424

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cuatrecasas P., Desbuquois B., Krug F. Insulin-receptor interactions in liver cell membranes. Biochem Biophys Res Commun. 1971 Jul 16;44(2):333–339. doi: 10.1016/0006-291x(71)90604-8. [DOI] [PubMed] [Google Scholar]
  2. Cuatrecasas P. Insulin--receptor interactions in adipose tissue cells: direct measurement and properties. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1264–1268. doi: 10.1073/pnas.68.6.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cuatrecasas P. Isolation of the insulin receptor of liver and fat-cell membranes (detergent-solubilized-( 125 I)insulin-polyethylene glycol precipitation-sephadex). Proc Natl Acad Sci U S A. 1972 Feb;69(2):318–322. doi: 10.1073/pnas.69.2.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cuatrecasas P., Parikh I. Affinity chromatography of insulin receptors. Methods Enzymol. 1974;34:653–670. doi: 10.1016/s0076-6879(74)34088-8. [DOI] [PubMed] [Google Scholar]
  5. Cuatrecasas P. Properties of the insulin receptor of isolated fat cell membranes. J Biol Chem. 1971 Dec 10;246(23):7265–7274. [PubMed] [Google Scholar]
  6. Harrison L. C., Billington T., East I. J., Nichols R. J., Clark S. The effect of solubilization on the properties of the insulin receptor of human placental membranes. Endocrinology. 1978 May;102(5):1485–1495. doi: 10.1210/endo-102-5-1485. [DOI] [PubMed] [Google Scholar]
  7. Jacobs S., Hazum E., Cuatrecasas P. The subunit structure of rat liver insulin receptor. Antibodies directed against the insulin-binding subunit. J Biol Chem. 1980 Jul 25;255(14):6937–6940. [PubMed] [Google Scholar]
  8. Jacobs S., Hazum E., Shechter Y., Cuatrecasas P. Insulin receptor: covalent labeling and identification of subunits. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4918–4921. doi: 10.1073/pnas.76.10.4918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. O'Keefe E., Hollenberg M. D., Cuatrecasas P. Epidermal growth factor. Characteristics of specific binding in membranes from liver, placenta, and other target tissues. Arch Biochem Biophys. 1974 Oct;164(2):518–526. doi: 10.1016/0003-9861(74)90062-9. [DOI] [PubMed] [Google Scholar]
  10. Olefsky J. M., Chang H. Further evidence for functional heterogeneity of adipocyte insulin receptors. Endocrinology. 1979 Feb;104(2):462–466. doi: 10.1210/endo-104-2-462. [DOI] [PubMed] [Google Scholar]
  11. Pilch P. F., Czech M. P. The subunit structure of the high affinity insulin receptor. Evidence for a disulfide-linked receptor complex in fat cell and liver plasma membranes. J Biol Chem. 1980 Feb 25;255(4):1722–1731. [PubMed] [Google Scholar]
  12. Schweitzer J. B., Smith R. M., Jarett L. Differences in organizational structure of insulin receptor on rat adipocyte and liver plasma membranes: role of disulfide bonds. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4692–4696. doi: 10.1073/pnas.77.8.4692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wisher M. H., Baron M. D., Jones R. H., Sönksen P. H. Photoreactive insulin analogues used to characterise the insulin receptor. Biochem Biophys Res Commun. 1980 Jan 29;92(2):492–498. doi: 10.1016/0006-291x(80)90360-5. [DOI] [PubMed] [Google Scholar]
  14. Yip C. C., Yeung C. W., Moule M. L. Photoaffinity labeling of insulin receptor of rat adiopocyte plasma membrane. J Biol Chem. 1978 Mar 25;253(6):1743–1745. [PubMed] [Google Scholar]
  15. Yip C. C., Yeung C. W., Moule M. L. Photoaffinity labeling of insulin receptor proteins of liver plasma membrane preparations. Biochemistry. 1980 Jan 8;19(1):70–76. doi: 10.1021/bi00542a011. [DOI] [PubMed] [Google Scholar]
  16. Yokono K., Imamura Y., Sakai H., Baba S. Insulin-degrading activity of plasma membranes from rat skeletal muscle: its isolation, characterization, and biologic significance. Diabetes. 1979 Sep;28(9):810–817. doi: 10.2337/diab.28.9.810. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES