Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1980 Oct;66(4):748–756. doi: 10.1172/JCI109912

Increased renal secretion of norepinephrine and prostaglandin E2 during sodium depletion in the dog.

J A Oliver, J Pinto, R R Sciacca, P J Cannon
PMCID: PMC371649  PMID: 6999033

Abstract

To determine whether vasoactive renal hormones modulate renal blood flow during alterations of sodium balance, simultaneous measurements of arterial and renal venous concentrations of norepinephrine and prostaglandin E2 (PGE2) and of plasma renin activity, as well as renal blood flow and systemic hemodynamics were carried out in 24 sodium-depleted and 28 sodium-replete anesthetized dogs. The mean arterial blood pressure of the sodium depleted dogs was not significantly different from that of the animals fed a normal sodium diet, but cardiac output was significantly lower (3.07 +/- 0.18 vs. 3.77 +/- 0.17 liters/min, mean +/- SEM; P < 0.01). Despite the higher total peripheral vascular resistance in the sodium-depleted dogs (46.1 +/- 2.9 vs. 37.0 +/- 2.1 arbitrary resistance U; P < 0.02), the renal blood flow and renal vascular resistance were not significantly different in the two groups. The arterial plasma renin activity and concentration of norepinephrine were higher in the sodium-depleted animals than in the controls; the arterial concentration of PGE2 was equal in both groups. The renal venous plasma renin activity was higher in the sodium-depleted dogs. Similarly, the renal venous norepinephrine concentration was higher in the sodium-depleted dogs than in the controls (457 +/- 44 vs. 196 +/- 25 pg/ml; P < 0.01); renal venous PGE2 concentration was also higher in the sodium depleted dogs (92 +/- 22 vs. 48 +/- 11 pg/ml; P < 0.01). Administration of indomethacin to five sodium-replete dogs had no effect on renal blood flow. In five sodium-depleted dogs indomethacin lowered renal blood flow from 243 +/- 19 to 189 +/- 30 ml/min (P < 0.05) and PGE2 in renal venous blood from 71 +/- 14 to 15 +/- 2 pg/ml (P < 0.02). The results indicate that moderate chronic sodium depletion, in addition to enhancing the activity of the renin-angiotensin system, also increases the activity of the renal adrenergic nervous system and increases renal PGE2 synthesis. In sodium-depleted dogs, inhibition of prostaglandin synthesis was associated with a significant decrease in renal blood flow. The results suggest that the renal blood flow is maintained during moderate sodium depletion by an effect of the prostaglandins to oppose the vasoconstrictor effects of angiotensin II and the renal sympathetic nervous system.

Full text

PDF
748

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiken J. W., Vane J. R. Intrarenal prostaglandin release attenuates the renal vasoconstrictor activity of angiotensin. J Pharmacol Exp Ther. 1973 Mar;184(3):678–687. [PubMed] [Google Scholar]
  2. Alexander R. W., Gimbrone M. A., Jr Stimulation of prostaglandin E synthesis in cultured human umbilical vein smooth muscle cells. Proc Natl Acad Sci U S A. 1976 May;73(5):1617–1620. doi: 10.1073/pnas.73.5.1617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barajas L. Innervation of the renal cortex. Fed Proc. 1978 Apr;37(5):1192–1201. [PubMed] [Google Scholar]
  4. Bell-Reuss E., Trevino D. L., Gottschalk C. W. Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption. J Clin Invest. 1976 Apr;57(4):1104–1107. doi: 10.1172/JCI108355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ben-Jonathan N., Porter J. C. A sensitive radioenzymatic assay for dopamine, norepinephrine, and epinephrine in plasma and tissue. Endocrinology. 1976 Jun;98(6):1497–1507. doi: 10.1210/endo-98-6-1497. [DOI] [PubMed] [Google Scholar]
  6. Blantz R. C., Wallin J. D., Rector F. C., Jr, Seldin D. W. Effect of variation in dietary NaCl intake on the intrarenal distribution of plasma flow in the rat. J Clin Invest. 1972 Nov;51(11):2790–2795. doi: 10.1172/JCI107101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bohman S. O. Demonstration of prostaglandin synthesis in collecting duct cells and other cell types of the rabbit renal medulla. Prostaglandins. 1977 Oct;14(4):729–744. doi: 10.1016/0090-6980(77)90201-5. [DOI] [PubMed] [Google Scholar]
  8. Boyer T. D., Zia P., Reynolds T. B. Effect of indomethacin and prostaglandin A1 on renal function and plasma renin activity in alcoholic liver disease. Gastroenterology. 1979 Aug;77(2):215–222. [PubMed] [Google Scholar]
  9. Brubacher E. S., Vander A. J. Sodium deprivation and renin secretion in unanesthetized dogs. Am J Physiol. 1968 Jan;214(1):15–21. doi: 10.1152/ajplegacy.1968.214.1.15. [DOI] [PubMed] [Google Scholar]
  10. Clement D. L., Pelletier C. L., Shepherd J. T. Role of vagal afferents in the control of renal sympathetic nerve activity in the rabbit. Circ Res. 1972 Dec;31(6):824–830. doi: 10.1161/01.res.31.6.824. [DOI] [PubMed] [Google Scholar]
  11. Dunham E. W., Zimmerman B. G. Release of prostaglandin-like material from dog kidney during nerve stimulation. Am J Physiol. 1970 Nov;219(5):1279–1285. doi: 10.1152/ajplegacy.1970.219.5.1279. [DOI] [PubMed] [Google Scholar]
  12. Elkinton J. R., Danowski T. S., Winkler A. W. HEMODYNAMIC CHANGES IN SALT DEPLETION AND IN DEHYDRATION. J Clin Invest. 1946 Jan;25(1):120–129. doi: 10.1172/JCI101681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. FRYE R. L., BRAUNWALD E. Studies on Starling's law of the heart. I. The circulatory response to acute hypervolemia and its modification by ganglionic blockade. J Clin Invest. 1960 Jul;39:1043–1050. doi: 10.1172/JCI104119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ferreira S. H., Vane J. R. Prostaglandins: their disappearance from and release into the circulation. Nature. 1967 Dec 2;216(5118):868–873. doi: 10.1038/216868a0. [DOI] [PubMed] [Google Scholar]
  15. Freeman R. H., Davis J. O., Vitale S. J., Johnson J. A. Intrarenal role of angiotensin II. Homeostatic regulation of renal blood flow in the dog. Circ Res. 1973 Jun;32(6):692–698. doi: 10.1161/01.res.32.6.692. [DOI] [PubMed] [Google Scholar]
  16. GOMBOS E. A., HULET W. H., BOPP P., GOLDRINGW, BALDWIN D. S., CHASIS H. Reactivity of renal and systemic circulations to vasoconstrictor agents in normotensive and hypertensive subjects. J Clin Invest. 1962 Feb;41:203–217. doi: 10.1172/JCI104472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gimbrone M. A., Jr, Alexander R. W. Angiotensin II stimulation of prostaglandin production in cultured human vascular endothelium. Science. 1975 Jul 18;189(4198):219–220. doi: 10.1126/science.1138377. [DOI] [PubMed] [Google Scholar]
  18. Gunther S., Cannon P. J. Modulation of angiotensin II coronary vasoconstriction by cardiac prostaglandin synthesis. Am J Physiol. 1980 Jun;238(6):H895–H901. doi: 10.1152/ajpheart.1980.238.6.H895. [DOI] [PubMed] [Google Scholar]
  19. Henrich W. L., Anderson R. J., Berns A. S., McDonald K. M., Paulsen P. J., Berl T., Schrier R. W. The role of renal nerves and prostaglandins in control of renal hemodynamics and plasma renin activity during hypotensive hemorrhage in the dog. J Clin Invest. 1978 Mar;61(3):744–750. doi: 10.1172/JCI108988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kelsch R. C., Light G. S., Luciano J. R., Oliver W. J. The effect of prednisone on plasma norepinephrine concentration and renin activity in salt-depleted man. J Lab Clin Med. 1971 Feb;77(2):267–277. [PubMed] [Google Scholar]
  21. Levine L., Moskowitz M. A. Alpha- and beta-adrenergic stimulation of arachidonic acid metabolism in cells in culture. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6632–6636. doi: 10.1073/pnas.76.12.6632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lifschitz M. D., Patak R. V., Fadem S. Z., Stein J. H. Urinary prostaglandin E excretion: effect of chronic alterations in sodium intake and inhibition of prostaglandin synthesis in the rabbit. Prostaglandins. 1978 Oct;16(4):607–619. doi: 10.1016/0090-6980(78)90191-0. [DOI] [PubMed] [Google Scholar]
  23. Malik K. U., McGiff J. C. Modulation by prostaglandins of adrenergic transmission in the isolated perfused rabbit and rat kidney. Circ Res. 1975 May;36(5):599–609. doi: 10.1161/01.res.36.5.599. [DOI] [PubMed] [Google Scholar]
  24. McGiff J. C., Crowshaw K., Terragno N. A., Lonigro A. J. Release of a prostaglandin-like substance into renal venous blood in response to angiotensin II. Circ Res. 1970 Jul;27(1 Suppl 1):121–130. [PubMed] [Google Scholar]
  25. Mimran A., Guiod L., Hollenberg N. K. The role of angiotensin in the cardiovascular and renal response to salt restriction. Kidney Int. 1974 May;5(5):348–355. doi: 10.1038/ki.1974.50. [DOI] [PubMed] [Google Scholar]
  26. Noth R. H., Mulrow P. J. Serum dopamine beta-hydroxylase as an index of sympathetic nervous system activity in man. Circ Res. 1976 Jan;38(1):1–5. doi: 10.1161/01.res.38.1.1. [DOI] [PubMed] [Google Scholar]
  27. Oliver J. A., Cannon P. J. The effect of altered sodium balance upon renal vascular reactivity to angiotensin II and norepinephrine in the dog. Mechanism of variation in angiotensin responses. J Clin Invest. 1978 Mar;61(3):610–623. doi: 10.1172/JCI108972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Oliver J. A., Sciacca R. R., Cannon P. J. Renal vascular and excretory responses to prostaglandin endoperoxides in the dog. Am J Physiol. 1979 Mar;236(3):H427–H433. doi: 10.1152/ajpheart.1979.236.3.H427. [DOI] [PubMed] [Google Scholar]
  29. Oliw E., Lundén I., Sjöquist B., Anggård E. Determination of 6-keto-prostaglandin F1 alpha in rabbit kidney and urine and its relation to sodium balance. Acta Physiol Scand. 1979 Mar;105(3):359–366. doi: 10.1111/j.1748-1716.1979.tb06351.x. [DOI] [PubMed] [Google Scholar]
  30. Passon P. G., Peuler J. D. A simplified radiometric assay for plasma norepinephrine and epinephrine. Anal Biochem. 1973 Feb;51(2):618–631. doi: 10.1016/0003-2697(73)90517-4. [DOI] [PubMed] [Google Scholar]
  31. Piper P., Vane J. The release of prostaglandins from lung and other tissues. Ann N Y Acad Sci. 1971 Apr 30;180:363–385. doi: 10.1111/j.1749-6632.1971.tb53205.x. [DOI] [PubMed] [Google Scholar]
  32. Prosnitz E. H., DiBona G. F. Effect of decreased renal sympathetic nerve activity on renal tubular sodium reabsorption. Am J Physiol. 1978 Dec;235(6):F557–F563. doi: 10.1152/ajprenal.1978.235.6.F557. [DOI] [PubMed] [Google Scholar]
  33. Robertson D., Johnson G. A., Robertson R. M., Nies A. S., Shand D. G., Oates J. A. Comparative assessment of stimuli that release neuronal and adrenomedullary catecholamines in man. Circulation. 1979 Apr;59(4):637–643. doi: 10.1161/01.cir.59.4.637. [DOI] [PubMed] [Google Scholar]
  34. Romero J. C., Staneloni R. J., Dufau M. L., Dohmen R., Binia A., Kliman B., Fasciolo J. C. Changes in fluid compartments, renal hemodynamics, plasma renin and aldosterone secretion induced by low sodium intake. Metabolism. 1968 Jan;17(1):10–19. doi: 10.1016/s0026-0495(68)80003-4. [DOI] [PubMed] [Google Scholar]
  35. Satoh S., Zimmerman B. G. Influence of the renin-angiotensin system on the effect of prostaglandin synthesis inhibitors in the renal vasculature. Circ Res. 1975 Jun;36(6 Suppl 1):89–96. doi: 10.1161/01.res.36.6.89. [DOI] [PubMed] [Google Scholar]
  36. Stahl R. A., Attallah A. A., Bloch D. L., Lee J. B. Stimulation of rabbit renal PGE2 biosynthesis by dietary sodium restriction. Am J Physiol. 1979 Nov;237(5):F344–F349. doi: 10.1152/ajprenal.1979.237.5.F344. [DOI] [PubMed] [Google Scholar]
  37. Stein J. H., Osgood R. W., Boonjarern S., Cox J. W., Ferris T. F. Segmental sodium reabsorption in rats with mild and severe volume depletion. Am J Physiol. 1974 Aug;227(2):351–359. doi: 10.1152/ajplegacy.1974.227.2.351. [DOI] [PubMed] [Google Scholar]
  38. Swain J. A., Heyndrickx G. R., Boettcher D. H., Vatner S. F. Prostaglandin control of renal circulation in the unanesthetized dog and baboon. Am J Physiol. 1975 Sep;229(3):826–830. doi: 10.1152/ajplegacy.1975.229.3.826. [DOI] [PubMed] [Google Scholar]
  39. Terragno N. A., Terragno D. A., McGiff J. C. Contribution of prostaglandins to the renal circulation in conscious, anesthetized, and laparotomized dogs. Circ Res. 1977 Jun;40(6):590–595. doi: 10.1161/01.res.40.6.590. [DOI] [PubMed] [Google Scholar]
  40. Vatner S. F. Effects of hemorrhage on regional blood flow distribution in dogs and primates. J Clin Invest. 1974 Aug;54(2):225–235. doi: 10.1172/JCI107757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. White S., Patrick T., Higgins C. B., Vatner S. F., Franklin D., Braunwald E. Effects of altering ventricular rate on blood flow distribution in conscious dogs. Am J Physiol. 1971 Nov;221(5):1402–1407. doi: 10.1152/ajplegacy.1971.221.5.1402. [DOI] [PubMed] [Google Scholar]
  42. Wood A. W., Tomlinson R. W. The effect of catecholamines on ion transport in the toad bladder. Biochim Biophys Acta. 1974 Nov 15;367(3):375–384. doi: 10.1016/0005-2736(74)90095-9. [DOI] [PubMed] [Google Scholar]
  43. Zia P., Zipser R., Speckart P., Horton R. The measurement of urinary prostaglandin E in normal subjects and in high-renin states. J Lab Clin Med. 1978 Sep;92(3):415–422. [PubMed] [Google Scholar]
  44. Zusman R. M., Keiser H. R. Prostaglandin biosynthesis by rabbit renomedullary interstitial cells in tissue culture. Stimulation by angiotensin II, bradykinin, and arginine vasopressin. J Clin Invest. 1977 Jul;60(1):215–223. doi: 10.1172/JCI108758. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES