Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1980 Sep;66(3):532–542. doi: 10.1172/JCI109885

Specific nuclear binding of adenosine 3',5'-monophosphate-binding protein complex with subsequent poly(A) RNA synthesis in embryonic chick cartilage.

W M Burch Jr, H E Lebovitz
PMCID: PMC371682  PMID: 6156954

Abstract

We used embryonic chick pelvic cartilage as a model to study the mechanism by which cyclic AMP increases RNA synthesis. Isolated nuclei were incubated with [32P]-8-azidoadenosine 3,5'-monophosphate ([32P]N3cAMP) with no resultant specific nuclear binding. However, in the presence of cytosol proteins, nuclear binding of [32P]N3cAMP was demonstrable that was specific, time dependent, and dependent on a heat-labile cytosol factor. The possible biological significance of the nuclear binding of the cyclic AMP-protein complex was identified by incubating isolating nuclei with either cyclic AMP or cytosol cyclic AMP-binding proteins prepared by batch elution DEAE cellulose chromatography (DEAE peak cytosol protein), or both, in the presence of cold nucleotides and [3H]uridine 5'-triphosphate. Poly(A) RNA production occurred only in nuclei incubated with cyclic AMP and the DEAE peak cytosol protein preparation. Actinomycin D inhibited the incorporation of [3H]uridine 5'-monophosphate into poly(A) RNA. The newly synthesized poly(A) RNA had a sedimentation constant of 23S. Characterization of the cytosol cyclic AMP binding proteins using [32P]N3-cAMP with photoaffinity labeling three major cAMP-binding complexes (41,000, 51,000, and 55,000 daltons). The 51,000 and 55,000 dalton cyclic AMP binding proteins were further purified by DNA-cellulose chromatography. In the presence of cyclic AMP they stimulated poly(A) RNA synthesis in isolated nuclei. The 51,000-dalton cyclic AMP-binding protein was the predominant one that bound to the nuclei. While cyclic AMP-dependent protein kinsae activity was present in the cytosol and DEAE peak cytosol proteins, it was not present in the DNA-cellulose-bound, cyclic AMP-binding proteins. We conclude that one possible mechanism by which cyclic AMP increases RNA synthesis is by complexing to a 51,000-dalton cytosol cyclic AMP-binding protein and being subsequently translocated to the nucleus, where it is specifically bound and associated with induction of poly(A) RNA synthesis.

Full text

PDF
532

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adiga P. R., Murthy P. V., McKenzie J. M. Stimulation by thyrotropin, long-acting thyroid stimulator, and dibutyryl 3',5'-adenosine monophosphate of protein and ribonucleic acid synthesis and ribonucleic acid polymerase activities in porcine thyroid in vitro. Biochemistry. 1971 Feb 16;10(4):702–710. doi: 10.1021/bi00780a023. [DOI] [PubMed] [Google Scholar]
  2. Ames G. F. Resolution of bacterial proteins by polyacrylamide gel electrophoresis on slabs. Membrane, soluble, and periplasmic fractions. J Biol Chem. 1974 Jan 25;249(2):634–644. [PubMed] [Google Scholar]
  3. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Castagna M., Palmer W. K., Walsh D. A. Nuclear protein-kinase activity in perfused rat liver stimulated with dibutyryl-adenosine cyclic 3':5'-monophosphate. Eur J Biochem. 1975 Jun 16;55(1):193–199. doi: 10.1111/j.1432-1033.1975.tb02151.x. [DOI] [PubMed] [Google Scholar]
  6. Chuang D. M., Hollenbeck R., Costa E. Enhanced template activity in chromatin from adrenal medulla after phosphorylation of chromosomal proteins. Science. 1976 Jul 2;193(4247):60–62. doi: 10.1126/science.180597. [DOI] [PubMed] [Google Scholar]
  7. Corbin J. D., Keely S. L., Park C. R. The distribution and dissociation of cyclic adenosine 3':5'-monophosphate-dependent protein kinases in adipose, cardiac, and other tissues. J Biol Chem. 1975 Jan 10;250(1):218–225. [PubMed] [Google Scholar]
  8. Costa E., Kurosawa A., Guidotti A. Activation and nuclear translocation of protein kinase during transsynaptic induction of tyrosine 3-monooxygenase. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1058–1062. doi: 10.1073/pnas.73.4.1058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Desjardins P. R., Liew C. C., Gornall A. G. Rat liver nuclerar protein kinases. Can J Biochem. 1975 Mar;53(3):354–363. doi: 10.1139/o75-049. [DOI] [PubMed] [Google Scholar]
  10. Drezner M. K., Lebovitz H. E. Adenosine 3',5'-monophosphate effects on cartilage ribonucleic acid synthesis. Endocrinology. 1979 Feb;104(2):322–328. doi: 10.1210/endo-104-2-322. [DOI] [PubMed] [Google Scholar]
  11. Drezner M. K., Neelon F. A., Lebovitz H. E. Stimulation of cartilage macromolecule synthesis by adenosine 3',5'-monophosphate. Biochim Biophys Acta. 1976 Apr 2;425(4):521–531. doi: 10.1016/0005-2787(76)90016-2. [DOI] [PubMed] [Google Scholar]
  12. Glynn I. M., Chappell J. B. A simple method for the preparation of 32-P-labelled adenosine triphosphate of high specific activity. Biochem J. 1964 Jan;90(1):147–149. doi: 10.1042/bj0900147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guidotti A., Chuang D. M., Hollenbeck R., Costa E. Nuclear translocation of catalytic subunits of cytosol cAMP-dependent protein kinase in the transsynaptic induction of medullary tyrosine hydroxylase. Adv Cyclic Nucleotide Res. 1978;9:185–197. [PubMed] [Google Scholar]
  14. Johnson E. M., Hadden J. W., Inoue A., Allfrey V. G. DNA binding by cyclic adenosine 3',5'-monophosphate dependent protein kinase from calf thymus nuclei. Biochemistry. 1975 Aug 26;14(17):3873–3884. doi: 10.1021/bi00688a022. [DOI] [PubMed] [Google Scholar]
  15. Jungmann R. A., Lee S., DeAngelo A. B. Translocation of cytoplasmic protein kinase and cyclic adenosine monophosphate-binding protein to intracellular acceptor sites. Adv Cyclic Nucleotide Res. 1975;5:281–306. [PubMed] [Google Scholar]
  16. Kallos J. Photochemical attachment of cyclic AMP binding protein(s) to the nuclear genome. Nature. 1977 Feb 24;265(5596):705–710. doi: 10.1038/265705a0. [DOI] [PubMed] [Google Scholar]
  17. Kish V. M., Kleinsmith L. J. Nuclear protein kinases. Evidence for their heterogeneity, tissue specificity, substrate specificities, and differential responses to cyclic adenosine 3':5'-monophosphate. J Biol Chem. 1974 Feb 10;249(3):750–760. [PubMed] [Google Scholar]
  18. Kleinsmith L. J., Allfrey V. G., Mirsky A. E. Phosphoprotein metabolism in isolated lymphocyte nuclei. Proc Natl Acad Sci U S A. 1966 May;55(5):1182–1189. doi: 10.1073/pnas.55.5.1182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kleinsmith L. J. Phosphorylation of non-histone proteins in the regulation of chromosome structure and function. J Cell Physiol. 1975 Apr;85(2 Pt 2 Suppl 1):459–475. doi: 10.1002/jcp.1040850412. [DOI] [PubMed] [Google Scholar]
  20. Kranias E. G., Schweppe J. S., Jungmann R. A. Phosphorylative and functional modifications of nucleoplasmic RNA polymerase II by homologous adenosine 3':5'-monophosphate-dependent protein kinase from calf thymus and by heterologous phosphatase. J Biol Chem. 1977 Oct 10;252(19):6750–6758. [PubMed] [Google Scholar]
  21. Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3',5'-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1349–1355. doi: 10.1073/pnas.64.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Litman R. M. A deoxyribonucleic acid polymerase from Micrococcus luteus (Micrococcus lysodeikticus) isolated on deoxyribonucleic acid-cellulose. J Biol Chem. 1968 Dec 10;243(23):6222–6233. [PubMed] [Google Scholar]
  24. Marzluff W. F., Jr, Murphy E. C., Jr, Huang R. C. Transcription of ribonucleic acid in isolated mouse myeloma nuclei. Biochemistry. 1973 Aug 28;12(18):3440–3446. doi: 10.1021/bi00742a013. [DOI] [PubMed] [Google Scholar]
  25. Nissley P., Anderson W. B., Gallo M., Pastan I., Perlman R. L. The binding of cyclic adenosine monophosphate receptor to deoxyribonucleic acid. J Biol Chem. 1972 Jul 10;247(13):4264–4269. [PubMed] [Google Scholar]
  26. Palmer W. K., Castagna M., Walsh D. A. Nuclear protein kinase activity in glucagon-stimulated perfused rat livers. Biochem J. 1974 Nov;143(2):469–471. doi: 10.1042/bj1430469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Perlman R. L., Pastan I. Regulation of beta-galactosidase synthesis in Escherichia coli by cyclic adenosine 3',5'-monophosphate. J Biol Chem. 1968 Oct 25;243(20):5420–5427. [PubMed] [Google Scholar]
  28. Pomerantz A. H., Rudolph S. A., Haley B. E., Greengard P. Photoaffinity labeling of a protein kinase from bovine brain with 8-azidoadenosine 3',5'-monophosphate. Biochemistry. 1975 Aug 26;14(17):3858–3862. doi: 10.1021/bi00688a019. [DOI] [PubMed] [Google Scholar]
  29. Prashad N., Rosenberg R. N., Wischmeyer B., Ulrich C., Sparkman D. Induction of adenosine 3',5'-monophosphate binding proteins by N6,O2'-dibutyryladenosine 3',5'-monophosphate in mouse neuroblastoma cells. Analysis by two-dimensional gel electrophoresis. Biochemistry. 1979 Jun 26;18(13):2717–2725. doi: 10.1021/bi00580a005. [DOI] [PubMed] [Google Scholar]
  30. Sharma S. K., Talwar G. P. Action of cyclic adenosine 3',5'-monophosphate in vitro on the uptake and incorporation of uridine into ribonucleic acid in ovariectomized rat uterus. J Biol Chem. 1970 Apr 10;245(7):1513–1519. [PubMed] [Google Scholar]
  31. Spielvogel A. M., Mednieks M. I., Eppenberger U., Jungmann R. A. Evidence for the identity of nuclear and cytoplasmic adenosine-3':5'-monophosphate-dependent protein kinase from porcine ovaries and nuclear translocation of the cytoplasmic enzyme. Eur J Biochem. 1977 Feb 15;73(1):199–212. doi: 10.1111/j.1432-1033.1977.tb11308.x. [DOI] [PubMed] [Google Scholar]
  32. Sung M. T., Dixon G. H., Smithies O. Phosphorylation and synthesis of histones in regenerating rat liver. J Biol Chem. 1971 Mar 10;246(5):1358–1364. [PubMed] [Google Scholar]
  33. Tihon C. Cyclic AMP-protein-DNA complex formation in mammalian cell-free systems. J Cyclic Nucleotide Res. 1977 Jun;3(3):207–218. [PubMed] [Google Scholar]
  34. Varrone S., Ambesi-Impiombato F. S., Macchia V. Stimulation by cyclic 3',5'-adenosine monophosphate of RNA synthesis in a mammalian cell-free system. FEBS Lett. 1972 Mar;21(1):99–102. doi: 10.1016/0014-5793(72)80173-x. [DOI] [PubMed] [Google Scholar]
  35. Wastila W. B., Stull J. T., Mayer S. E., Walsh D. A. Measurement of cyclic 3',5'-denosine monophosphate by the activation of skeletal muscle protein kinase. J Biol Chem. 1971 Apr 10;246(7):1996–2003. [PubMed] [Google Scholar]
  36. Wilson B. D., Wright R. L. Mechanism of TSH action: effects of dibutyryl cyclic AMP on RNA synthesis in isolated thyroid cells. Biochem Biophys Res Commun. 1970 Oct 9;41(1):217–224. doi: 10.1016/0006-291x(70)90491-2. [DOI] [PubMed] [Google Scholar]
  37. Wu G. J., Zubay G. Prolonged transcription in a cell-free system involving nuclei and cytoplasm. Proc Natl Acad Sci U S A. 1974 May;71(5):1803–1807. doi: 10.1073/pnas.71.5.1803. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES