Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1978 Aug;62(2):286–293. doi: 10.1172/JCI109128

The Role of Acetaldehyde in Mediating the Deleterious Effect of Ethanol on Pyridoxal 5′-Phosphate Metabolism

Lawrence Lumeng 1,2
PMCID: PMC371765  PMID: 27531

Abstract

Previous studies in vivo and with isolated perfused rat livers have suggested that the deleterious effect of ethanol on hepatic pyridoxal 5′-phosphate metabolism is mediated by acetaldehyde. Inasmuch as acetaldehyde has no effect on the synthesis of pyridoxal phosphate, it has also been postulated that acetaldehyde accelerates pyridoxal phosphate degradation by displacing this coenzyme from binding proteins, which protect it against hydrolysis. To test these hypotheses, studies have been performed with isolated rat hepatocytes, subcellular fractions of rat liver, and human erythrocytes. Ethanol oxidation lowered the pyridoxal phosphate content of isolated liver cells when acetaldehyde oxidation was inhibited by either disulfiram or prior treatment of rats with cyanamide. Additions of 7.5 mM acetaldehyde alone at 40-min intervals to cell suspensions decreased hepatic pyridoxal phosphate content only slightly because acetaldehyde was rapidly metabolized. However, when acetaldehyde oxidation and reduction were inhibited by cyanamide treatment and by 4-methyl-pyrazole and isobutyramide, respectively, a 40% decrease in hepatic pyridoxal phosphate content was observed in 80 min of incubation.

In equilibrium dialysis experiments, acetaldehyde, 7.5 and 15 mM, displaced protein-bound pyridoxal phosphate in undialyzed hepatic cytosol and in hemolysate supernate containing added pyridoxal phosphate. In the presence of alkaline phosphatase, acetaldehyde accelerated the degradation of pyridoxal phosphate in dialyzed hemolysate supernate and hepatic cytosol with added pyridoxal phosphate. Acetaldehyde also inhibits tyrosine aminotransferase. The kinetics of inhibition were mixed competitive-noncompetitive with respect to pyridoxal phosphate. These observations support the hypothesis that the deleterious effect of ethanol oxidation on pyridoxal phosphate metabolism is mediated at least in part by acetaldehyde which displaces this coenzyme from protein binding, thereby enhancing its degradation.

Full text

PDF
286

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bosron W. F., Veitch R. L., Lumeng L., Li T. K. Subcellular localization and identification of pyridoxal 5'-phosphate-binding proteins in rat liver. J Biol Chem. 1978 Mar 10;253(5):1488–1492. [PubMed] [Google Scholar]
  2. Cederbaum A. I., Lieber C. S., Rubin E. Effect of acetaldehyde on fatty acid oxidation and ketogenesis by hepatic mitochondria. Arch Biochem Biophys. 1975 Jul;169(1):29–41. doi: 10.1016/0003-9861(75)90313-6. [DOI] [PubMed] [Google Scholar]
  3. Collins M. A., Gordon R., Jr, Bigdeli M. G., Rubenstein J. A. Pyrogallol potentiates acetaldehyde blood levels during ethanol oxidation in rats. Chem Biol Interact. 1974 Feb;8(2):127–130. doi: 10.1016/0009-2797(74)90058-1. [DOI] [PubMed] [Google Scholar]
  4. Crow K. E., Cornell N. W., Veech R. L. The rate of ethanol metabolism in isolated rat hepatocytes. Alcohol Clin Exp Res. 1977 Jan;1(1):43–50. doi: 10.1111/j.1530-0277.1977.tb05765.x. [DOI] [PubMed] [Google Scholar]
  5. Deitrich R. A., Erwin V. G. Involvement of biogenic amine metabolism in ethanol addiction. Fed Proc. 1975 Sep;34(10):1962–1968. [PubMed] [Google Scholar]
  6. Deitrich R. A., Troxell P. A., Worth W. S. Inhibition of aldehyde dehydrogenase in brain and liver by cyanamide. Biochem Pharmacol. 1976 Dec 15;25(24):2733–2737. doi: 10.1016/0006-2952(76)90265-3. [DOI] [PubMed] [Google Scholar]
  7. Edmondson J. W., Lumeng L., Li T. K. Direct measurement of active transport systems for alanine in freshly isolated rat liver cells. Biochem Biophys Res Commun. 1977 Jun 6;76(3):751–757. doi: 10.1016/0006-291x(77)91564-9. [DOI] [PubMed] [Google Scholar]
  8. Eriksson C. J., Sippel H. W. The distribution and metabolism of acetaldehyde in rats during ethanol oxidation-I. The distribution of acetaldehyde in liver, brain, blood and breath. Biochem Pharmacol. 1977 Feb 1;26(3):241–247. doi: 10.1016/0006-2952(77)90310-0. [DOI] [PubMed] [Google Scholar]
  9. Eriksson C. J. The distribution and metabolism of acetaldehyde in rats during ethanol oxidation--II. Regulation of the hepatic acetaldehyde level. Biochem Pharmacol. 1977 Feb 1;26(3):249–252. doi: 10.1016/0006-2952(77)90311-2. [DOI] [PubMed] [Google Scholar]
  10. Fonda M. L. The effect of anions on the interaction of pyridoxal phosphate with glutamate apodecarboxylase. Arch Biochem Biophys. 1975 Oct;170(2):690–697. doi: 10.1016/0003-9861(75)90166-6. [DOI] [PubMed] [Google Scholar]
  11. Hayashi S. I., Granner D. K., Tomkins G. M. Tyrosine aminotransferase. Purificaton and characterization. J Biol Chem. 1967 Sep 25;242(18):3998–4006. [PubMed] [Google Scholar]
  12. Hines J. D., Cowan D. H. Studies on the pathogenesis of alcohol-induced sideroblastic bone-marrow abnormalities. N Engl J Med. 1970 Aug 27;283(9):441–446. doi: 10.1056/NEJM197008272830901. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Li T. K., Lumeng L., Veitch R. L. Regulation of pyridoxal 5'-phosphate metabolism in liver. Biochem Biophys Res Commun. 1974 Nov 27;61(2):677–684. doi: 10.1016/0006-291x(74)91010-9. [DOI] [PubMed] [Google Scholar]
  15. Lindros K. O., Vihma R., Forsander O. A. Utilization and metabolic effects of acetaldehyde and ethanol in the perfused rat liver. Biochem J. 1972 Feb;126(4):945–952. doi: 10.1042/bj1260945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lumeng L., Brashear R. E., Li T. K. Pyridoxal 5'-phosphate in plasma: source, protein-binding, and cellular transport. J Lab Clin Med. 1974 Sep;84(3):334–343. [PubMed] [Google Scholar]
  17. Lumeng L., Li T. K. Characterization of the pyridoxal 5'-phosphate and pyridoxamine 5'-phosphate hydrolase activity in rat liver. Identity with alkaline phosphatase. J Biol Chem. 1975 Oct 25;250(20):8126–8131. [PubMed] [Google Scholar]
  18. Lumeng L., Li T. K. Vitamin B6 metabolism in chronic alcohol abuse. Pyridoxal phosphate levels in plasma and the effects of acetaldehyde on pyridoxal phosphate synthesis and degradation in human erythrocytes. J Clin Invest. 1974 Mar;53(3):693–704. doi: 10.1172/JCI107607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lumeng L., Ryan M. P., Li T. K. Validation of the diagnostic value of plasma pyridoxal 5'-phosphate measurements in vitamin B6 nutrition of the rat. J Nutr. 1978 Apr;108(4):545–553. doi: 10.1093/jn/108.4.545. [DOI] [PubMed] [Google Scholar]
  20. Mitchell D., Wagner C., Stone W. J., Wilkinson G. R., Schenker S. Abnormal regulation of plasma pyridoxal 5'-phosphate in patients with liver disease. Gastroenterology. 1976 Dec;71(6):1043–1049. [PubMed] [Google Scholar]
  21. NAIR P. M., VAIDYANATHAN C. S. A STUDY OF THE PURIFICATION AND PROPERTIES OF TRYPTOPHAN SYNTHETASE OF BENGAL GRAM (CICER ARIETINUM). Arch Biochem Biophys. 1964 Mar;104:405–415. doi: 10.1016/0003-9861(64)90482-5. [DOI] [PubMed] [Google Scholar]
  22. Pfeuffer T., Ehrlich J., Helmreich E. Role of pyridoxal 5'-phosphate in glycogen phosphorylase. II. Mode of binding of pyridoxal 5'-phosphate and analogs of pyridoxal 5'-phosphate to apophosphorylase b and the aggregation state of the reconstituted phosphorylase proteins. Biochemistry. 1972 May 23;11(11):2136–2145. doi: 10.1021/bi00761a021. [DOI] [PubMed] [Google Scholar]
  23. Ray T. K. A modified method for the isolation of the plasma membrane from rat liver. Biochim Biophys Acta. 1970 Jan 6;196(1):1–9. doi: 10.1016/0005-2736(70)90159-8. [DOI] [PubMed] [Google Scholar]
  24. Schreiber S. S., Briden K., Oratz M., Rothschild M. A. Ethanol, acetaldehyde, and myocardial protein synthesis. J Clin Invest. 1972 Nov;51(11):2820–2826. doi: 10.1172/JCI107104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Seglen P. O. Preparation of rat liver cells. I. Effect of Ca 2+ on enzymatic dispersion of isolated, perfused liver. Exp Cell Res. 1972 Oct;74(2):450–454. doi: 10.1016/0014-4827(72)90400-4. [DOI] [PubMed] [Google Scholar]
  26. Shaltiel S., Hedrick J. L., Pocker A., Fischer E. H. Reconstitution of apophosphorylase with pyridoxal 5'-phosphate analogs. Biochemistry. 1969 Dec;8(12):5189–5196. doi: 10.1021/bi00840a073. [DOI] [PubMed] [Google Scholar]
  27. Vech R. L., Lumeng L., Li T. K. Vitamin B6 metabolism in chronic alcohol abuse The effect of ethanol oxidation on hepatic pyridoxal 5'-phosphate metabolism. J Clin Invest. 1975 May;55(5):1026–1032. doi: 10.1172/JCI108003. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES