Abstract
Kinetics of 45Ca efflux and insulin release were studied in collagenase-isolated rat islets during 2-h perifusions with calcium-depleted (0.05 mM) bicarbonate-phosphate buffer containing 2.2 mM glucose. Addition of glucose (16.7 mM) suppressed 45Ca efflux by 30%. Removal of glucose caused an “off response” of insulin release. The perifusion of a normal concentration of Ca (2.3 mM) greatly stimulated 45Ca efflux, indicating Ca ↔ 45Ca exchange. When Ca and glucose were superimposed, the effects on 45Ca efflux and insulin release depended upon the order of presentation of the stimuli: when Ca was added to an ongoing 16.7-mM glucose perifusion, biphasic patterns of 45Ca and insulin release were seen; when glucose was superimposed on a Ca perifusion, an inhibition of the Ca-stimulated 45Ca efflux occurred, and a reduced but clearly biphasic insulin response was seen. The subsequent insulin off response after with-drawal of the glucose was also reduced.
Mathematical “peeling” of 45Ca efflux curves from unstimulated islets suggests that there are at least two, and probably three, different intracellular Ca compartments (not including the extracellular sucrose space). At the beginning of perifusion, these three compartments (I, II, III) contain 25, 56, and 19% of the intracellular 45Ca, and their rates of efflux are 6.7, 1.2, and 0.1%/min, respectively. Glucose appears to suppress efflux from the largest compartment (II); Ca appears to exchange with 45Ca from a more inert compartment (III). The relationship between insulin and 45Ca release is not stoichiometric.
Full text
PDF![525](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1f8/371795/df5bcd09fd81/jcinvest00669-0023.png)
![526](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1f8/371795/32fd1127f314/jcinvest00669-0024.png)
![527](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1f8/371795/534530c1ae4e/jcinvest00669-0025.png)
![528](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1f8/371795/d3a570f38413/jcinvest00669-0026.png)
![529](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1f8/371795/f5bf52d75290/jcinvest00669-0027.png)
![530](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1f8/371795/639621016941/jcinvest00669-0028.png)
![531](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1f8/371795/89b05b8ab035/jcinvest00669-0029.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blackard W. G., Kikuchi M., Rabinovitch A., Renold A. E. An effect of hyposmolarity on insulin release in vitro. Am J Physiol. 1975 Mar;228(3):706–713. doi: 10.1152/ajplegacy.1975.228.3.706. [DOI] [PubMed] [Google Scholar]
- Blaustein M. P., Russell J. M. Sodium-calcium exchange and calcium-calcium exchange in internally dialyzed squid giant axons. J Membr Biol. 1975 Jul 24;22(3-4):285–312. doi: 10.1007/BF01868176. [DOI] [PubMed] [Google Scholar]
- Borle A. B. Calcium metabolism at the cellular level. Fed Proc. 1973 Sep;32(9):1944–1950. [PubMed] [Google Scholar]
- Borle A. B. Kinetic analysis of calcium movements in cell culture. V. Intracellular calcium distribution in kidney cells. J Membr Biol. 1972;10(1):45–66. doi: 10.1007/BF01867847. [DOI] [PubMed] [Google Scholar]
- Borle A. B. Methods for assessing hormone effects on calcium fluxes in vitro. Methods Enzymol. 1975;39:513–573. doi: 10.1016/s0076-6879(75)39046-0. [DOI] [PubMed] [Google Scholar]
- Bukowiecki L., Freinkel N. Relationship between efflux of ionic calcium and phosphorus during excitation of pancreatic islets with glucose. Biochim Biophys Acta. 1976 Jun 4;436(1):190–198. doi: 10.1016/0005-2736(76)90230-3. [DOI] [PubMed] [Google Scholar]
- Charles M. A., Lawecki J., Pictet R., Grodsky G. M. Insulin secretion. Interrelationships of glucose, cyclic adenosine 3:5-monophosphate, and calcium. J Biol Chem. 1975 Aug 10;250(15):6134–6140. [PubMed] [Google Scholar]
- Crompton M., Künzi M., Carafoli E. The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium-calcium carrier. Eur J Biochem. 1977 Oct 3;79(2):549–558. doi: 10.1111/j.1432-1033.1977.tb11839.x. [DOI] [PubMed] [Google Scholar]
- Curry D. L., Bennett L. L., Grodsky G. M. Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology. 1968 Sep;83(3):572–584. doi: 10.1210/endo-83-3-572. [DOI] [PubMed] [Google Scholar]
- Davis B., Lazarus N. R. An in Vitro system for studying insulin release caused by secretory granules-plasma membrane interaction: definition of the system. J Physiol. 1976 Apr;256(3):709–729. doi: 10.1113/jphysiol.1976.sp011347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devis G., Somers G., Malaisse W. J. Stimulation of insulin release by calcium. Biochem Biophys Res Commun. 1975 Nov 17;67(2):525–529. doi: 10.1016/0006-291x(75)90843-8. [DOI] [PubMed] [Google Scholar]
- Frankel B. J., Kromhout J. A., Imagawa W., Landahl H. D., Grodsky G. M. Glucose-stimulated 45Ca uptake in isolated rat islets. Diabetes. 1978 Apr;27(4):365–369. doi: 10.2337/diab.27.4.365. [DOI] [PubMed] [Google Scholar]
- Grodsky G. M., Bennett L. L. Cation requirements for insulin secretion in the isolated perfused pancreas. Diabetes. 1966 Dec;15(12):910–913. doi: 10.2337/diab.15.12.910. [DOI] [PubMed] [Google Scholar]
- Grodsky G. M., Curry D., Landahl H., Bennett L. [Further studies on the dynamic aspects of insulin release in vitro with evidence for a two-compartmental storage system]. Acta Diabetol Lat. 1969 Sep;6 (Suppl 1):554–578. [PubMed] [Google Scholar]
- Gylfe E., Hellman B. Calcium and pancreatic beta-cell function. 2. Mobilisation of glucose-sensitive 45Ca from perifused islets rich in beta-cells. Biochim Biophys Acta. 1978 Jan 18;538(2):249–257. doi: 10.1016/0304-4165(78)90353-7. [DOI] [PubMed] [Google Scholar]
- Hellman B., Sehlin J., Täljedal I. B. Calcium and secretion: distinction between two pools of glucose-sensitive calcium in pancreatic islets. Science. 1976 Dec 24;194(4272):1421–1423. doi: 10.1126/science.795030. [DOI] [PubMed] [Google Scholar]
- Hellman B., Sehlin J., Täljedal I. B. Effects of glucose on 45Ca2+ uptake by pancreatic islets as studied with the lanthanum method. J Physiol. 1976 Jan;254(3):639–656. doi: 10.1113/jphysiol.1976.sp011250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herman L., Sato T., Hales C. N. The electron microscopic localization of cations to pancreatic islets of Langerhans and their possible tole in insulin secretion. J Ultrastruct Res. 1973 Feb;42(3):298–311. doi: 10.1016/s0022-5320(73)90058-0. [DOI] [PubMed] [Google Scholar]
- Hoftiezer V., Carpenter A. M. Comparison of streptozotocin and alloxan-induced diabetes in the rat, including volumetric quantitation of the pancreatic islets. Diabetologia. 1973 Jun;9(3):178–184. doi: 10.1007/BF01219780. [DOI] [PubMed] [Google Scholar]
- Lacy P. E., Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967 Jan;16(1):35–39. doi: 10.2337/diab.16.1.35. [DOI] [PubMed] [Google Scholar]
- Lacy P. E., Walker M. M., Fink C. J. Perifusion of isolated rat islets in vitro. Participation of the microtubular system in the biphasic release of insulin. Diabetes. 1972 Oct;21(10):987–998. doi: 10.2337/diab.21.10.987. [DOI] [PubMed] [Google Scholar]
- Lambert A. E. The regulation of insulin secretion. Rev Physiol Biochem Pharmacol. 1976;75:97–159. doi: 10.1007/BFb0030486. [DOI] [PubMed] [Google Scholar]
- Larsson L. I., Sundler F., Håkanson R. Pancreatic polypeptide - a postulated new hormone: identification of its cellular storage site by light and electron microscopic immunocytochemistry. Diabetologia. 1976 Jul;12(3):211–226. doi: 10.1007/BF00422088. [DOI] [PubMed] [Google Scholar]
- Lundquist I., Fanska R., Grodsky G. M. Interaction of calcium and glucose on glucagon secretion. Endocrinology. 1976 Nov;99(5):1304–1312. doi: 10.1210/endo-99-5-1304. [DOI] [PubMed] [Google Scholar]
- Malaisse-Lagae F., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. 3. Uptake of 45 calcium by isolated islets of Langerhans. Endocrinology. 1971 Jan;88(1):72–80. doi: 10.1210/endo-88-1-72. [DOI] [PubMed] [Google Scholar]
- Malaisse W. J., Brisson G. R., Baird L. E. Stimulus-secretion coupling of glucose-induced insulin release. X. Effect of glucose on 45 Ca efflux from perifused islets. Am J Physiol. 1973 Feb;224(2):389–394. doi: 10.1152/ajplegacy.1973.224.2.389. [DOI] [PubMed] [Google Scholar]
- McDonald J. M., Bruns D. E., Jarett L. Characterization of calcium binding to adipocyte plasma membranes. J Biol Chem. 1976 Sep 10;251(17):5345–5351. [PubMed] [Google Scholar]
- McEvoy R. C., Hegre O. D. Morphometric quantitation of the pancreatic insulin-, glucagon-, and somatostatin-positive cell populations in normal and alloxan-diabetic rats. Diabetes. 1977 Dec;26(12):1140–1146. doi: 10.2337/diab.26.12.1140. [DOI] [PubMed] [Google Scholar]
- Moore L., Chen T., Knapp H. R., Jr, Landon E. J. Energy-dependent calcium sequestration activity in rat liver microsomes. J Biol Chem. 1975 Jun 25;250(12):4562–4568. [PubMed] [Google Scholar]
- Naber S. P., McDaniel M. L., Lacy P. E. The effect of glucose on the acute uptake and efflux of calcium-45 in isolated rat islets. Endocrinology. 1977 Sep;101(3):686–693. doi: 10.1210/endo-101-3-686. [DOI] [PubMed] [Google Scholar]
- Pipeleers D. G., Marichal M., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. XIV. Glucose regulation of insular biosynthetic activity. Endocrinology. 1973 Nov;93(5):1001–1011. doi: 10.1210/endo-93-5-1001. [DOI] [PubMed] [Google Scholar]
- Pipeleers D. G., Pipeleers-Marichal M. A., Kipnis D. M. Microtubule assembly and the intracellular transport of secretory granules in pancreatic islets. Science. 1976 Jan 9;191(4222):88–90. doi: 10.1126/science.1108194. [DOI] [PubMed] [Google Scholar]
- Ravazzola M., Malaisse-Lagae F., Amherdt M., Perrelet A., Malaisse W. J., Orci L. Patterns of calcium localization in pancreatic endocrine cells. J Cell Sci. 1976 Jun;21(1):107–117. doi: 10.1242/jcs.21.1.107. [DOI] [PubMed] [Google Scholar]
- Schäfer H. J., Klöppel G. The significance of calcium in insulin secretion. Ultrastructural studies on identification and localization of calcium in activated and inactivated B cells of mice. Virchows Arch A Pathol Anat Histol. 1974;362(3):231–245. doi: 10.1007/BF00432197. [DOI] [PubMed] [Google Scholar]
- Wollheim C. B., Kikuchi M., Renold A. E., Sharp G. W. Somatostatin- and epinephrine-induced modifications of 45Ca++ fluxes and insulin release in rat pancreatic islets maintained in tissue culture. J Clin Invest. 1977 Nov;60(5):1165–1173. doi: 10.1172/JCI108869. [DOI] [PMC free article] [PubMed] [Google Scholar]