Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1978 Sep;62(3):585–592. doi: 10.1172/JCI109164

The Effect of Acetazolamide on Cerebral Blood Flow and Oxygen Utilization in the Rhesus Monkey

B E Laux 1,2, M E Raichle 1,2
PMCID: PMC371803  PMID: 99455

Abstract

The brain is critically dependent for its moment to moment function and survival on an adequate supply of oxygen. The enzyme carbonic anhydrase (EC 4.2.1.1) may play an important role in oxygen delivery to brain tissue by facilitating the hydration of metabolically produced carbon dioxide in erythrocytes in brain capillaries, thus permitting the Bohr effect to occur. We examined the effect of 30 mg/kg i.v. acetazolamide, a potent inhibitor of carbonic anhydrase, upon cerebral blood flow and oxygen consumption in lightly anesthetized, passively ventilated rhesus monkeys. Cerebral blood flow and oxygen consumption were measured with oxygen-15-labeled water and oxygen-15-labeled oxyhemoglobin, respectively, injected into the internal carotid artery and monitored externally. Acetazolamide produced an immediate and significant increase in cerebral blood flow (from a mean of 64.7 to 83.8 ml/100 g per min), an increase in arterial carbon dioxide tension (from a mean of 40.7 to 47.5 torr), and a decrease in cerebral oxygen consumption (from a mean of 4.16 to 2.82 ml/100 g per min). Because the change in cerebral oxygen consumption occurred within minutes of the administration of acetazolamide, we believe that this effect probably was not due to a direct action on brain cells but was achieved by an interference with oxygen unloading in brain capillaries. A resultant tissue hypoxia might well explain part of the observed increase in cerebral blood flow.

Full text

PDF
585

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brzezinski J., Kjällquist A., Siesjö B. K. Mean carbon dioxide tension in the brain after carbonic anhydrase inhibition. J Physiol. 1967 Jan;188(1):13–23. doi: 10.1113/jphysiol.1967.sp008120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cohen P. J., Alexander S. C., Smith T. C., Reivich M., Wollman H. Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man. J Appl Physiol. 1967 Aug;23(2):183–189. doi: 10.1152/jappl.1967.23.2.183. [DOI] [PubMed] [Google Scholar]
  3. Cotev S., Lee J., Severinghaus J. W. The effects of acetazolamide on cerebral blood flow and cerebral tissue PO2. Anesthesiology. 1968 May-Jun;29(3):471–477. doi: 10.1097/00000542-196805000-00018. [DOI] [PubMed] [Google Scholar]
  4. Detar R., Bohr D. F. Oxygen and vascular smooth muscle contraction. Am J Physiol. 1968 Feb;214(2):241–244. doi: 10.1152/ajplegacy.1968.214.2.241. [DOI] [PubMed] [Google Scholar]
  5. Eichling J. O., Raichle M. E., Grubb R. L., Jr, Ter-Pogossian M. M. Evidence of the limitations of water as a freely diffusible tracer in brain of the rhesus monkey. Circ Res. 1974 Sep;35(3):358–364. doi: 10.1161/01.res.35.3.358. [DOI] [PubMed] [Google Scholar]
  6. Forster R. E., Crandall E. D. Time course of exchanges between red cells and extracellular fluid during CO2 uptake. J Appl Physiol. 1975 Apr;38(4):710–718. doi: 10.1152/jappl.1975.38.4.710. [DOI] [PubMed] [Google Scholar]
  7. Gotoh F., Meyer J. S., Tomita M. Carbonic anhydrase inhibition and cerebral venous blood gases and ions in man. Demonstration of increased oxygen availability to ischemic brain. Arch Intern Med. 1966 Jan;117(1):39–46. [PubMed] [Google Scholar]
  8. Grubb R. L., Jr, Raichle M. E., Eichling J. O., Ter-Pogossian M. M. The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke. 1974 Sep-Oct;5(5):630–639. doi: 10.1161/01.str.5.5.630. [DOI] [PubMed] [Google Scholar]
  9. Howse D. C., Caronna J. J., Duffy T. E., Plum F. Cerebral energy metabolism, pH, and blood flow during seizures in the cat. Am J Physiol. 1974 Dec;227(6):1444–1451. doi: 10.1152/ajplegacy.1974.227.6.1444. [DOI] [PubMed] [Google Scholar]
  10. Itada N., Forster R. E. Carbonic anhydrase activity in intact red blood cells measured with 18O exchange. J Biol Chem. 1977 Jun 10;252(11):3881–3890. [PubMed] [Google Scholar]
  11. Johannsson H., Siesjö B. K. Blood flow and oxygen consumption of the rat brain in profound hypoxia. Acta Physiol Scand. 1974 Jan;90(1):281–282. doi: 10.1111/j.1748-1716.1974.tb05588.x. [DOI] [PubMed] [Google Scholar]
  12. Kogure K., Scheinberg P., Reinmuth O. M., Fujishima M., Busto R. Mechanisms of cerebral vasodilatation in hypoxia. J Appl Physiol. 1970 Aug;29(2):223–229. doi: 10.1152/jappl.1970.29.2.223. [DOI] [PubMed] [Google Scholar]
  13. MAREN T. H., PARCELL A. L., MALIK M. N. A kinetic analysis of carbonic anhydrase inhibition. J Pharmacol Exp Ther. 1960 Dec;130:389–400. [PubMed] [Google Scholar]
  14. MEYER J. S., GOTOH F. Interaction of cerebral hemodynamics and metabolism. Neurology. 1961 Apr;11(4):46–65. doi: 10.1212/wnl.11.4_part_2.46. [DOI] [PubMed] [Google Scholar]
  15. MITHOEFER J. C. Inhibition of carbonic anhydrase: its effect on carbon dioxide elimination by the lungs. J Appl Physiol. 1959 Jan;14(1):109–115. doi: 10.1152/jappl.1959.14.1.109. [DOI] [PubMed] [Google Scholar]
  16. Maren T. H. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967 Oct;47(4):595–781. doi: 10.1152/physrev.1967.47.4.595. [DOI] [PubMed] [Google Scholar]
  17. Maren T. H. Use of inhibitors in physiological studies of carbonic anhydrase. Am J Physiol. 1977 Apr;232(4):F291–F297. doi: 10.1152/ajprenal.1977.232.4.F291. [DOI] [PubMed] [Google Scholar]
  18. POSNER J. B., PLUM F. The toxic effects of carbon dioxide and acetazolamide in hepatic encephalopathy. J Clin Invest. 1960 Aug;39:1246–1258. doi: 10.1172/JCI104140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. REIVICH M. ARTERIAL PCO2 AND CEREBRAL HEMODYNAMICS. Am J Physiol. 1964 Jan;206:25–35. doi: 10.1152/ajplegacy.1964.206.1.25. [DOI] [PubMed] [Google Scholar]
  20. ROTH L. J., SCHOOLAR J. C., BARLOW C. F. Sulfur-35 labeled acetazolamide in cat brain. J Pharmacol Exp Ther. 1959 Feb;125(2):128–136. [PubMed] [Google Scholar]
  21. Raichle M. E., Eichling J. O., Straatmann M. G., Welch M. J., Larson K. B., Ter-Pogossian M. M. Blood-brain barrier permeability of 11C-labeled alcohols and 15O-labeled water. Am J Physiol. 1976 Feb;230(2):543–552. doi: 10.1152/ajplegacy.1976.230.2.543. [DOI] [PubMed] [Google Scholar]
  22. Raichle M. E., Grubb R. L., Jr, Eichling J. O., Ter-Pogossian M. M. Measurement of brain oxygen utilization with radioactive oxygen-15: experimental verification. J Appl Physiol. 1976 Apr;40(4):638–640. doi: 10.1152/jappl.1976.40.4.638. [DOI] [PubMed] [Google Scholar]
  23. SHAPIRO E., WASSERMAN A. J., PATTERSON J. L., Jr HUMAN CEREBROVASCULAR RESPONSE TIME TO ELEVATION OF ARTERIAL CARBON DIOXIDE TENSION. Arch Neurol. 1965 Aug;13:130–138. doi: 10.1001/archneur.1965.00470020020003. [DOI] [PubMed] [Google Scholar]
  24. Shapiro H. M., Stromberg D. D., Lee D. R., Wiederhielm C. A. Dynamic pressures in the pial arterial microcirculation. Am J Physiol. 1971 Jul;221(1):279–283. doi: 10.1152/ajplegacy.1971.221.1.279. [DOI] [PubMed] [Google Scholar]
  25. Ter-Pogossian M. M., Eichling J. O., Davis D. O., Welch M. J. The measure in vivo of regional cerebral oxygen utilization by means of oxyhemoglobin labeled with radioactive oxygen-15. J Clin Invest. 1970 Feb;49(2):381–391. doi: 10.1172/JCI106247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Welch M. J., Ter-Pogossian M. M. Preparation of short half-lived radioactive gases for medical studies. Radiat Res. 1968 Dec;36(3):580–587. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES