Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1978 Sep;62(3):623–632. doi: 10.1172/JCI109169

Skeletal Muscle Protein and Amino Acid Metabolism in Experimental Chronic Uremia in the Rat

ACCELERATED ALANINE AND GLUTAMINE FORMATION AND RELEASE

Alan J Garber 1,2
PMCID: PMC371808  PMID: 690188

Abstract

The kinetics and factors regulating alanine and glutamine formation and release were investigated in skeletal muscle preparations from control and experimentally uremic rats. These preparations maintained phosphocreatine and ATP levels in vitro which closely approximated levels found in vivo. Alanine and glutamine release from uremic muscle were increased 45.8 and 36.0%, respectively, but tissue levels were unaltered. The increased release of alanine by uremic muscle was not accounted for by decreased rates of medium alanine reutilization via oxidation to CO2 or incorporation into muscle protein. The maximal capacity of added amino acids such as aspartate, cysteine, leucine, and valine to stimulate net alanine and glutamine formation was the same in uremic and control muscle. Epitrochlearis preparations were partially labeled in vivo with [guanido-14C]-arginine. On incubation, preparations from uremic animals showed a 54.6% increase in the rate of loss of 14C-label in acid precipitable protein. Correspondingly, these same uremic preparations showed a 62.7% increase in 14C-label appearance in the acid-soluble fraction of muscle and in the incubation media. Insulin decreased alanine and glutamine release to an extent threefold greater in uremic than in control preparations, and increased muscle glucose uptake approximately threefold in all preparations. Although basal rates of [4,5-3H]leucine incorporation into protein were decreased 25% in uremic muscles as compared with control muscles, insulin stimulated [3H]leucine incorporation nearly equally in both preparations.

These data demonstrate increased alanine and glutamine production and release from skeletal muscle of chronically uremic rats. This increase appears to derive in part from an enhancement of net protein degradation which could be caused by an acceleration in the breakdown of one or more groups of muscle proteins, or by an inhibition of protein synthesis, or by both processes. The increased alanine and glutamine formation and release in uremia appears not to result from an insensitivity to insulin action. The implications of these findings for an understanding of the abnormal carbohydrate metabolism of uremia are discussed.

Full text

PDF
623

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronson A. S., Fürst P., Kuylenstierna B., Nyberg G. Essential amino acids in the treatment of advanced uremia: twenty-two months' experience in a 5-year-old girl. Pediatrics. 1975 Oct;56(4):538–543. [PubMed] [Google Scholar]
  2. Avioli L. V., Scott S., Lee S. W., De Luca H. F. Intestinal calcium absorption: nature of defect in chronic renal disease. Science. 1969 Nov 28;166(3909):1154–1156. doi: 10.1126/science.166.3909.1154. [DOI] [PubMed] [Google Scholar]
  3. Aviram A., Peters J. H., Gulyassy P. F. Dialysance of amino acids and related substances. Nephron. 1971;8(5):440–454. doi: 10.1159/000179948. [DOI] [PubMed] [Google Scholar]
  4. Bergström J., Fürst P., Norée L. O. Treatment of chronic uremic patients with protein-poor diet and oral supply of essential amino acids. I. Nitrogen balance studies. Clin Nephrol. 1975;3(5):187–194. [PubMed] [Google Scholar]
  5. Bilbrey G. L., Faloona G. R., White M. G., Knochel J. P. Hyperglucagonemia of renal failure. J Clin Invest. 1974 Mar;53(3):841–847. doi: 10.1172/JCI107624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bowen H. F., Moorhouse J. A. Glucose turnover and disposal in maturity-onset diabetes. J Clin Invest. 1973 Dec;52(12):3033–3045. doi: 10.1172/JCI107502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Condon J. R., Asatoor A. M. Amino acid metabolism in uraemic patients. Clin Chim Acta. 1971 May;32(3):333–337. doi: 10.1016/0009-8981(71)90433-5. [DOI] [PubMed] [Google Scholar]
  8. DeFronzo R. A., Andres R., Edgar P., Walker W. G. Carbohydrate metabolism in uremia: a review. Medicine (Baltimore) 1973 Sep;52(5):469–481. doi: 10.1097/00005792-197309000-00009. [DOI] [PubMed] [Google Scholar]
  9. Felig P., Owen O. E., Wahren J., Cahill G. F., Jr Amino acid metabolism during prolonged starvation. J Clin Invest. 1969 Mar;48(3):584–594. doi: 10.1172/JCI106017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fröhlich J., Schölmerich J., Hoppe-Seyler G., Maier K. P., Talke H., Schollmeyer P., Gerok W. The effect of acute uraemia on gluconeogenesis in isolated perfused rat livers. Eur J Clin Invest. 1974 Dec 5;4(6):453–458. doi: 10.1111/j.1365-2362.1974.tb00419.x. [DOI] [PubMed] [Google Scholar]
  11. Ganda O. P., Aoki T. T., Soeldner J. S., Morrison R. S., Cahill G. F., Jr Hormone-fuel concentrations in anephric subjects. Effect of hemodialysis (with special reference to amino acids). J Clin Invest. 1976 Jun;57(6):1403–1411. doi: 10.1172/JCI108409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garber A. J., Bier D. M., Cryer P. E., Pagliara A. S. Hypoglycemia in compensated chronic renal insufficiency. Substrate limitation of gluconeogenesis. Diabetes. 1974 Dec;23(12):982–986. doi: 10.2337/diab.23.12.982. [DOI] [PubMed] [Google Scholar]
  13. Garber A. J., Karl I. E., Kipnis D. M. Alanine and glutamine synthesis and release from skeletal muscle. I. Glycolysis and amino acid release. J Biol Chem. 1976 Feb 10;251(3):826–835. [PubMed] [Google Scholar]
  14. Garber A. J., Karl I. E., Kipnis D. M. Alanine and glutamine synthesis and release from skeletal muscle. II. The precursor role of amino acids in alanine and glutamine synthesis. J Biol Chem. 1976 Feb 10;251(3):836–843. [PubMed] [Google Scholar]
  15. Garber A. J., Karl I. E., Kipnis D. M. Alanine and glutamine synthesis and release from skeletal muscle. IV. beta-Adrenergic inhibition of amino acid release. J Biol Chem. 1976 Feb 10;251(3):851–857. [PubMed] [Google Scholar]
  16. Ginn H. E., Frost A., Lacy W. W. Nitrogen balance in hemodialysis patients. Am J Clin Nutr. 1968 May;21(5):385–393. doi: 10.1093/ajcn/21.5.385. [DOI] [PubMed] [Google Scholar]
  17. Giordano C., Pluvio M., Esposito R. Urea index and nitrogen balance in uremic patients on miminal nitrogen intakes. Clin Nephrol. 1975;3(5):168–171. [PubMed] [Google Scholar]
  18. Goldstein L., Newsholme E. A. The formation of alanine from amino acids in diaphragm muscle of the rat. Biochem J. 1976 Feb 15;154(2):555–558. doi: 10.1042/bj1540555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gulyassy P. F., Aviram A., Peters J. H. Evaluation of amino acid and protein requirements in chronic uremia. Arch Intern Med. 1970 Nov;126(5):855–859. [PubMed] [Google Scholar]
  20. Hampers C. L., Lowrie E. G., Soeldner J. S., Merrill J. P. The effect of uremia upon glucose metabolism. Arch Intern Med. 1970 Nov;126(5):870–874. [PubMed] [Google Scholar]
  21. Karl I. E., Garber A. J., Kipnis D. M. Alanine and glutamine synthesis and release from skeletal muscle. III. Dietary and hormonal regulation. J Biol Chem. 1976 Feb 10;251(3):844–850. [PubMed] [Google Scholar]
  22. Karl I. E., Pagliara A. S., Kipnis D. M. A microfluorometric enzymatic assay for the determination of alanine and pyruvate in plasma and tissues. J Lab Clin Med. 1972 Sep;80(3):434–441. [PubMed] [Google Scholar]
  23. Kopple J. D., Swendseid M. E. Evidence that histidine is an essential amino acid in normal and chronically uremic man. J Clin Invest. 1975 May;55(5):881–891. doi: 10.1172/JCI108016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kopple J. D., Swendseid M. E., Shinaberger J. H., Umezawa C. Y. The free and bound amino acids removed by hemodialysis. Trans Am Soc Artif Intern Organs. 1973;19:309–313. doi: 10.1097/00002480-197301900-00052. [DOI] [PubMed] [Google Scholar]
  25. Maier K. P., Hoppe-Seyler G., Talke H., Fröhlich J., Schollmeyer P., Gerok W. Enzymatic and metabolic studies on carbohydrate and amino acid metabolism in rat liver during acute uraemia. Eur J Clin Invest. 1973 May;3(3):201–207. doi: 10.1111/j.1365-2362.1973.tb00350.x. [DOI] [PubMed] [Google Scholar]
  26. Mallet L. E., Exton J. H., Park C. R. Control of gluconeogenesis from amino acids in the perfused rat liver. J Biol Chem. 1969 Oct 25;244(20):5713–5723. [PubMed] [Google Scholar]
  27. Nitzan M. Abnormalities of carbohydrate and lipid metabolism in experimentally induced acute uremia. Nutr Metab. 1973;15(3):187–191. doi: 10.1159/000175439. [DOI] [PubMed] [Google Scholar]
  28. Norée L. O., Bergström J. Treatment of chronic uremic patients with protein-poor diet and oral supply of essential amino acids. II. Clinical results of long-term treatment. Clin Nephrol. 1975;3(5):195–203. [PubMed] [Google Scholar]
  29. Peters J. H., Gulyassy P. F., Lin S. C., Ryan P. M., Berridge B. J., Jr, Chao W. R., Cummings J. G. Amino acid patterns in uremia: comparative effects of hemodialysis and transplantation. Trans Am Soc Artif Intern Organs. 1968;14:405–411. [PubMed] [Google Scholar]
  30. Ruderman N. B., Berger M. The formation of glutamine and alanine in skeletal muscle. J Biol Chem. 1974 Sep 10;249(17):5500–5506. [PubMed] [Google Scholar]
  31. Russell J. E., Avioli L. V. Effect of experimental chronic renal insufficiency on bone mineral and collagen maturation. J Clin Invest. 1972 Dec;51(12):3072–3079. doi: 10.1172/JCI107134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Steiner A. L., Parker C. W., Kipnis D. M. Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem. 1972 Feb 25;247(4):1106–1113. [PubMed] [Google Scholar]
  33. Swenson R. S., Weisinger J., Reaven G. M. Evidence that hemodialysis does not improve the glucose tolerance of patients with chronic renal failure. Metabolism. 1974 Oct;23(10):929–936. doi: 10.1016/0026-0495(74)90042-0. [DOI] [PubMed] [Google Scholar]
  34. Wahren J., Felig P., Cerasi E., Luft R. Splanchnic and peripheral glucose and amino acid metabolism in diabetes mellitus. J Clin Invest. 1972 Jul;51(7):1870–1878. doi: 10.1172/JCI106989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Walser M. Ketoacids in the treatment of uremia. Clin Nephrol. 1975;3(5):180–186. [PubMed] [Google Scholar]
  36. Weisinger J., Swenson R. S., Greene W., Taylor J. B., Reaven G. M. Comparison of the effects of metabolic acidosis and acute uremia on carbohydrate tolerance. Diabetes. 1972 Nov;21(11):1109–1115. doi: 10.2337/diab.21.11.1109. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES