Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1978 Sep;62(3):702–709. doi: 10.1172/JCI109178

Disulfide Bonds and the Quaternary Structure of Factor VIII/von Willebrand Factor

Richard B Counts 1,2, Stefan L Paskell 1,2, Susan K Elgee 1,2
PMCID: PMC371817  PMID: 308512

Abstract

Human Factor VIII/von Willebrand factor, purified by calcium citrate-cellulose chromatography and 4% agarose gel filtration was subjected to sodium dodecyl sulfate gel electrophoresis on gels containing 2% acrylamide and 0.5% agarose. We find a series of multimers of which the apparent molecular weight of the higher members was ≅5 million. The higher multimers were isolated by 2% agarose gel filtration. Treatment of the high molecular weight multimers with 2-mercaptoethanol at concentrations of 0.005-0.5% in the presence of 1% dodecyl sulfate resulted in a shift to lower molecular weight multimers. Between mercaptoethanol concentrations of 0.01 and 0.5%, the predominant species was the dimer of the basic subunit. Mercaptoethanol concentrations >0.5% were required to reduce the interchain disulfide bonds of the dimer. An artificial multimeric series was prepared by cross-linking von Willebrand factor subunits with dimethylsuberimidate. Comparison of the multimers produced by reduction with the multimers produced by cross-linking, demonstrated the absence of odd-numbered multimers from the reduced series. Thus, the protomeric unit appears to be the dimer. High molecular weight multimers had both ristocetin cofactor activity and Factor VIII procoagulant activity. Reduction of the protein in the absence of denaturing agents, caused a gradual shift to lower molecular weight species and a concomitant loss of von Willebrand factor activity. In contrast, Factor VIII activity was unchanged by reduction. These studies suggest that the moieties having von Willebrand factor activity and those having Factor VIII activities are covalently linked by disulfide bonds.

Full text

PDF
702

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austen D. E., Carey M., Howard M. A. Dissociation of Factor VIII-related antigen into subunits. Nature. 1975 Jan 3;253(5486):55–56. doi: 10.1038/253055a0. [DOI] [PubMed] [Google Scholar]
  2. Austen D. E. Thiol groups in the blood clotting action of factor VIII. Br J Haematol. 1970 Oct;19(4):477–484. doi: 10.1111/j.1365-2141.1970.tb06975.x. [DOI] [PubMed] [Google Scholar]
  3. BELL W. N., ALTON H. G. A brain extract as a substitute for platelet suspensions in the thromboplastin generation test. Nature. 1954 Nov 6;174(4436):880–881. doi: 10.1038/174880a0. [DOI] [PubMed] [Google Scholar]
  4. Brockway W. J., Fass D. N. The nature of the interaction between ristocetin-Willebrand factor VIII coagulant activity molecule. J Lab Clin Med. 1977 Jun;89(6):1295–1305. [PubMed] [Google Scholar]
  5. Collier H. B. Letter: A note on the molar absorptivity of reduced Ellman's reagent, 3-carboxylato-4-nitrothiophenolate. Anal Biochem. 1973 Nov;56(1):310–311. doi: 10.1016/0003-2697(73)90196-6. [DOI] [PubMed] [Google Scholar]
  6. Cooper H. A., Griggs T. R., Wagner R. H. Factor VIII recombination after dissociation by CaCl12. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2326–2329. doi: 10.1073/pnas.70.8.2326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Counts R. B. Solid-phase immunoradiometric assay of factor-VIII protein. Br J Haematol. 1975 Dec;31(4):429–436. doi: 10.1111/j.1365-2141.1975.tb00878.x. [DOI] [PubMed] [Google Scholar]
  8. Davies G. E., Stark G. R. Use of dimethyl suberimidate, a cross-linking reagent, in studying the subunit structure of oligomeric proteins. Proc Natl Acad Sci U S A. 1970 Jul;66(3):651–656. doi: 10.1073/pnas.66.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  10. Furlan M., Beck E. A. Degradation of purified factor VIII by endogenous contaminating enzymes. Thromb Res. 1977 Jan;10(1):153–158. doi: 10.1016/0049-3848(77)90088-3. [DOI] [PubMed] [Google Scholar]
  11. Habeeb A. F. Chemical evaluation of conformational differences in native and chemically modified proteins. Biochim Biophys Acta. 1966 Feb 28;115(2):440–454. doi: 10.1016/0304-4165(66)90442-9. [DOI] [PubMed] [Google Scholar]
  12. Kaelin A. C. Sodium periodate modification of factor VIII procoagulant activity. Br J Haematol. 1975 Nov;31(3):349–359. doi: 10.1111/j.1365-2141.1975.tb00866.x. [DOI] [PubMed] [Google Scholar]
  13. Kirby E. P., Mills D. C. The interaction of bovine factor VIII with human platelets. J Clin Invest. 1975 Aug;56(2):491–502. doi: 10.1172/JCI108116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Koutts J., Lavergne J. M., Meyer D. Immunological evidence that human factor VIII is composed of two linked moieties. Br J Haematol. 1977 Nov;37(3):415–428. doi: 10.1111/j.1365-2141.1977.tb01013.x. [DOI] [PubMed] [Google Scholar]
  15. LANGDELL R. D., WAGNER R. H., BRINKHOUS K. M. Effect of antihemophilic factor on one-stage clotting tests; a presumptive test for hemophilia and a simple one-stage antihemophilic factor assy procedure. J Lab Clin Med. 1953 Apr;41(4):637–647. [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Legaz M. E., Schmer G., Counts R. B., Davie E. W. Isolation and characterization of human Factor VIII (antihemophilic factor). J Biol Chem. 1973 Jun 10;248(11):3946–3955. [PubMed] [Google Scholar]
  18. Marchesi S. L., Shulman N. R., Gralnick H. R. Studies on the purification and characterization of human factor 8. J Clin Invest. 1972 Aug;51(8):2151–2161. doi: 10.1172/JCI107022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Olson J. D., Brockway W. J., Fass D. N., Bowie E. J., Mann K. G. Purification of porcine and human ristocetin-Willebrand factor. J Lab Clin Med. 1977 Jun;89(6):1278–1294. [PubMed] [Google Scholar]
  20. Owen W. G., Wagner R. H. Antihemophilic factor: separation of an active fragment following dissociation by salts or detergents. Thromb Diath Haemorrh. 1972 Jul 31;27(3):502–515. [PubMed] [Google Scholar]
  21. PROCTOR R. R., RAPAPORT S. I. The partial thromboplastin time with kaolin. A simple screening test for first stage plasma clotting factor deficiencies. Am J Clin Pathol. 1961 Sep;36:212–219. doi: 10.1093/ajcp/36.3.212. [DOI] [PubMed] [Google Scholar]
  22. Peacock A. C., Dingman C. W. Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry. 1968 Feb;7(2):668–674. doi: 10.1021/bi00842a023. [DOI] [PubMed] [Google Scholar]
  23. Poon M. C., Ratnoff O. D. Evidence that functional subunits of antihemophilic factor (Factor VIII) are linked by noncovalent bonds. Blood. 1976 Jul;48(1):87–94. [PubMed] [Google Scholar]
  24. Ratnoff O. D., Slover C. C., Poon M. C. Immunologic evidence that the properties of human antihemophilic factor (factor VIII) are attributes of a single molecular species. Blood. 1976 Apr;47(4):657–667. [PubMed] [Google Scholar]
  25. Rick M. E., Hoyer L. W. Immunologic studies of antihemophilic factor (AHF, factor VIII). V. Immunologic properties of AHF subunits produced by salt dissociation. Blood. 1973 Nov;42(5):737–747. [PubMed] [Google Scholar]
  26. Shapiro G. A., Andersen J. C., Pizzo S. V., McKee P. A. The subunit structure of normal and hemophilic factor VIII. J Clin Invest. 1973 Sep;52(9):2198–2210. doi: 10.1172/JCI107405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Slichter S. J., Counts R. B., Henderson R., Harker L. A. Preparation of cryoprecipitated factor VIII concentrates. Transfusion. 1976 Nov-Dec;16(6):616–626. doi: 10.1046/j.1537-2995.1976.16677060245.x. [DOI] [PubMed] [Google Scholar]
  28. Smithies O. Disulfide-bond cleavage and formation in proteins. Science. 1965 Dec 17;150(3703):1595–1598. doi: 10.1126/science.150.3703.1595. [DOI] [PubMed] [Google Scholar]
  29. Stibbe J., Kirby E. P. The influence of Haemaccel, fibrinogen and albumin on ristocetin-induced platelet aggregation. Relevance to the quantitative measurement of the ristocetin cofactor. Thromb Res. 1976 Feb;8(2):151–165. doi: 10.1016/0049-3848(76)90258-9. [DOI] [PubMed] [Google Scholar]
  30. Vehar G. A., Davie E. W. Formation of a serine enzyme in the presence of bovine factor VIII (antihemophilic factor) and thrombin. Science. 1977 Jul 22;197(4301):374–376. doi: 10.1126/science.877560. [DOI] [PubMed] [Google Scholar]
  31. Weiss H. J., Phillips L. L., Rosner W. Separation of sub-units of antihemophilic factor (AHF) by agarose gel chromatography. Thromb Diath Haemorrh. 1972 Apr 30;27(2):212–219. [PubMed] [Google Scholar]
  32. van Mourik J. A., Bouma B. N., LaBruyère W. T., de Graaf S., Mochtar I. A. Factor VIII, a series of homologous oligomers and a complex of two proteins. Thromb Res. 1974 Jan;4(1):155–164. doi: 10.1016/0049-3848(74)90211-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES