Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1978 Oct;62(4):769–777. doi: 10.1172/JCI109188

Mechanism of Effect of Hypoxia on Renal Water Excretion

Robert J Anderson 1, Richard G Pluss 1, Arnold S Berns 1, James T Jackson 1, Patricia E Arnold 1, Robert W Schrier 1, Keith M McDonald 1
PMCID: PMC371828  PMID: 701476

Abstract

The effect of lowering the pressure of oxygen from 80 to 34 mm Hg was examined in anesthetized dogs that were undergoing a water diuresis. This degree of hypoxia was associated with an antidiuresis as urine osmolality (Uosm) increased from 107 to 316 mosmol/kg H2O (P < 0.001) and plasma arginine vasopressin increased from 0.06 to 7.5 μU/ml, (P < 0.05). However, hypoxia was not associated with significant changes in cardiac output (CO, from 4.2 to 4.7 liters/ min), mean arterial pressure (MAP, from 143 to 149 mm Hg), glomerular filtration rate (GFR, from 46 to 42 ml/min), solute excretion rate (SV, from 302 to 297 mosmol/min), or filtration fraction (from 0.26 to 0.27, NS). Hypoxia was associated with an increase in renal vascular resistance (from 0.49 to 0.58 mm Hg/ml per min, P < 0.01). The magnitude of hypoxia-induced antidiuresis was the same in innervated kidneys and denervated kidneys. To further examine the role of vasopressin in this antidiuresis, hypoxia was induced in hypophysectomized animals. The effect of hypoxia on CO, MAP, GFR, SV, and renal blood flow in hypophysectomized animals was the same as in intact animals. In contrast to intact animals, however, hypoxia did not induce a significant antidiuresis in hypophysectomized animals (Uosm from 72 to 82 mosmol/kg H2O). To delineate the afferent pathway for hypoxia-stimulated vasopressin release, hypoxia was induced in dogs with either chemo- or baroreceptor denervation. The effect of hypoxia on CO, MAP, GFR, SV, and renal blood flow in the denervated animals was the same as in nondenervated animals. Hypoxia resulted in an antidiuresis in chemoreceptor (Uosm from 113 to 357 mosmol/kg H2O, P < 0.001) but not in baroreceptor (Uosm from 116 to 138 mosmol/kg H2O, NS) denervated animals. To determine if hypoxia alters renal response to vasopressin, exogenous vasopressin was administered to normoxic and hypoxic groups of dogs. The antidiuretic effect of vasopressin was no different in these two groups. These results demonstrate that hypoxia induces an antidiuresis which is independent of alterations in CO, MAP, SV, filtration fraction, renal nerves, or renal response to vasopressin and occurs through baroreceptor-mediated vasopressin release. The nature of the baroreceptor stimulation remains to be elucidated.

Full text

PDF
769

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABER G. M., BAYLEY T. J., BISHOP J. M. INTER-RELATIONSHIPS BETWEEN RENAL AND CARDIAC FUNCTION AND RESPIRATORY GAS EXCHANGE IN OBSTRUCTIVE AIRWAYS DISEASE. Clin Sci. 1963 Oct;25:159–170. [PubMed] [Google Scholar]
  2. AXELROD D. R., PITTS R. F. Effects of hypoxia on renal tubular function. J Appl Physiol. 1952 Jan;4(7):593–601. doi: 10.1152/jappl.1952.4.7.593. [DOI] [PubMed] [Google Scholar]
  3. Anderson R. J., Berl T., McDonald K. D., Schrier R. W. Evidence for an in vivo antagonism between vasopressin and prostaglandin in the mammalian kidney. J Clin Invest. 1975 Aug;56(2):420–426. doi: 10.1172/JCI108108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anderson R. J., Cadnapaphornchai P., Harbottle J. A., McDonald K. M., Schrier R. W. Mechanism of effect of thoracic inferior vena cava constriction on renal water excretion. J Clin Invest. 1974 Dec;54(6):1473–1479. doi: 10.1172/JCI107895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Anderson R. J., Cronin R. E., McDonald K. M., Schrier R. W. Mechanisms of portal hypertension-induced alterations in renal hemodynamics, renal water excretion, and renin secretion. J Clin Invest. 1976 Oct;58(4):964–970. doi: 10.1172/JCI108550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Anderson R. J., Taher M. S., Cronin R. E., McDonald K. M., Schrier R. W. Effect of beta-adrenergic blockade and inhibitors of angiotensin II and prostaglandins on renal autoregulation. Am J Physiol. 1975 Sep;229(3):731–736. doi: 10.1152/ajplegacy.1975.229.3.731. [DOI] [PubMed] [Google Scholar]
  7. Baylis P. H., Stockley R. A., Heath D. A. Effect of acute hypoxaemia on plasma arginine vasopressin in conscious man. Clin Sci Mol Med. 1977 Oct;53(4):401–404. doi: 10.1042/cs0530401. [DOI] [PubMed] [Google Scholar]
  8. Bell-Reuss E., Trevino D. L., Gottschalk C. W. Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption. J Clin Invest. 1976 Apr;57(4):1104–1107. doi: 10.1172/JCI108355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Berger E. Y., Galdston M., Horwitz S. A., Jackenthal R., Pruss M. THE EFFECT OF ANOXIC ANOXIA ON THE HUMAN KIDNEY. J Clin Invest. 1949 Jul;28(4):648–652. doi: 10.1172/JCI102114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Berl T., Cadnapaphornchai P., Harbottle J. A., Schrier R. W. Mechanism of stimulation of vasopressin release during beta adrenergic stimulation with isoproterenol. J Clin Invest. 1974 Mar;53(3):857–867. doi: 10.1172/JCI107626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Berl T., Cadnapaphornchai P., Harbottle J. A., Schrier R. W. Mechanism of suppression of vasopressin during alpha-adrenergic stimulation with norepinephrine. J Clin Invest. 1974 Jan;53(1):219–227. doi: 10.1172/JCI107541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. CURRIE J. C., ULLMANN E. Polyuria during experimental modifications of breathing. J Physiol. 1961 Mar;155:438–455. doi: 10.1113/jphysiol.1961.sp006638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cadnapaphornchai P., Boykin J. L., Berl T., McDonald K. M., Schrier R. W. Mechanism of effect of nicotine on renal water excretion. Am J Physiol. 1974 Nov;227(5):1216–1220. doi: 10.1152/ajplegacy.1974.227.5.1216. [DOI] [PubMed] [Google Scholar]
  14. Cadnapaphornchai P., Boykin J., Harbottle J. A., McDonald K. M., Schrier R. W. Effect of angiotensin II on renal water excretion. Am J Physiol. 1975 Jan;228(1):155–159. doi: 10.1152/ajplegacy.1975.228.1.155. [DOI] [PubMed] [Google Scholar]
  15. Daggett P. An investigation of renal function in chronic bronchitis. Postgrad Med J. 1977 Jan;53(615):24–27. doi: 10.1136/pgmj.53.615.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Edis A. J. Aortic baroreflex function in the dog. Am J Physiol. 1971 Nov;221(5):1352–1357. doi: 10.1152/ajplegacy.1971.221.5.1352. [DOI] [PubMed] [Google Scholar]
  17. FRANKLIN K. J., McGEE L. E., ULLMANN E. A. Effects of severe asphyxia on the kidney and urine flow. J Physiol. 1951 Jan;112(1-2):43–53. doi: 10.1113/jphysiol.1951.sp004507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Farber M. O., Bright T. P., Strawbridge R. A., Robertson G. L., Manfredi F. Impaired water handling in chronic obstructive lung disease. J Lab Clin Med. 1975 Jan;85(1):41–49. [PubMed] [Google Scholar]
  19. Farber M. O., Kiblawi S. S., Strawbridge R. A., Robertson G. L., Weinberger M. H., Manfredi F. Studies on plasma vasopressin and the renin-angiotensin-aldosterone system in chronic obstructive lung disease. J Lab Clin Med. 1977 Aug;90(2):373–380. [PubMed] [Google Scholar]
  20. GRANBERG P. O. Effect of acute hypoxia on renal haemodynamics and water diuresis in man. Scand J Clin Lab Invest. 1962;14 (Suppl 63):1–62. [PubMed] [Google Scholar]
  21. Heistad D. D., Abboud F. M., Mark A. L., Schmid P. G. Interaction of baroreceptor and chemoreceptor reflexes. Modulation of the chemoreceptor reflex by changes in baroreceptor activity. J Clin Invest. 1974 May;53(5):1226–1236. doi: 10.1172/JCI107669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jacobs L., Sampson S. R., Comroe J. H., Jr Carotid sinus versus carotid body origin of nicotine and cyanide bradycardia in the dog. Am J Physiol. 1971 Feb;220(2):472–476. doi: 10.1152/ajplegacy.1971.220.2.472. [DOI] [PubMed] [Google Scholar]
  23. KORNER P. I. Effects of low oxygen and of carbon monoxide on the renal circulation in unanesthetized rabbits. Circ Res. 1963 Apr;12:361–374. doi: 10.1161/01.res.12.4.361. [DOI] [PubMed] [Google Scholar]
  24. Kaloyanides G. J., Cohn J. D., Raskin P. Evidence for increased renal tubule sodium reabsorption in the dog during hypoxia. Aerosp Med. 1970 May;41(5):520–524. [PubMed] [Google Scholar]
  25. Kilburn K. H., Dowell A. R. Renal function in respiratory failure. Effects of hypoxia, hyperoxia, and hypercapnia. Arch Intern Med. 1971 Apr;127(4):754–762. [PubMed] [Google Scholar]
  26. LEVINSKY N. G., DAVIDSON D. G., BERLINER R. W. Effects of reduced glomerular filtration on urine concentration in the presence of antidiuretic hormone. J Clin Invest. 1959 May;38(5):730–740. doi: 10.1172/JCI103853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lau C., Marotta S. F. Role of peripheral chemoreceptors on adrenocortical secretory rates during hypoxia. Aerosp Med. 1969 Oct;40(10):1065–1068. [PubMed] [Google Scholar]
  28. Martinez-Maldonado M., Eknoyan G., Suki W. N. Effects of cyanide on renal concentration and dilution. Am J Physiol. 1969 Nov;217(5):1363–1368. doi: 10.1152/ajplegacy.1969.217.5.1363. [DOI] [PubMed] [Google Scholar]
  29. Martinez-Maldonado M., Eknoyan G., Suki W. N. Importance of aerobic and anaerobic metabolism in renal concentration and dilution. Am J Physiol. 1970 Apr;218(4):1076–1081. doi: 10.1152/ajplegacy.1970.218.4.1076. [DOI] [PubMed] [Google Scholar]
  30. Nomura G., Takabatake T., Arai S., Uno D., Shimao M., Hattori N. Effect of acute unilateral renal denervation on tubular sodium reabsorption in the dog. Am J Physiol. 1977 Jan;232(1):F16–F19. doi: 10.1152/ajprenal.1977.232.1.F16. [DOI] [PubMed] [Google Scholar]
  31. Schrier R. W., Berl T. Mechanism of effect of alpha adrenergic stimulation with norepinephrine on renal water excretion. J Clin Invest. 1973 Feb;52(2):502–511. doi: 10.1172/JCI107207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schrier R. W., Berl T. Mechanism of the antidiuretic effect associated with interruption of parasympathetic pathways. J Clin Invest. 1972 Oct;51(10):2613–2620. doi: 10.1172/JCI107079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schrier R. W., De Wardener H. E. Tubular reabsorption of sodium ion: influence of factors other than aldosterone and glomerular filtration rate. 1. N Engl J Med. 1971 Nov;285(22):1231–1243. doi: 10.1056/NEJM197111252852205. [DOI] [PubMed] [Google Scholar]
  34. Schrier R. W., Humphreys M. H. Factors involved in antinatriuretic effects of acute constriction of the thoracic and abdominal inferior vena cava. Circ Res. 1971 Nov;29(5):479–489. doi: 10.1161/01.res.29.5.479. [DOI] [PubMed] [Google Scholar]
  35. Schrier R. W., Lieberman R., Ufferman R. C. Mechanism of antidiuretic effect of beta adrenergic stimulation. J Clin Invest. 1972 Jan;51(1):97–111. doi: 10.1172/JCI106803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Skowsky W. R., Rosenbloom A. A., Fisher D. A. Radioimmunoassay measurement of arginine vasopressin in serum: development and application. J Clin Endocrinol Metab. 1974 Feb;38(2):278–287. doi: 10.1210/jcem-38-2-278. [DOI] [PubMed] [Google Scholar]
  37. THURAU K. Renal Na-reabsorption and O2-uptake in dogs during hypoxia and hydrochlorothiazide infusion. Proc Soc Exp Biol Med. 1961 Apr;106:714–717. doi: 10.3181/00379727-106-26451. [DOI] [PubMed] [Google Scholar]
  38. Weil J. V., Byrne-Quinn E., Battock D. J., Grover R. F., Chidsey C. A. Forearm circulation in man at high altitude. Clin Sci. 1971 Mar;40(3):235–246. doi: 10.1042/cs0400235. [DOI] [PubMed] [Google Scholar]
  39. White R. J., Woodings D. F. Impaired water handling in chronic obstructive airways disease. Br Med J. 1971 Jun 5;2(5761):561–563. doi: 10.1136/bmj.2.5761.561. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES