Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1978 Dec;62(6):1296–1302. doi: 10.1172/JCI109250

Evidence of Incomplete Left Ventricular Relaxation in the Dog

PREDICTION FROM THE TIME CONSTANT FOR ISOVOLUMIC PRESSURE FALL

Myron L Weisfeldt 1,2, James W Frederiksen 1,2, Frank C P Yin 1,2, James L Weiss 1,2
PMCID: PMC371895  PMID: 748380

Abstract

Although it has been proposed that incomplete relaxation explains certain increases in left ventricular end diastolic pressure relative to volume, there has been no clear demonstration that incomplete relaxation occurs in the intact working ventricle. To identify incomplete relaxation, left ventricular pressure-dimension relationships were studied in 10 canine right heart bypass preparations during ventricular pacing. The fully relaxed, exponential diastolic pressure-dimension line for each ventricle was first determined from pressure and dimension values at the end of prolonged diastoles after interruption of pacing. For 167 beats during pacing under widely varying hemodynamic conditions, diastolic pressure-dimension values encountered this line defining the fully relaxed state during the filling period indicating that relaxation was complete before end diastole. The time constant for isovolumic exponential pressure fall (T) was determined for all beats. For this exponential function, if no diastolic filling occurred, 97% of pressure fall would be complete by 3.5 T after maximal negative dP/dt. For the 167 beats the fully relaxed pressure-dimension line was always encountered before 3.5 T.

With very rapid pacing rates (170-200 beats/min) and(or) with pharmacologic prolongation of relaxation, incomplete relaxation occurred as evidenced by the fact that the line defining the fully relaxed state was never reached during diastole (n = 15). This evidence of incomplete relaxation occurred only when the subsequent beat began before 3.5 T but did not always occur under these conditions. Thus, an increase in end diastolic pressure relative to diastolic volume may result from incomplete relaxation under conditions of sufficiently rapid heart rate or sufficiently prolonged ventricular relaxation. Incomplete relaxation does not occur when the next beat begins more than 3.5 T after maximum negative dP/dt.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brodie B. R., Grossman W., Mann T., McLaurin L. P. Effects of sodium nitroprusside on left ventricular diastolic pressure-volume relations. J Clin Invest. 1977 Jan;59(1):59–68. doi: 10.1172/JCI108622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Daggett W. M., Bianco J. A., Powell W. J., Jr, Austen W. G. Relative contributions of the atrial systoleventricular systole interval and of patterns of ventricular activation to ventricular function during electrical pacing of the dog heart. Circ Res. 1970 Jul;27(1):69–79. doi: 10.1161/01.res.27.1.69. [DOI] [PubMed] [Google Scholar]
  3. Glantz S. A., Parmley W. W. Factors which affect the diastolic pressure-volume curve. Circ Res. 1978 Feb;42(2):171–180. doi: 10.1161/01.res.42.2.171. [DOI] [PubMed] [Google Scholar]
  4. Grossman W., McLaurin L. P. Diastolic properties of the left ventricle. Ann Intern Med. 1976 Mar;84(3):316–326. doi: 10.7326/0003-4819-84-3-316. [DOI] [PubMed] [Google Scholar]
  5. Karliner J. S., LeWinter M. M., Mahler F., Engler R., O'Rourke R. A. Pharmacologic and hemodynamic influences on the rate of isovolumic left ventricular relaxation in the normal conscious dog. J Clin Invest. 1977 Sep;60(3):511–521. doi: 10.1172/JCI108803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Krueger J. W., Pollack G. H. Myocardial sarcomere dynamics during isometric contraction. J Physiol. 1975 Oct;251(3):627–643. doi: 10.1113/jphysiol.1975.sp011112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MITCHELL J. H., LINDEN R. J., SARNOFF S. J. Influence of cardiac sympathetic and vagal nerve stimulation on the relation between left ventricular diastolic pressure and myocardial segment length. Circ Res. 1960 Sep;8:1100–1107. doi: 10.1161/01.res.8.5.1100. [DOI] [PubMed] [Google Scholar]
  8. McLaurin L. P., Rolett E. L., Grossman W. Impaired left ventricular relaxation during pacing-induced ischemia. Am J Cardiol. 1973 Nov;32(6):751–757. doi: 10.1016/s0002-9149(73)80002-5. [DOI] [PubMed] [Google Scholar]
  9. Pohost G. M., Dinsmore R. E., Rubenstein J. J., O'Keefe D. D., Grantham R. N., Scully H. E., Beierholm E. A., Frederiksen J. W., Weisfeldt M. L., Daggett W. M. The echocardiogram of the anterior leaflet of the mitral valve. Correlation with hemodynamic and cineroentgenographic studies in dogs. Circulation. 1975 Jan;51(1):88–97. doi: 10.1161/01.cir.51.1.88. [DOI] [PubMed] [Google Scholar]
  10. Rankin J. S., Arentzen C. E., McHale P. A., Ling D., Anderson R. W. Viscoelastic properties of the diastolic left ventricle in the conscious dog. Circ Res. 1977 Jul;41(1):37–45. doi: 10.1161/01.res.41.1.37. [DOI] [PubMed] [Google Scholar]
  11. Stegall H. F., Kardon M. B., Stone H. L., Bishop V. S. A portable, simple sonomicrometer. J Appl Physiol. 1967 Aug;23(2):289–293. doi: 10.1152/jappl.1967.23.2.289. [DOI] [PubMed] [Google Scholar]
  12. Suga H., Sagawa K. Assessment of absolute volume from diameter of the intact canine left ventricular cavity. J Appl Physiol. 1974 Apr;36(4):496–499. doi: 10.1152/jappl.1974.36.4.496. [DOI] [PubMed] [Google Scholar]
  13. Sulman D. L., Bing O. H., Mark R. G., Burns S. K. Physiologic loading of isolated heart muscle. Biochem Biophys Res Commun. 1974 Feb 27;56(4):947–951. doi: 10.1016/s0006-291x(74)80280-9. [DOI] [PubMed] [Google Scholar]
  14. Weisfeldt M. L., Armstrong P., Scully H. E., Sanders C. A., Daggett W. M. Incomplete relaxation between beats after myocardial hypoxia and ischemia. J Clin Invest. 1974 Jun;53(6):1626–1636. doi: 10.1172/JCI107713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Weisfeldt M. L., Scully H. E., Frederiksen J., Rubenstein J. J., Pohost G. M., Beierholm E., Bello A. G., Daggett W. M. Hemodynamic determinants of maximum negative dP-dt and periods of diastole. Am J Physiol. 1974 Sep;227(3):613–621. doi: 10.1152/ajplegacy.1974.227.3.613. [DOI] [PubMed] [Google Scholar]
  16. Weiss J. L., Frederiksen J. W., Weisfeldt M. L. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J Clin Invest. 1976 Sep;58(3):751–760. doi: 10.1172/JCI108522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wiegner A. W., Bing O. H. Altered performance of rat cardiac muscle follows changes in mechanical stress during relaxation. Circ Res. 1977 Nov;41(5):691–693. doi: 10.1161/01.res.41.5.691. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES