Abstract
The interaction of the human plasma protein, alpha-1-antitrypsin, with porcine pancreatic elastase was studied by isolating and characterizing their reaction products. Native alpha-1-antitrypsin has a mass ratio (Mr) of 54,000, an amino-terminal glx, and a carboxy-terminal lys residue. The elastase used has an Mr of 26,400 and an amino-terminal val residue. When the two proteins are combined at inhibitor excess, two major products result. One of the products is a complex of the enzyme and inhibitor with amino-terminal ser and val residues, which indicates that a peptide has been removed from the amino-terminal end of the inhibitor. The second product is a modified form of alpha-1-antitrypsin with an Mr of 51,300, an aminoterminal glx residue and a carboxy-terminal thr-leu dipeptide. It has no inhibitory activity against elastase. The components of the isolated complex can be split at high pH in the presence of diisopropyl fluorophosphate, which results in a catalytically inactive enzyme with the same Mr and amino-terminal residue as the native enzyme, and a large fragment of alpha-1-antitrypsin (alpha-1-antitrypsin*). This fragment has an Mr of 50,100, an amino-terminal ser residue and a carboxy-terminal thr-leu dipeptide. Based on these data, the following hypothesis is proposed. Elastase can attack alpha-1-antitrypsin at either of two major sites. If it attacks first at the carboxy side of the thr-leu dipeptide, located in the carboxy-terminal portion of the inhibitor, the alpha-1-antitrypsin is cleaved into two fragments with loss of inhibitory activity and absence of complex formation. If, however, the elastase first attacks an x-ser bond near the amino-terminal end of the inhibitor, the elastase then reacts with alpha-1-antitrypsin at the same leu moiety to form a stable complex with complete inhibition of the enzyme.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BUCK F. F., VITHAYATHIL A. J., BIER M., NORD F. F. On the mechanism of enzyme action. 73. Studies on trypsins from beef, sheep and pig pancreas. Arch Biochem Biophys. 1962 May;97:417–424. doi: 10.1016/0003-9861(62)90099-1. [DOI] [PubMed] [Google Scholar]
- Baumstark J. S., Lee C. T., Luby R. J. Rapid inactivation of alpha1-protease inhibitor (alpha1-antitrypsin) by elastase. Biochim Biophys Acta. 1977 Jun 10;482(2):400–411. doi: 10.1016/0005-2744(77)90254-6. [DOI] [PubMed] [Google Scholar]
- Brauer A. W., Margolies M. N., Haber E. The application of 0.1 M quadrol to the microsequence of proteins and the sequence of tryptic peptides. Biochemistry. 1975 Jul;14(13):3029–3035. doi: 10.1021/bi00684a036. [DOI] [PubMed] [Google Scholar]
- Chan S. K., Rees D. C. Linear structure of the oligosaccharide chains in alpha1-protease inhibitor isolated from human plasma. J Biol Chem. 1976 Jan 25;251(2):471–476. [PubMed] [Google Scholar]
- Cohen A. B., Geczy D., James H. L. Interaction of human alpha-1-antitrypsin with porcine trypsin. Biochemistry. 1978 Feb 7;17(3):392–400. doi: 10.1021/bi00596a002. [DOI] [PubMed] [Google Scholar]
- Cohen A. B., Gruenke L. D., Craig J. C., Geczy D. Specific lysine labeling by 18OH- during alkaline cleavage of the alpha-1-antitrypsin-trypsin complex. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4311–4314. doi: 10.1073/pnas.74.10.4311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford I. P. Purification and properties of normal human alpha 1-antitrypsin. Arch Biochem Biophys. 1973 May;156(1):215–222. doi: 10.1016/0003-9861(73)90359-7. [DOI] [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- Geneste P., Bender M. L. Esterolytic activity of elastase. Proc Natl Acad Sci U S A. 1969 Oct;64(2):683–685. doi: 10.1073/pnas.64.2.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gertler A., Hofmann T. Acetyl-L-alanyl-L-alanyl-L-alanine methyl ester: a new highly specific elastase substrate. Can J Biochem. 1970 Mar;48(3):384–386. doi: 10.1139/o70-061. [DOI] [PubMed] [Google Scholar]
- Hayashi R. Carboxypeptidase Y. Methods Enzymol. 1976;45:568–587. doi: 10.1016/s0076-6879(76)45051-6. [DOI] [PubMed] [Google Scholar]
- Hayashi R., Moore S., Stein W. H. Carboxypeptidase from yeast. Large scale preparation and the application to COOH-terminal analysis of peptides and proteins. J Biol Chem. 1973 Apr 10;248(7):2296–2302. [PubMed] [Google Scholar]
- Hokin L. E., Dahl J. L., Deupree J. D., Dioxon J. F., Hackney J. F., Perdue J. F. Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. X. Purification of the enzyme from the rectal gland of Squalus acanthias. J Biol Chem. 1973 Apr 10;248(7):2593–2605. [PubMed] [Google Scholar]
- Horng W. J., Gan J. C. Purification and characterization of human plasma (alpha 1)-antitrypsin. Tex Rep Biol Med. 1974 Summer;32(2):489–504. [PubMed] [Google Scholar]
- Janoff A. Alanine p-nitrophenyl esterase activity of human leucocyte granules. Biochem J. 1969 Aug;114(1):157–159. doi: 10.1042/bj1140157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janoff A. Neutrophil proteases in inflammation. Annu Rev Med. 1972;23:177–190. doi: 10.1146/annurev.me.23.020172.001141. [DOI] [PubMed] [Google Scholar]
- Johnson D. A., Travis J. Human alpha-1-proteinase inhibitor mechanism of action: evidence for activation by limited proteolysis. Biochem Biophys Res Commun. 1976 Sep 7;72(1):33–39. doi: 10.1016/0006-291x(76)90956-6. [DOI] [PubMed] [Google Scholar]
- Kueppers F. Determination of alpha1-antitrypsin phenotypes by isoelectric focusing in polyacrylamide gels. J Lab Clin Med. 1976 Jul;88(1):151–155. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Laurell C. B., Pierce J., Persson U., Thulin E. Purification of alpha1-antitrypsin from plasma through thiol-disulfide interchange. Eur J Biochem. 1975 Sep 1;57(1):107–113. doi: 10.1111/j.1432-1033.1975.tb02281.x. [DOI] [PubMed] [Google Scholar]
- Legrand Y., Caen J. P., Robert L., Wautier J. L. Platelet elastase and leukocyte elastase are two different entities. Thromb Haemost. 1977 Jun 30;37(3):580–582. [PubMed] [Google Scholar]
- Lo T. N., Cohen A. B., James H. L. The interaction of alpha-1-antitrypsin with soluble and sepharose-bound elastase. Biochim Biophys Acta. 1976 Dec 22;453(2):345–356. [PubMed] [Google Scholar]
- Mancini G., Carbonara A. O., Heremans J. F. Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry. 1965 Sep;2(3):235–254. doi: 10.1016/0019-2791(65)90004-2. [DOI] [PubMed] [Google Scholar]
- McFarlane A. S. IN VIVO BEHAVIOR OF I-FIBRINOGEN. J Clin Invest. 1963 Mar;42(3):346–361. doi: 10.1172/JCI104721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mosesson M. W., Finlayson J. S., Galanakis D. K. The essential covalent structure of human fibrinogen evinced by analysis of derivatives formed during plasmic hydrolysis. J Biol Chem. 1973 Nov 25;248(22):7913–7929. [PubMed] [Google Scholar]
- NAUGHTON M. A., SANGER F. Purification and specificity of pancreatic elastase. Biochem J. 1961 Jan;78:156–163. doi: 10.1042/bj0780156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pannell R., Johnson D., Travis J. Isolation and properties of human plasma alpha-1-proteinase inhibitor. Biochemistry. 1974 Dec 17;13(26):5439–5445. doi: 10.1021/bi00723a031. [DOI] [PubMed] [Google Scholar]
- Plancot M. T., Delacourte A., Han K. K., Dautrevaux M., Biserte G. Isolation and characterization of highly purified alpha-1-antitrypsin. Int J Pept Protein Res. 1977;10(2):113–119. doi: 10.1111/j.1399-3011.1977.tb02784.x. [DOI] [PubMed] [Google Scholar]
- Powers J. C., Carroll D. L. Reaction of acyl carbazates with proteolytic enzymes. Biochem Biophys Res Commun. 1975 Nov 17;67(2):639–644. doi: 10.1016/0006-291x(75)90860-8. [DOI] [PubMed] [Google Scholar]
- Rodriguez R. J., White R. R., Senior R. M., Levine E. A. Elastase release from human alveolar macrophages: comparison between smokers and nonsmokers. Science. 1977 Oct 21;198(4314):313–314. doi: 10.1126/science.910131. [DOI] [PubMed] [Google Scholar]
- Travis J., Bowen J., Tewksbury D., Johnson D., Pannell R. Isolation of albumin from whole human plasma and fractionation of albumin-depleted plasma. Biochem J. 1976 Aug 1;157(2):301–306. doi: 10.1042/bj1570301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Woods K. R., Wang K. T. Separation of dansyl-amino acids by polyamide layer chromatography. Biochim Biophys Acta. 1967 Feb 21;133(2):369–370. doi: 10.1016/0005-2795(67)90078-5. [DOI] [PubMed] [Google Scholar]



