Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1979 Feb;63(2):221–229. doi: 10.1172/JCI109293

Motility and Adhesiveness in Human Neutrophils

EFFECTS OF CHEMOTACTIC FACTORS

C Wayne Smith 1,2, James C Hollers 1,2, Richard A Patrick 1,2, Clare Hassett 1,2
PMCID: PMC371943  PMID: 372238

Abstract

Human peripheral blood neutrophils (PMN) obtained from healthy adults were examined in vitro with techniques adapted to assess the effects of chemotactic factors (CF) on cellular configuration and adhesiveness. The results were compared with those that use certain conventional techniques for assessing chemotaxis and chemokinesis. Exposure of PMN to N-formyl-l-methionyl-l-phenylalanine (f-Met-Phe), zymosan-activated serum, bacterial chemotactic factor, or a low molecular weight chemotactic factor from activated serum (C5a) in the absence of a gradient resulted in a change in cellular shape from a spherical to a polarized configuration in a high percentage of cells. This occurred rapidly in suspension, under conditions designed to exclude a role for cell adhesiveness, and was reversible upon removal of the CF. Restimulation of cells with the CF resulted in reappearance of the polarized configuration to the same extent as on initial stimulation with one exception: f-Met-Phe pretreated cells failed to respond to f-Met-Phe, though they responded fully to the other CF. Each CF caused a significant increase in PMN attachment to protein-coated glass. This enhanced adhesiveness was not reversible upon removal of the CF when the cells were treated under conditions shown to produce chemotactic deactivation. Cells treated under these conditions also exhibited significantly reduced motility on glass and in micropore filters in the absence of a gradient of CF. Bacterial chemotactic factor, even at high concentrations, failed to produce deactivation and did not cause a sustained enhancement of adhesiveness.

Full text

PDF
221

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aswanikumar S., Corcoran B., Schiffmann E., Day A. R., Freer R. J., Showell H. J., Becker E. L. Demonstration of a receptor on rabbit neutrophils for chemotactic peptides. Biochem Biophys Res Commun. 1977 Jan 24;74(2):810–817. doi: 10.1016/0006-291x(77)90375-8. [DOI] [PubMed] [Google Scholar]
  2. Banks D. C., Mitchell J. R. Leucocytes and thrombosis. II. Relationship between leucocyte behaviour and divalent cations, sulphydryl groups, red cells and adenosine diphosphate. Thromb Diath Haemorrh. 1973 Sep 15;30(1):47–61. [PubMed] [Google Scholar]
  3. Becker E. L., Showell H. J. The effect of Ca2+ and Mg2+ on the chemotactic responsiveness and spontaneous motility of rabbit polymorphonuclear leukocytes. Z Immunitatsforsch Exp Klin Immunol. 1972 Jun;143(5):466–476. [PubMed] [Google Scholar]
  4. Becker E. L. Stimulated neutrophil locomotion: chemokinesis and chemotaxis. Arch Pathol Lab Med. 1977 Oct;101(10):509–513. [PubMed] [Google Scholar]
  5. Bryant R. E., DesPrez R. M., VanWay M. H., Rogers D. E. Studies on human leukocyte motility. I. Effects of alterations in pH, electrolyte concentration, and phagocytosis on leukocyte migration, adhesiveness, and aggregation. J Exp Med. 1966 Sep 1;124(3):483–499. doi: 10.1084/jem.124.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bryant R. E., Sutcliffe M. C. The effect of 3',5'-adenosine monophosphate on granulocyte adhesion. J Clin Invest. 1974 Nov;54(5):1241–1244. doi: 10.1172/JCI107868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carter S. B. Principles of cell motility: the direction of cell movement and cancer invasion. Nature. 1965 Dec 18;208(5016):1183–1187. doi: 10.1038/2081183a0. [DOI] [PubMed] [Google Scholar]
  8. Dierich M. P., Wilhelmi D., Till G. Essential role of surface-bound chemoattractant in leukocyte migration. Nature. 1977 Nov 24;270(5635):351–352. doi: 10.1038/270351a0. [DOI] [PubMed] [Google Scholar]
  9. English D., Andersen B. R. Single-step separation of red blood cells. Granulocytes and mononuclear leukocytes on discontinuous density gradients of Ficoll-Hypaque. J Immunol Methods. 1974 Aug;5(3):249–252. doi: 10.1016/0022-1759(74)90109-4. [DOI] [PubMed] [Google Scholar]
  10. GARVIN J. E. Factors affecting the adhesiveness of human leucocytes and platelets in vitro. J Exp Med. 1961 Jul 1;114:51–73. doi: 10.1084/jem.114.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gail M. H., Boone C. W. Cell-substrate adhesivity. A determinant of cell motility. Exp Cell Res. 1972 Jan;70(1):33–40. doi: 10.1016/0014-4827(72)90178-4. [DOI] [PubMed] [Google Scholar]
  12. Gallin J. I., Rosenthal A. S. The regulatory role of divalent cations in human granulocyte chemotaxis. Evidence for an association between calcium exchanges and microtubule assembly. J Cell Biol. 1974 Sep;62(3):594–609. doi: 10.1083/jcb.62.3.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goetzl E. J., Austen K. F. Active site chemotactic factors and the regulation of the human neutrophil chemotactic response. Antibiot Chemother (1971) 1974;19:218–232. doi: 10.1159/000395433. [DOI] [PubMed] [Google Scholar]
  14. Goetzl E. J., Austen K. F. Stimulation of human neutrophil leukocyte aerobic glucose metabolism by purified chemotactic factors. J Clin Invest. 1974 Feb;53(2):591–599. doi: 10.1172/JCI107594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harris A. Behavior of cultured cells on substrata of variable adhesiveness. Exp Cell Res. 1973 Mar 15;77(1):285–297. doi: 10.1016/0014-4827(73)90579-x. [DOI] [PubMed] [Google Scholar]
  16. Hatch G. E., Gardner D. E., Menzel D. B. Chemiluminescence of phagocytic cells caused by N-formylmethionyl peptides. J Exp Med. 1978 Jan 1;147(1):182–195. doi: 10.1084/jem.147.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hoffstein S., Goldstein I. M., Weissmann G. Role of microtubule assembly in lysosomal enzyme secretion from human polymorphonuclear leukocytes. A reevaluation. J Cell Biol. 1977 Apr;73(1):242–256. doi: 10.1083/jcb.73.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kvarstein B. Effects of proteins and inorganic ions on the adhesiveness of human leucocytes to glass beads. Scand J Clin Lab Invest. 1969 Aug;24(1):41–48. doi: 10.3109/00365516909080130. [DOI] [PubMed] [Google Scholar]
  19. Lichtman M. A., Weed R. I. Alteration of the cell periphery during granulocyte maturation: relationship to cell function. Blood. 1972 Mar;39(3):301–316. [PubMed] [Google Scholar]
  20. O'Flaherty J. T., Kreutzer D. L., Showell H. J., Ward P. A. Influence of inhibitors of cellular function on chemotactic factor-induced neutrophil aggregation. J Immunol. 1977 Nov;119(5):1751–1756. [PubMed] [Google Scholar]
  21. O'Flaherty J. T., Kreutzer D. L., Ward P. A. Chemotactic factor influences on the aggregation, swelling, and foreign surface adhesiveness of human leukocytes. Am J Pathol. 1978 Mar;90(3):537–550. [PMC free article] [PubMed] [Google Scholar]
  22. Penny R., Galton D. A., Scott J. T., Eisen V. Studies on neutrophil function. 1. Physiological and pharmacological aspects. Br J Haematol. 1966 Sep;12(5):623–632. doi: 10.1111/j.1365-2141.1966.tb00145.x. [DOI] [PubMed] [Google Scholar]
  23. Ramsey W. S. Leucocyte locomotion and chemotaxis. Antibiot Chemother (1971) 1974;19:179–190. doi: 10.1159/000395431. [DOI] [PubMed] [Google Scholar]
  24. Schiffmann E., Corcoran B. A., Wahl S. M. N-formylmethionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1059–1062. doi: 10.1073/pnas.72.3.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Smith C. W., Hollers J. C., Dupree E., Goldman A. S., Lord R. A. A serum inhibitor of leukotaxis in a child with recurrent infections. J Lab Clin Med. 1972 Jun;79(6):878–885. [PubMed] [Google Scholar]
  26. Ward P. A., Becker E. L. The deactivation of rabbit neutrophils by chemotactic factor and the nature of the activatable esterase. J Exp Med. 1968 Apr 1;127(4):693–709. doi: 10.1084/jem.127.4.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weiss L., Glaves D. Effects of migration inhibiting factor(s) on the in vitro detachment of macrophages. J Immunol. 1975 Nov;115(5):1362–1365. [PubMed] [Google Scholar]
  28. Williams L. T., Snyderman R., Pike M. C., Lefkowitz R. J. Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1204–1208. doi: 10.1073/pnas.74.3.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zigmond S. H., Hirsch J. G. Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell-derived chemotactic factor. J Exp Med. 1973 Feb 1;137(2):387–410. doi: 10.1084/jem.137.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES