Abstract
The major goal of this investigation was to determine if activation of cardiac receptors during coronary artery occlusion could inhibit efferent renal sympathetic nerve activity. In nine chloralose anesthetized dogs with only carotid (n = 3) or with sinoaortic (n = 6) baroreceptors operative, anterior descending coronary artery (LAD) occlusion resulted in a small decrease in mean arterial pressure (−9.8±5.1 mm Hg, NS) and in a significant (P < 0.05) increase in renal nerve activity (24.0±4.1%). In these dogs, circumflex coronary artery (Cx) occlusion resulted in greater hypotension (−18.4±4.0 mm Hg), and yet no change (1.1±9%) in renal nerve activity was noted. Changes in left atrial pressure during LAD and Cx occlusion were not different. In seven dogs with carotid sinus denervation, coronary occlusions resulted in decreases both in arterial pressure and in renal nerve activity which were consistently greater during Cx occlusion. The responses to coronary occlusion in six dogs after sinoaortic deafferentation were similar to those observed with only carotid sinuses denervated. In all experiments, vagotomy abolished the difference in the blood pressure responses and the decreases in renal sympathetic nerve activity during Cx occlusion. Vagotomy also abolished the decrease in nerve activity during LAD occlusion in dogs with carotid or sinoaortic denervation. These data show that Cx occlusion and, to a lesser degree, LAD occlusion resulted in reflex withdrawal of renal sympathetic nerve activity mediated by left ventricular receptors with vagal afferents. The reflex withdrawal of renal nerve activity during Cx occlusion occurred in spite of hypotension and the presence of functioning sinoaortic baroreceptors.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bunag R. D., Page I. H., McCubbin J. W. Neural stimulation of release of renin. Circ Res. 1966 Oct;19(4):851–858. doi: 10.1161/01.res.19.4.851. [DOI] [PubMed] [Google Scholar]
- DiBona G. F. Neurogenic regulation of renal tubular sodium reabsorption. Am J Physiol. 1977 Aug;233(2):F73–F81. doi: 10.1152/ajprenal.1977.233.2.F73. [DOI] [PubMed] [Google Scholar]
- Edis A. J., Shepherd J. T. Selective denervation of aortic arch baroreceptors and chemoreceptors in dogs. J Appl Physiol. 1971 Feb;30(2):294–296. doi: 10.1152/jappl.1971.30.2.294. [DOI] [PubMed] [Google Scholar]
- Falicov R. E., Mills C. J., Gabe I. T. The response of the renal and femoral vascular beds to coronary embolization in the dog. Cardiovasc Res. 1975 Mar;9(2):151–160. doi: 10.1093/cvr/9.2.151. [DOI] [PubMed] [Google Scholar]
- Gorfinkel H. J., Szidon J. P., Hirsch L. J., Fishman A. P. Renal performance in experimental cardiogenic shock. Am J Physiol. 1972 May;222(5):1260–1268. doi: 10.1152/ajplegacy.1972.222.5.1260. [DOI] [PubMed] [Google Scholar]
- Hanley H. G., Costin J. C., Skinner N. S., Jr Differential reflex adjustments in cutaneous and muscle vascular beds during experimental coronary artery occlusion. Am J Cardiol. 1971 May;27(5):513–521. doi: 10.1016/0002-9149(71)90414-0. [DOI] [PubMed] [Google Scholar]
- Hanley H. G., Raizner A. E., Inglesby T. V., Skinner N. S., Jr Response of the renal vascular bed to acute experimental coronary arterial occlusion. Am J Cardiol. 1972 Jun;29(6):803–808. doi: 10.1016/0002-9149(72)90498-5. [DOI] [PubMed] [Google Scholar]
- Kahl F. R., Flint J. F., Szidon J. P. Influence of left atrial distention on renal vasomotor tone. Am J Physiol. 1974 Jan;226(1):240–246. doi: 10.1152/ajplegacy.1974.226.1.240. [DOI] [PubMed] [Google Scholar]
- Kendrick E., Oberg B., Wennergren G. Vasoconstrictor fibre discharge to skeletal muscle, kidney, intestine and skin at varying levels of arterial baroreceptor activity in the cat. Acta Physiol Scand. 1972 Aug;85(4):464–476. doi: 10.1111/j.1748-1716.1971.tb05284.x. [DOI] [PubMed] [Google Scholar]
- Kezdi P., Kordenat R. K., Misra S. N. Reflex inhibitory effects of vagal afferents in experimental myocardial infarction. Am J Cardiol. 1974 Jun;33(7):853–860. doi: 10.1016/0002-9149(74)90632-8. [DOI] [PubMed] [Google Scholar]
- Koike H., Mark A. L., Heistad D. D., Schmid P. G. Influence of cardiopulmonary vagal afferent activity on carotid chemoreceptor and baroreceptor reflexes in the dog. Circ Res. 1975 Oct;37(4):422–429. doi: 10.1161/01.res.37.4.422. [DOI] [PubMed] [Google Scholar]
- Little R., Wennergren G., Oberg B. Aspects of the central integration of arterial baroreceptor and cardiac ventricular receptor reflexes in the cat. Acta Physiol Scand. 1975 Jan;93(1):85–96. doi: 10.1111/j.1748-1716.1975.tb05793.x. [DOI] [PubMed] [Google Scholar]
- Mancia G., Shepherd J. T., Donald D. E. Interplay among carotid sinus, cardiopulmonary, and carotid body reflexes in dogs. Am J Physiol. 1976 Jan;230(1):19–24. doi: 10.1152/ajplegacy.1976.230.1.19. [DOI] [PubMed] [Google Scholar]
- Ninomiya I., Nisimaru N., Irisawa H. Sympathetic nerve activity to the spleen, kidney, and heart in response to baroceptor input. Am J Physiol. 1971 Nov;221(5):1346–1351. doi: 10.1152/ajplegacy.1971.221.5.1346. [DOI] [PubMed] [Google Scholar]
- Pelletier C. L., Edis A. J., Shepherd J. T. Circulatory reflex from vagal afferents in response to hemorrhage in the dog. Circ Res. 1971 Dec;29(6):626–634. doi: 10.1161/01.res.29.6.626. [DOI] [PubMed] [Google Scholar]
- Peterson D. F., Bishop V. S. Reflex blood pressure control during acute myocardial ischemia in the conscious dog. Circ Res. 1974 Feb;34(2):226–232. doi: 10.1161/01.res.34.2.226. [DOI] [PubMed] [Google Scholar]
- Peterson D. F., Brown A. M. Pressor reflexes produced by stimulation of afferent fibers in the cardiac sympathetic nerves of the cat. Circ Res. 1971 Jun;28(6):605–610. doi: 10.1161/01.res.28.6.605. [DOI] [PubMed] [Google Scholar]
- Stinson J. M., Mootry P. J., Jackson C. G., Gates H. O., Scott M. T. Renal vasodilation in response to coronary artery ligation in the dog. Clin Exp Pharmacol Physiol. 1976 Mar-Apr;3(2):191–194. doi: 10.1111/j.1440-1681.1976.tb00604.x. [DOI] [PubMed] [Google Scholar]
- Thames M. D., Donald D. E., Shepherd J. T. Behavior of cardiac receptors with nonmyelinated vagal afferents during spontaneous respiration in cats. Circ Res. 1977 Nov;41(5):694–701. doi: 10.1161/01.res.41.5.694. [DOI] [PubMed] [Google Scholar]
- Thames M. D., Klopfenstein H. S., Abboud F. M., Mark A. L., Walker J. L. Preferential distribution of inhibitory cardiac receptors with vagal afferents to the inferoposterior wall of the left ventricle activated during coronary occlusion in the dog. Circ Res. 1978 Oct;43(4):512–519. doi: 10.1161/01.res.43.4.512. [DOI] [PubMed] [Google Scholar]
- Thorén P. Evidence for a depressor reflex elicited from left ventricular receptors during occlusion of one coronary artery in the cat. Acta Physiol Scand. 1973 May;88(1):23–34. doi: 10.1111/j.1748-1716.1973.tb05430.x. [DOI] [PubMed] [Google Scholar]
- Uchida Y., Sakamoto A. Role of autonomic nerves in the pathogenesis of hypotension produced by coronary embolization. Jpn Circ J. 1974 Jun;38(6):491–495. doi: 10.1253/jcj.38.491. [DOI] [PubMed] [Google Scholar]
- Walker J. L., Thames M. D., Abboud F. M., Mark A. L., Klopfenstein H. S. Preferential distribution of inhbititory cardiac receptors in left ventricle of the dog. Am J Physiol. 1978 Aug;235(2):H188–H192. doi: 10.1152/ajpheart.1978.235.2.H188. [DOI] [PubMed] [Google Scholar]
- Webb S. W., Adgey A. A., Pantridge J. F. Autonomic disturbance at onset of acute myocardial infarction. Br Med J. 1972 Jul 8;3(5818):89–92. doi: 10.1136/bmj.3.5818.89. [DOI] [PMC free article] [PubMed] [Google Scholar]