Abstract
Circulating antibodies that could be responsible for the suppressor thymus-derived (T)-cell dysfunction in active systemic lupus erythematosus (SLE) were investigated. Sera from 14 active and inactive SLE patients were compared with a pool of 22 normal sera. All sera were adsorbed with a pool of normal platelets to exclude antihistocompatibility leukocyte antigen antibodies; with AB erythrocytes to exclude isohemagglutinins; and with a pool of normal bone marrow-derived (B) lymphocytes, monocytes, and neutrophils to deplete anti-B-cell antibodies, Fc-receptor antibodies, and antibodies directed against neutrophils or monocytes. Sera from active SLE patients were capable of inhibiting the activation of normal, blood lymphocytes by concanavalin A to become suppressor cells. The latter were assayed by coculturing the concanavalin A-activated cells with autologous lymphocytes, which were then activated with either phytohemagglutinin for proliferative response or with pokeweed mitogen for B-cell immunoglobulin (Ig) synthesis and secretion. Specific incorporation of cultures with phytohemagglutinin showed a value of 67±13 (mean±SD) for suppressor cells treated with adsorbed, active SLE sera. This value was significantly different (P < 0.001) from that of cells treated with the inactive SLE sera or with the pool of normal sera. Similar findings were seen with respect to the B-cell target parameters. Cytoplasmic Ig and IgG in supernates of cultures with pokeweed mitogen showed values of 17±5% and 717±134 ng/culture, respectively, for suppressor cells treated with the adsorbed, active SLE sera. This was significantly different from those treated with the inactive SLE sera or with the pool of normal sera. The antisuppressor-cell factor was shown to be IgG, complement independent, not cytotoxic, active at 37°C and at room temperature, but not at 4°C, and adsorbable with T cells.
Suppressor T-cell antibody in sera of active SLE patients could be responsible for the observed suppressor T-cell dysfunction seen in active SLE. The mechanisms responsible for the induction of the antisuppressor-cell antibody are unknown.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdou N. I., Sagawa A., Pascual E., Hebert J., Sadeghee S. Suppressor T-cell abnormality in idiopathic systemic lupus erythematosus. Clin Immunol Immunopathol. 1976 Sep;6(2):192–199. doi: 10.1016/0090-1229(76)90110-0. [DOI] [PubMed] [Google Scholar]
- Abdou N. L., Alavi J. B., Abdou N. I. Human bone marrow lymphocytes: B and T cell precursors and subpopulations. Blood. 1976 Mar;47(3):423–430. [PubMed] [Google Scholar]
- Alarcón-Segovia D., Ruíz-Argüelles A. Decreased circulating thymus-derived cells with receptors for the Fc portion of immunoglobulin G in systemic lupus erythematosus. J Clin Invest. 1978 Dec;62(6):1390–1394. doi: 10.1172/JCI109260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bresnihan B., Jasin H. E. Suppressor function of peripheral blood mononuclear cells in normal individuals and in patients with systemic lupus erythematosus. J Clin Invest. 1977 Jan;59(1):106–116. doi: 10.1172/JCI108607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glinski W., Gershwin M. E., Steinberg A. D. Fractionation of cells on a discontinuous Ficoll gradient. Study of subpopulations of human T cells using anti-T-cell antibodies from patients with systemic lupus erythematosus. J Clin Invest. 1976 Mar;57(3):604–614. doi: 10.1172/JCI108316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horowitz S., Borcherding W., Moorthy A. V., Chesney R., Schulte-Wisserman H., Hong R. Induction of suppressor T cells in systemic lupus erythematosus by thymosin and cultured thymic epithelium. Science. 1977 Sep 2;197(4307):999–1001. doi: 10.1126/science.302032. [DOI] [PubMed] [Google Scholar]
- Klassen L. W., Krakauer R. S., Steinberg A. D. Selective loss of suppressor cell function in New Zealand mice induced by NTA. J Immunol. 1977 Sep;119(3):830–830. [PubMed] [Google Scholar]
- Lies R. B., Messner R. P., Williams R. C., Jr Relative T-cell specificity of lymphocytotoxins from patients with systemic lupus erythematosus. Arthritis Rheum. 1973 May-Jun;16(3):369–375. doi: 10.1002/art.1780160312. [DOI] [PubMed] [Google Scholar]
- Mogensen C. E. The glomerular permeability determined by dextran clearance using Sephadex gel filtration. Scand J Clin Lab Invest. 1968;21(1):77–82. doi: 10.3109/00365516809076979. [DOI] [PubMed] [Google Scholar]
- Ochiai T., Ahmed A., Scher I., Sell K. W., Steinberg A. D. Functional characterization of a naturally occurring antibody cytotoxic for a subpopulation of splenic T cells. Transplantation. 1976 Jul;22(1):1–8. doi: 10.1097/00007890-197607000-00001. [DOI] [PubMed] [Google Scholar]
- Sagawa A., Abdou N. I. Suppressor-cell dysfunction in systemic lupus erythematosus. Cells involved and in vitro correction. J Clin Invest. 1978 Oct;62(4):789–796. doi: 10.1172/JCI109190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakane T., Steinberg A. D., Green I. Studies of immune functions of patients with systemic lupus erythematosus. I. Dysfunction of suppressor T-cell activity related to impaired generation of, rather than response to, suppressor cells. Arthritis Rheum. 1978 Jul-Aug;21(6):657–664. doi: 10.1002/art.1780210608. [DOI] [PubMed] [Google Scholar]
- Shirai T., Hayakawa K., Okumura K., Tada T. Differential cytotoxic effect of natural thymocytotoxic autoantibody of NZB mice on functional subsets of T cells. J Immunol. 1978 Jun;120(6):1924–1929. [PubMed] [Google Scholar]
- Stastny P., Ziff M. Antibodies against cell membrane constituents in systemic lupus erythematosus and related diseases. I. Cytotoxic effect of serum from patients with systemic lupus erythematosus (SLE) for allogeneic and for autologous lymphocytes. Clin Exp Immunol. 1971 Apr;8(4):543–550. [PMC free article] [PubMed] [Google Scholar]
- Strelkauskas A. J., Callery R. T., McDowell J., Borel Y., Schlossman S. F. Direct evidence for loss of human suppressor cells during active autoimmune disease. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5150–5154. doi: 10.1073/pnas.75.10.5150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strelkauskas A. J., Schauf V., Wilson B. S., Chess L., Schlossman S. F. Isolation and characterization of naturally occurring subclasses of human peripheral blood T cells with regulatory functions. J Immunol. 1978 Apr;120(4):1278–1282. [PubMed] [Google Scholar]
- Talal N. Disordered immunologic regulation and autoimmunity. Transplant Rev. 1976;31:240–263. doi: 10.1111/j.1600-065x.1976.tb01456.x. [DOI] [PubMed] [Google Scholar]
- Twomey J. J., Laughter A. H., Steinberg A. D. A serum inhibitor of immune regulation in patients with systemic lupus erythematosus. J Clin Invest. 1978 Sep;62(3):713–715. doi: 10.1172/JCI109180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winfield J. B., Winchester R. J., Wernet P., Fu S. M., Kunkel H. G. Nature of cold-reactive antibodies to lymphocyte surface determinants in systemic lupus erythematosus. Arthritis Rheum. 1975 Jan-Feb;18(1):1–8. doi: 10.1002/art.1780180101. [DOI] [PubMed] [Google Scholar]