Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1979 Apr;63(4):684–694. doi: 10.1172/JCI109351

Regulation of hepatic transport of bile salt. Effect of protein synthesis inhibition on excretion of bile salts and their binding to liver surface membrane fractions.

M C Gonzalez, E Sutherland, F R Simon
PMCID: PMC372003  PMID: 438330

Abstract

The overall transport of bile salts across the hepatocyte is characterized as a carrier-mediated process whose rate-limiting step is biliary secretion. Specific bile salt binding proteins have been identified in liver surface membrane fractions and were postulated to represent the initial interaction in bile salt translocation across both the sinusoidal and canalicular membranes. To test this hypothesis, cycloheximide was administered to rats to inhibit hepatic protein synthesis. 16 h after cycloheximide administration [14C]leucine incorporation into hepatic protein was inhibited by 93% at 1 h and 47% at 12 h. However, values of liver function tests were not increased, although serum albumin, serum alanine amino-transferase, and alkaline phosphatase were significantly decreased. Light and electron microscopy did not demonstrate necrosis or fat accumulation. The latter demonstrated minimal disorganization of rough endoplasmic reticulum and occasional lamellar whorls. 16 h after cycloheximide administration bile salt independent bile flow, basal bile salt excretion, and basal bile flow were unaltered, but the maximum bile salt transport capacity was reduced to 62% of control and 24 h later to 38%. Decreased bile salt transport was reversible, for it returned to control values after 48 h, when hepatic protein synthesis was also normal. Maximum bromosulfophthalein (BSP) transport, on the other hand, was reduced after 16 h to only 85% of control. Both bile salt and BPS maximum transport capacities decreased with time during inhibition of protein synthesis, apparently following first order kinetics. It was estimated that their half-lives are 20 h for bile salt transport and 55 h for BSP transport. These different turnover rates suggest that cycloheximide does not decrease active transport through generalized hepatic dysfunction or alteration of high energy sources possibly required for transport. The maximum number of [14C]cholic acid binding sites in liver surface membrane fractions was determined by an ultrafiltration assay. They were reduced to 68% of control after 16 h of cycloheximide and to 25% after 24 h. This reduction in the number of binding sites is apparently selective, for the activities of the liver surface membrane enzymes (Na+-K+)ATPase, Mg++-ATPase, and 5'-nucleotidase were not significantly changed. The associated alterations in bile salt transport and the maximum number of binding sites after cycloheximide administration suggests that these receptors may be the bile salt carriers.

Full text

PDF
684

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABEL L. L., LEVY B. B., BRODIE B. B., KENDALL F. E. A simplified method for the estimation of total cholesterol in serum and demonstration of its specificity. J Biol Chem. 1952 Mar;195(1):357–366. [PubMed] [Google Scholar]
  2. AMADOR E., WACKER W. E. Serum glutamic-oxaloacetic transaminase activity. A new modification and an anaytical assessment of current assay technics. Clin Chem. 1962 Aug;8:343–350. [PubMed] [Google Scholar]
  3. Accatino L., Simon F. R. Identification and characterization of a bile acid receptor in isolated liver surface membranes. J Clin Invest. 1976 Feb;57(2):496–508. doi: 10.1172/JCI108302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Adler R. D., Wannagat F. J., Ockner R. K. Bile secretion in selective biliary obstruction. Adaptation of taurocholate transport maximum to increased secretory load in the rat. Gastroenterology. 1977 Jul;73(1):129–136. [PubMed] [Google Scholar]
  5. Alpert S., Mosher M., Shanske A., Arias I. M. Multiplicity of hepatic excretory mechanisms for organic anions. J Gen Physiol. 1969 Feb;53(2):238–247. doi: 10.1085/jgp.53.2.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bardin C., Johnstone R. M. Sodium-dependent amino acid transport in reconstituted membrane vesicles from Ehrlich ascites cell plasma membranes. J Biol Chem. 1978 Mar 10;253(5):1725–1732. [PubMed] [Google Scholar]
  7. Berlin C. M., Schimke R. T. Influence of turnover rates on the responses of enzymes to cortisone. Mol Pharmacol. 1965 Sep;1(2):149–156. [PubMed] [Google Scholar]
  8. Bock K. W., Siekevitz P., Palade G. E. Localization and turnover studies of membrane nicotinamide adenine dinucleotide glycohydrolase in rat liver. J Biol Chem. 1971 Jan 10;246(1):188–195. [PubMed] [Google Scholar]
  9. Boyer J. L., Klatskin G. Canalicular bile flow and bile secretory pressure. Evidence for a non-bile salt dependent fraction in the isolated perfused rat liver. Gastroenterology. 1970 Dec;59(6):853–859. [PubMed] [Google Scholar]
  10. Bucolo G., David H. Quantitative determination of serum triglycerides by the use of enzymes. Clin Chem. 1973 May;19(5):476–482. [PubMed] [Google Scholar]
  11. Crane R. K. The gradient hypothesis and other models of carrier-mediated active transport. Rev Physiol Biochem Pharmacol. 1977;78:99–159. doi: 10.1007/BFb0027722. [DOI] [PubMed] [Google Scholar]
  12. Dehlinger P. J., Schimke R. T. Size distribution of membrane proteins of rat liver and their relative rates of degradation. J Biol Chem. 1971 Apr 25;246(8):2574–2583. [PubMed] [Google Scholar]
  13. Dietmaier A., Gasser R., Graf J., Peterlik M. Investigations on the sodium dependence of bile acid fluxes in the isolated perfused rat liver. Biochim Biophys Acta. 1976 Aug 4;443(1):81–91. doi: 10.1016/0005-2736(76)90492-2. [DOI] [PubMed] [Google Scholar]
  14. Elsas L. J., Albrecht I., Rosenberg L. E. Insulin stimulation of amino acid uptake in rat diaphragm. Relationship to protein sythesis. J Biol Chem. 1968 Apr 25;243(8):1846–1853. [PubMed] [Google Scholar]
  15. Elsas L. J., Rosenberg L. E. Inhibition of amino Acid transport in rat kidney cortex by puromycin. Proc Natl Acad Sci U S A. 1967 Feb;57(2):371–378. doi: 10.1073/pnas.57.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Epstein D., Elias-Bishko S., Hershko A. Requirement for protein synthesis in the regulation of protein breakdown in cultured hepatoma cells. Biochemistry. 1975 Nov 18;14(23):5199–5204. doi: 10.1021/bi00694a028. [DOI] [PubMed] [Google Scholar]
  17. Erlinger S., Dhumeaux D., Benhamou J. P. Effect on bile formation of inhibitors of sodium transport. Nature. 1969 Sep 20;223(5212):1276–1277. doi: 10.1038/2231276a0. [DOI] [PubMed] [Google Scholar]
  18. Fox C. F., Kennedy E. P. Specific labeling and partial purification of the M protein, a component of the beta-galactoside transport system of Escherichia coli. Proc Natl Acad Sci U S A. 1965 Sep;54(3):891–899. doi: 10.1073/pnas.54.3.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Glasinović J. C., Dumont M., Duval M., Erlinger S. Hepatocellular uptake of bile acids in the dog: Evidence for a common carrier-mediated transport system. An indicator dilution study. Gastroenterology. 1975 Oct;69(4):973–981. [PubMed] [Google Scholar]
  20. Glickman R. M., Alpers D. H., Drummey G. D., Isselbacher K. J. Increased lymph alkaline phosphatase after fat feeding: effects of medium chain triglycerides and inhibition of protein synthesis. Biochim Biophys Acta. 1970 Feb 24;201(2):226–235. doi: 10.1016/0304-4165(70)90296-5. [DOI] [PubMed] [Google Scholar]
  21. Glickman R. M., Kirsch K., Isselbacher K. J. Fat absorption during inhibition of protein synthesis: studies of lymph chylomicrons. J Clin Invest. 1972 Feb;51(2):356–363. doi: 10.1172/JCI106821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Glickman R. M., Kirsch K. Lymph chylomicron formation during the inhibition of protein synthesis. Studies of chylomicron apoproteins. J Clin Invest. 1973 Nov;52(11):2910–2920. doi: 10.1172/JCI107487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gumucio J. J., Accatino L., Macho A. M., Contreras A. Effect of phenobarbital on the ethynyl estradiol-induced cholestasis in the rat. Gastroenterology. 1973 Oct;65(4):651–657. [PubMed] [Google Scholar]
  24. HENRY R. J., CHIAMORI N., GOLUB O. J., BERKMAN S. Revised spectrophotometric methods for the determination of glutamic-oxalacetic transaminase, glutamic-pyruvic transaminase, and lactic acid dehydrogenase. Am J Clin Pathol. 1960 Oct;34:381–398. doi: 10.1093/ajcp/34.4_ts.381. [DOI] [PubMed] [Google Scholar]
  25. Hwang K. M., Yang L. C., Carrico C. K., Schulz R. A., Schenkman J. B., Sartorelli A. C. Production of membrane whorls in rat liver by some inhibitors of protein synthesis. J Cell Biol. 1974 Jul;62(1):20–31. doi: 10.1083/jcb.62.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kaback H. R. Transport studies in bacterial membrane vesicles. Science. 1974 Dec 6;186(4167):882–892. doi: 10.1126/science.186.4167.882. [DOI] [PubMed] [Google Scholar]
  27. Kaplan A., Savory J. Evaluation of a cellulose-acetate electrophoresis system for serum protein fractionation. Clin Chem. 1965 Oct;11(10):937–942. [PubMed] [Google Scholar]
  28. Kasahara M., Hinkle P. C. Reconstitution and purification of the D-glucose transporter from human erythrocytes. J Biol Chem. 1977 Oct 25;252(20):7384–7390. [PubMed] [Google Scholar]
  29. Kern F., Jr, Eriksson H., Curstedt T., Sjövall J. Effect of ethynylestradiol on biliary excretion of bile acids, phosphatidylcolines, and cholesterol in the bile fistula rat. J Lipid Res. 1977 Sep;18(5):623–634. [PubMed] [Google Scholar]
  30. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  31. Lancaster J. R., Jr, Hinkle P. C. Studies of the beta-galactoside transporter in inverted membrane vesicles of Escherichia coli. I. Symmetrical facilitated diffusion and proton gradient-coupled transport. J Biol Chem. 1977 Nov 10;252(21):7657–7661. [PubMed] [Google Scholar]
  32. Lever J. E. Neutral amino acid transport in surface membrane vesicles isolated from mouse fibroblasts: intrinsic and extrinsic models of regulation. J Supramol Struct. 1977;6(1):103–124. doi: 10.1002/jss.400060109. [DOI] [PubMed] [Google Scholar]
  33. Livingston J. N., Lockwood D. H. Effect of glucocorticoids on the glucose transport system of isolated fat cells. J Biol Chem. 1975 Nov 10;250(21):8353–8360. [PubMed] [Google Scholar]
  34. McComb R. B., Bowers G. N., Jr Study of optimum buffer conditions for measuring alkaline phosphatase activity in human serum. Clin Chem. 1972 Feb;18(2):97–104. [PubMed] [Google Scholar]
  35. Neville D. M., Jr Isolation of an organ specific protein antigen from cell-surface membrane of rat liver. Biochim Biophys Acta. 1968 Apr 9;154(3):540–552. doi: 10.1016/0005-2795(68)90014-7. [DOI] [PubMed] [Google Scholar]
  36. O'Máille E. R., Richards T. G., Short A. H. The influence of conjugation of cholic acid on its uptake and secretion: hepatic extraction of taurocholate and cholate in the dog. J Physiol. 1967 Apr;189(2):337–350. doi: 10.1113/jphysiol.1967.sp008172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pohl S. L., Birnbaumer L., Rodbell M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. I. Properties. J Biol Chem. 1971 Mar 25;246(6):1849–1856. [PubMed] [Google Scholar]
  38. Reichen J., Paumgartner G. Kinetics of taurocholate uptake by the perfused rat liver. Gastroenterology. 1975 Jan;68(1):132–136. [PubMed] [Google Scholar]
  39. Reichen J., Paumgartner G. Uptake of bile acids by perfused rat liver. Am J Physiol. 1976 Sep;231(3):734–742. doi: 10.1152/ajplegacy.1976.231.3.734. [DOI] [PubMed] [Google Scholar]
  40. SABESIN S. M., ISSELBACHER K. J. PROTEIN SYNTHESIS INHIBITION: MECHANISM FOR THE PRODUCTION OF IMPAIRED FAT ABSORPTION. Science. 1965 Mar 5;147(3662):1149–1151. doi: 10.1126/science.147.3662.1149. [DOI] [PubMed] [Google Scholar]
  41. SPERBER I. Secretion of organic anions in the formation of urine and bile. Pharmacol Rev. 1959 Mar;11(1):109–134. [PubMed] [Google Scholar]
  42. Schwarz L. R., Burr R., Schwenk M., Pfaff E., Greim H. Uptake of taurocholic acid into isolated rat-liver cells. Eur J Biochem. 1975 Jul 15;55(3):617–623. doi: 10.1111/j.1432-1033.1975.tb02199.x. [DOI] [PubMed] [Google Scholar]
  43. Shanahan M. F., Czech M. P. Partial purification of the D-glucose transport system in rat adipocyte plasma membranes. J Biol Chem. 1977 Sep 25;252(18):6554–6561. [PubMed] [Google Scholar]
  44. Simon F. R., Blumenfeld O. O., Arias I. M. WTwo protein fractions obtained from hepatic plasma membranes. Studies of their composition and differential turnover. Biochim Biophys Acta. 1970 Dec 1;219(2):349–360. doi: 10.1016/0005-2736(70)90212-9. [DOI] [PubMed] [Google Scholar]
  45. Simon F. R., Sutherland E., Accatino L. Stimulation of hepatic sodium and potassium-activated adenosine triphosphatase activity by phenobarbital. Its possible role in regulation of bile flow. J Clin Invest. 1977 May;59(5):849–861. doi: 10.1172/JCI108707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Song C. S., Bodansky O. Subcellular localization and properties of 5'-nucleotidase in the rat liver. J Biol Chem. 1967 Feb 25;242(4):694–699. [PubMed] [Google Scholar]
  47. Szasz G. A kinetic photometric method for serum gamma-glutamyl transpeptidase. Clin Chem. 1969 Feb;15(2):124–136. [PubMed] [Google Scholar]
  48. TALALAY P. Enzymic analysis of steroid hormones. Methods Biochem Anal. 1960;8:119–143. doi: 10.1002/9780470110249.ch3. [DOI] [PubMed] [Google Scholar]
  49. Vahouny G. V., Ito M., Blendermann E. M., Gallo L. L., Treadwell C. R. Puromycin inhibition of cholesterol absorption in the rat. J Lipid Res. 1977 Nov;18(6):745–752. [PubMed] [Google Scholar]
  50. Verbin R. S., Goldblatt P. J., Farber E. The biochemical pathology of inhibition of protein synthesis in vivo. The effects of cycloheximide on hepatic parenchymal cell ultrastructure. Lab Invest. 1969 Jun;20(6):529–536. [PubMed] [Google Scholar]
  51. Wannagat R. J., Adler R. D., Ockner R. K. Bile acid-induced increase in bile acid-independent flow and plasma membrane NaK-ATPase activity in rat liver. J Clin Invest. 1978 Feb;61(2):297–307. doi: 10.1172/JCI108939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wheeler H. O. Secretion of bile acids by the liver and their role in the formation of hepatic bile. Arch Intern Med. 1972 Oct;130(4):533–541. [PubMed] [Google Scholar]
  53. Whelan G., Hoch J., Combes B. A direct assessment of the importance of conjugation for biliary transport of sulfobromophthalein sodium. J Lab Clin Med. 1970 Apr;75(4):542–557. [PubMed] [Google Scholar]
  54. Yamada C., Clark A. J., Swendseid M. E. Actinomycin D effect on amino acid absorption from rat jejunal loops. Science. 1967 Oct 6;158(3797):129–130. doi: 10.1126/science.158.3797.129. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES