Abstract
Isolated renal tubule fragments prepared from adult Sprague-Dawley rats were used to study the cellular uptake of hypoxanthine. This uptake was rapid, reaching a steady state after 30 min of incubation. Analysis of the intracellular pool during the initial uptake and at the steady state revealed a concentration gradient of hypoxanthine consistent with active transport, although only one-third of the transported hypoxanthine remained unmetabolized. The remainder of the transported hypoxanthine was converted to inosine and inosinic acid, but detectable conversion to uric acid was not noted. A kinetic analysis of uptake revealed that two systems for cellular entry of hypoxanthine existed with Km1 = 0.005 and Km2 = 0.80 mM. Hypoxanthine uptake at physiologic concentrations was oxygen, sodium, and temperature dependent, but the addition of metabolic fuels and alteration of the medium pH over the range of from 6.1 to 7.4 had no effect. Adenine, guanine, and inosine inhibited the uptake of hypoxanthine via the low-Km system which mediates the majority of uptake at physiologic levels. Xanthine, uric acid, and probenecid inhibited uptake via the high-Km system, but did not affect uptake via the low-Km system. The data indicate that hypoxanthine at physiologic levels is transported into the renal tubule cell via a system different from that for other oxypurines.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alford B. L., Barnes E. M., Jr Hypoxanthine transport by cultured Chinese hamster lung fibroblasts. J Biol Chem. 1976 Aug 25;251(16):4823–4827. [PubMed] [Google Scholar]
- Auscher C., Pasquier C., Pehuet P., Delbarre F. Study of urinary pyrazinamide metabolites and their action on the renal excretion of xanthine and hypoxanthine in a xanthinuric patient. Biomedicine. 1978 May;28(2):129–133. [PubMed] [Google Scholar]
- BURG M. B., ORLOFF J. Oxygen consumption and active transport in separated renal tubules. Am J Physiol. 1962 Aug;203:327–330. doi: 10.1152/ajplegacy.1962.203.2.327. [DOI] [PubMed] [Google Scholar]
- Benke P. J., Herrick N., Herbert A. Transport of hypoxanthine in fibroblasts with normal and mutant hypoxanthine-guanine phosphoribosyltransferase. Biochem Med. 1973 Oct;8(2):309–323. doi: 10.1016/0006-2944(73)90035-5. [DOI] [PubMed] [Google Scholar]
- Berndt W. O. The accumulation of 14C-hypoxanthine by slices of rabbit kidney cortex. Biochem Pharmacol. 1968 Apr;17(4):605–615. doi: 10.1016/0006-2952(68)90276-1. [DOI] [PubMed] [Google Scholar]
- DICKINSON C. J., SMELLIE J. M. Xanthinuria. Br Med J. 1959 Dec 5;2(5161):1217–1221. doi: 10.1136/bmj.2.5161.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ENGELMAN K., WATTS R. W., KLINENBERG J. R., SJOERDSMA A., SEEGMILLER J. E. CLINICAL, PHYSIOLOGICAL AND BIOCHEMICAL STUDIES OF A PATIENT WITH XANTHINURIA AND PHEOCHROMOCYTOMA. Am J Med. 1964 Dec;37:839–861. doi: 10.1016/0002-9343(64)90128-7. [DOI] [PubMed] [Google Scholar]
- GJORUP S., POULSEN H. Effects of probenecid, cinchophen and colchicine on the plasma concentration and renal excretion of oxypurine in patients with gout. Acta Pharmacol Toxicol (Copenh) 1955;11(4):343–352. doi: 10.1111/j.1600-0773.1955.tb03268.x. [DOI] [PubMed] [Google Scholar]
- GOLDFINGER S., KLINENBERG J. R., SEEGMILLER J. E. THE RENAL EXCRETION OF OXYPURINES. J Clin Invest. 1965 Apr;44:623–628. doi: 10.1172/JCI105175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greene M. L., Fujimoto W. Y., Seegmiller J. E. Urinary xanthine stones--a rare complications of allopurinol therapy. N Engl J Med. 1969 Feb 20;280(8):426–427. doi: 10.1056/NEJM196902202800806. [DOI] [PubMed] [Google Scholar]
- Jones C. E., Smith E. E., Hicks W., Crowell J. W. Determination of urinary purines in hyperuricosuric children by thin-layer chromatography. J Lab Clin Med. 1970 Jul;76(1):163–170. [PubMed] [Google Scholar]
- KLINENBERG J. R., GOLDFINGER S. E., SEEGMILLER J. E. THE EFFECTIVENESS OF THE XANTHINE OXIDASE INHIBITOR ALLOPURINOL IN THE TREATMENT OF GOUT. Ann Intern Med. 1965 Apr;62:639–647. doi: 10.7326/0003-4819-62-4-639. [DOI] [PubMed] [Google Scholar]
- Lassen U. V. Hypoxanthine transport in human erythrocytes. Biochim Biophys Acta. 1967 Feb 1;135(1):146–154. doi: 10.1016/0005-2736(67)90017-x. [DOI] [PubMed] [Google Scholar]
- McNamara P., Rea C., Segal S. Sugar transport: effect of temperature on concentrative uptake of alpha-methylglucoside by kidney cortex slices. Science. 1971 Jun 4;172(3987):1033–1034. doi: 10.1126/science.172.3987.1033. [DOI] [PubMed] [Google Scholar]
- Mohyuddin F., Scriver C. R. Amino acid transport in mammalian kidney: Multiple systems for imino acids and glycine in rat kidney. Am J Physiol. 1970 Jul;219(1):1–8. doi: 10.1152/ajplegacy.1970.219.1.1. [DOI] [PubMed] [Google Scholar]
- ROSENBERG L. E., BLAIR A., SEGAL S. Transport of amino acids by slices of rat-kidney cortex. Biochim Biophys Acta. 1961 Dec 23;54:479–488. doi: 10.1016/0006-3002(61)90088-9. [DOI] [PubMed] [Google Scholar]
- Roth K. S., Hwang S. M., London J. W., Segal S. Ontogeny of glycine transport in isolated rat renal tubules. Am J Physiol. 1977 Sep;233(3):F241–F246. doi: 10.1152/ajprenal.1977.233.3.F241. [DOI] [PubMed] [Google Scholar]
- Roth K. S., Hwang S. M., Segal S. Effect of maleic acid on the kinetics of alpha-methyl-D-glucoside uptake by isolated rat renal tubules. Biochim Biophys Acta. 1976 Apr 5;426(4):675–687. doi: 10.1016/0005-2736(76)90132-2. [DOI] [PubMed] [Google Scholar]
- Segal S., Schwartzman L., Blair A., Bertoli D. Dibasic amino acid transport in rat-kidney cortex slices. Biochim Biophys Acta. 1967 Feb 1;135(1):127–135. doi: 10.1016/0005-2736(67)90015-6. [DOI] [PubMed] [Google Scholar]
- Zylka J. M., Plagemann P. G. Purine and pyrimidine transport by cultured Novikoff cells. Specificities and mechanism of transport and relationship to phosphoribosylation. J Biol Chem. 1975 Aug 10;250(15):5756–5767. [PubMed] [Google Scholar]
