Skip to main content
NIHPA Author Manuscripts logoLink to NIHPA Author Manuscripts
. Author manuscript; available in PMC: 2013 Sep 1.
Published in final edited form as: Eur J Immunol. 2012 Sep;42(9):2246–2254. doi: 10.1002/eji.201242605

Immunity to infection in IL-17-deficient mice and humans

Sophie Cypowyj 1,*,, Capucine Picard 2,3,4, Laszlo Marodi 5, Jean-Laurent Casanova 1,2,4,6, Anne Puel 2
PMCID: PMC3720135  NIHMSID: NIHMS492179  PMID: 22949323

Abstract

Mice with defective IL-17 immunity display a broad vulnerability to various infectious agents at diverse mucocutaneous surfaces. In humans, the study of patients with various primary immunodeficiencies, including autosomal dominant hyper-IgE syndrome caused by dominant-negative STAT3 mutations and autosomal recessive autoimmune polyendocrinopathy syndrome type 1 caused by null mutations in AIRE, has suggested that IL-17A, IL-17F and/or IL-22 are essential for mucocutaneous immunity to Candida albicans. This hypothesis was confirmed by the identification of rare patients with chronic mucocutaneous candidiasis (CMC) due to autosomal recessive IL-17RA deficiency and autosomal dominant IL-17F deficiency. Heterozygosity for gain-of-function mutations in STAT1 in additional patients with CMC was recently shown to inhibit the development of IL-17 T cells. Although the infectious phenotype of patients with CMC and inborn errors of IL-17 immunity remains to be finely delineated, it appears that human IL-17A and IL-17F display redundancy for protective immunity in natural conditions that is not seen in their mouse orthologs in experimental conditions.

Introduction

In mice and men, the IL-17 family of cytokines contains six sequence-related homologs: IL-17A through IL-17F [1]. The corresponding cytokine receptors belong to the IL-17R family, which has five members: IL-17RA through IL-17RE [1]. IL-17A and its close relative IL-17F are secreted principally by T cells and form homo- and hetero-dimers that signal through a complex of IL-17RA and IL-17RC chains [2]. These receptors are widely expressed, but their expression levels differ, with IL-17RA being strongly expressed by hematopoietic cells and IL-17RC by epithelial cells [1]. In mice, IL-17A and IL-17F are thought to be key cytokines for the clearance of various pathogens at mucocutaneous surfaces ([3-5], Table 1). These cytokines induce the secretion of antimicrobial peptides by epithelial cells, thereby promoting the direct destruction of invading pathogens, and factors activating and recruiting granulocytes, further contributing to pathogen eradication [3]. As discussed in the next section, mice lacking the Il17a and Il17ra genes or, to a lesser extent, the Il17f gene, are susceptible to a broad range of infections with bacterial and fungal pathogens at the mucosal surface. In contrast, human patients lacking a component of IL-17 immunity due to a genetic defect, have a narrower spectrum of pathogen susceptibility. Indeed, in the past few years, such patients have been shown to be susceptible principally to chronic mucocutaneous candidiasis (CMC) and, less commonly, to cutaneous Staphyloccocus aureus infections. We review here current knowledge concerning the role of IL-17 cytokines in host defense in mice and humans.

Table 1.

Infectious phenotypes of Il17ra, Il17a and Il17f deficient mice. The anatomical sites tested are listed. For IL-17A and IL-17F, both knock-out mice and the use of neutralizing antibody were considered (corresponding papers are indicated in brackets). MC, mucocutaneous. G, Gram. ss RNA, singls strand RNA.

Phenotype of Il17ra −/− mice Phenotype of Il17a −/− mice Phenotype of Il17f −/− mice
Pathogens Susceptible Resist
ant
No
phenotype
Not
tested
Susceptible Resista
nt
No
phenotype
Not
tested
Susceptible Resi
stant
No
phenotype
Not
tested
Bacterium G− Klebsiella
pneumoniae
Lung [6] X X
Bacterium G− Porphyromonas
gingivalis
Gingiva
[10]
X X
Bacterium G+ Bacillus anthracis Lung [7] X X
Bacterium G− Neisseria
gonorrhoeae
Urogenital
mucosa
[12]
X X
Bacterium G+ Listeria
monocytogenes
Invasive
[19]
Invasive
[116]
X
Bacterium G+ Mycobacterium
BCG
Lung [8] Lung [8,
23]
X
Bacterium G+ Staphylococcus
aureus
Skin [14] MC &
invasive
[24]
X
Bacterium G− Helicobacter
pylori
Stomach
[11]
X Stomac
h [25]
X
Bacterium G− Salmonella
typhimurium
Intestinal
mucosa
[117]
Intestinal
mucosa
[118]
Intestinal
mucosa
[117]
Intestinal
mucosa
[117]
Bacterium G− Chlamydia
muridarum
Genital
mucosa
[119]
Genital
mucosa
[119]
X
Bacterium G+ Escherichia coli X Urinary
tract [21]
X
Bacterium G− Yersinia pestis X Lung [22] X
Bacterium G− Acinetobacter
baumannii
X Invasive
[120]
X
Fungus Candida albicans
local
Oropharynx
[17]
Skin [28] X
Fungus Candida albicans
systemic
Invasive
[18]
X Invasive
[27]
systemic
[27]
Fungus Cryptococcus
neoformans
Lung
[121]
Lung
[121]
X
Parasite Toxoplasma
gondii
Oral cavity
[15]
Oral
cavity
[16]
Oral cavity
[15]
X
Parasite Schistosoma
mansoni
X Liver
[122]
X
Parasite Leishmania
major
X Skin
[26]
X
Virus ss
RN
A
Influenza virus Lung [9] X X
Virus ss
RN
A
Coxsackievirus B3 X Myocar
dium
[123]
X

Infectious phenotype of mice with impaired IL-17 immunity

In mice, IL-17RA has been shown to be essential for mucocutaneous immunity to several pathogens (Table 1), including pulmonary immunity to Klebsiella pneumoniae, Bacillus anthracis and Mycobacterium bovis BCG [6-8] and to Influenza virus [9]; gingival immunity to Porphyromonas gingivalis [10]; gastric immunity to Helicobacter pylori [11]; urogenital immunity to Neisseria gonorrhoeae [12]; intestinal immunity to polymicrobial sepsis [13]; cutaneous immunity to S. aureus [14]; oral immunity to Toxoplasma gondii (in one study [15] but not in another [16]); and oropharyngeal immunity to Candida albicans [17]. In addition, IL-17RA is important for systemic immunity in mice to Listeria monocytogenes and C. albicans [18, 19].

Efforts to determine the respective roles of IL-17A and IL-17F in immunity to infection in mice, however, have only recently begun [5, 20]. IL-17A has been shown to be essential for immunity to Escherichia coli in the urinary tract [21], to Yersinia pestis [22] and BCG in the lung [23], and to S. aureus in the bone and synovial tissues [24], but seems to be detrimental for immunity to gastric infection with H. pylori [25] and cutaneous infection with Leishmania major [26]. Unlike Il17f-deficient mice, Il17a−/− mice are susceptible to systemic candidiasis [27] and to cutaneous C. albicans infection, despite having normal levels of IL-17F [28]. The role of IL-17F in mucosal immunity to C. albicans remains unknown, but it seems to be redundant with IL-17A in mucoepithelial defense against S. aureus and Citrobacter rodentium [20]. Overall, these studies suggest that IL-17 cytokines in mice play non-redundant roles in host defense against mucosal bacterial, viral, parasitic and fungal infections, including, in particular, mucocutaneous immunity to C. albicans.

Syndromic CMC in humans with primary immunodeficiencies (PIDs)

In humans, CMC is a relatively common fungal infection [29]. It is typically caused by C. albicans, a commensal fungus of the skin and gastrointestinal tract. C. albicans does not cause chronic disease in healthy individuals, but individuals with broad (combined immunodeficiency (CID)) and profound T-cell defects (severe combined immunodeficiency (SCID)), whether qualitative or quantitative, inherited or acquired, are susceptible to CMC, particularly in the form of severe recurrent oral candidiasis. Such individuals are highly vulnerable to a broad range of microorganisms (virus, bacteria, fungi and parasites) [30]. Patients with acquired immunodeficiencies, such as AIDS [31], and patients on immunosuppressive therapies [32], may suffer from CMC. Similarly, patients with severe combined immunodeficiency [33] and a lack of autologous T cells are prone to CMC. Even patients with CIDs (i.e. with a T-cell deficiency despite the presence of T cells) are prone to CMC. The defects predisposing patients to CMC include autosomal recessive (AR) TCR-α deficiency [34], AR ORAI1 deficiency [35], some forms of X-linked recessive (XR) NEMO disorders or autosomal dominant (AD) IκBα disorders [36], AR MST1 deficiency ([37] and unpublished data), AR CD25 deficiency [38, 39], AR IRF8 deficiency [40], AR DOCK8 deficiency [41], and other syndromes with T-cell defects [30]. These patients are also susceptible to many microorganisms other than C. albicans. By contrast, CMC is very rare in patients with primary immunodeficiencies (PIDs) that do not affect T cells, including those with relatively pure B-cell, phagocyte or complement PIDs [30]. Collectively, these observations indicate that T cells are essential for mucocutaneous immunity against C. albicans.

Recent investigations of patients with PIDs associated with a narrower range of infectious diseases, i.e. not restricted to CMC, but not quite as large as that seen in patients with the T-cell deficiencies mentioned above, gradually led to the notion that impaired IL-17 T-cell immunity may underlie CMC. An impairment of the development of IL-17 (and IL-22) T cells was demonstrated in patients with AD hyper-IgE syndrome (HIES) bearing heterozygous mutations in STAT3, who suffer mostly from severe cutaneous and pulmonary S. aureus infections and CMC [42-46]. Impaired STAT3 signaling downstream from IL-6, IL-21 and/or IL-23 (Figure 1) probably accounts for the poor development of IL-17 T cells, as these cytokines have been shown to be critical for the development of Th17 cells in the mouse model [47, 48]. Impaired development of IL-17 (and IL-22) T cells was also demonstrated in patients with AR IL-12p40 or IL-12Rβ1 deficiency and Mendelian susceptibility to mycobacterial disease (MSMD). About 25% of these patients develop mild CMC ([44, 49] and unpublished data), presumably due to a lack of IL-23 immunity, as IL-23 has been shown to be important for the development of Th17 cells in the mouse model [44, 50]. Reduced numbers of IL-17 T cells were also observed in a kindred with AR CARD9 deficiency displaying CMC, dermatophyte infections of the skin and invasive candidiasis [51]. CARD9 is an adaptor acting downstream from receptors involved in fungal recognition, such as the mannose receptor, Dectin-1 or Dectin-2 (Figure 1) [52]; its deficiency may result in impaired production of the cytokines required for IL-17 T-cell differentiation and/or maintenance [51]. Finally, high titers of neutralizing autoantibodies against IL-17A, IL-17F and/or IL-22 have been detected in patients with AR autoimmune polyendocrinopathy syndrome type 1 (APS-1) with CMC as the only major infection [53-55]. Altogether these studies suggested but did not formally prove that impaired IL-17 immunity may be the unifying mechanism underlying CMC.

graphic file with name nihms-492179-f0001.jpg

Schematic representation of IL-17 immunity, and cooperation between cells recognizing C. albicans (phagocytes and epithelial cells) and cells producing IL-17 cytokines (T and innate (NK) lymphocytes). Upon C. albicans recognition by PRRs (pathogen recognition receptors, including Dectin-1, Dectin-2, or the mannose receptor (MR)), adaptor molecules, such as CARD9, mediate via the NF-κB and AP-1 pathways the induction of pro-inflammatory cytokines by myeloid or epithelial cells. These pro-inflammatory cytokines, such as IL-6 or IL-23, activate T lymphocytes via STAT3 resulting in cell differentiation into IL-17-producing T cells. CMCD-causing mutations (in blue) in IL-17F and IL-17RA impair IL-17 function and response, respectively. CMCD-causing GOF mutations (also shown in blue) in STAT1 impair the development of IL-17 producing T cells.

Isolated CMC and inborn errors of IL-17

The formal proof that impaired IL-17 immunity underlies CMC came from the study of patients with isolated CMC, often referred to as CMC disease (CMCD) [56]. CMCD was first described as a distinct entity in the late 1960s, with the description of familial and sporadic cases [57-68], but it has only recently been suggested that patients with this condition carry inborn errors of IL-17 immunity [56, 69]. This hypothesis was validated in 2011, with the identification of the first two genetic etiologies of CMCD (Figure 1) [70]. Complete IL-17RA deficiency was found in a single patient with CMCD born to consanguineous parents of Moroccan origin. The previously unreported homozygous premature stop codon found in the IL17RA gene of this patient abolished the expression of the protein and the cellular responses to homo- and hetero-dimers of IL-17A and IL-17F [70], and potentially other IL-17 family members. The patient also developed S. aureus skin abscesses and folliculitis, as sometimes reported in CMCD patients [71], but was otherwise not susceptible to most common pathogens [70]. The patient being homozygous by descent for 1/16 of his genome meant that there remained the remote, but finite, possibility that the IL-17RA deficiency was not responsible for CMC. Final evidence was provided by the discovery of partial AD IL-17F deficiency in a multiplex Argentinian kindred with CMCD due to a heterozygous missense mutation (S65L) in the IL17F gene. The mutation was severely hypomorphic and dominant, as it impaired the function of both homo- (IL-17F/IL-17F) and hetero- (IL-17A/IL-17F) dimers containing the mutant isoform, by impairing the binding of the complexes to the receptor. The affected members of this kindred appeared to be susceptible solely to C. albicans [70]. Another patient suffering only from CMC has been described with a heterozygous mutation IL17F and, although no functional characterization of the mutant allele was performed, this mutation might be CMC-causing [72].

Studies based on genome-wide approaches led to the identification of a more common genetic etiology of CMCD, namely heterozygous mutations in the coiled coil domain (CCD) of STAT1 ([73-76] and unpublished data). Eighteen such CMCD-causing mutations have been identified in 92 patients from 43 unrelated families originating from 14 countries ([73-76] and unpublished data). These mutations occurred de novo in seven kindreds, and all mutant alleles displayed complete clinical penetrance ([75] and unpublished data). More recently, mutations in the DNA-binding domain of STAT1 in CMC patients were identified ([77] and unpublished data). These discoveries were surprising, as previously reported human STAT1 mutations, whether mono- or biallelic, were null or hypomorphic and conferred susceptibility to mycobacterial disease, with or without viral disease. The underlying mechanisms involve impaired cellular responses to IFN-γ (and probably IL-27) and/or IFN-α/β (and probably IFN-λ)[78-84]. The enigma was solved when CMCD-causing STAT1 mutations were shown to be gain-of-function (GOF), by a mechanism involving a gain of phosphorylation due to the impairment of nuclear dephosphorylation rather than an enhancement of cytoplasmic phosphorylation [85]. These mutations thus result in enhanced STAT1 responses to cytokines, including IFN-α/β, IFN-γ and IL-27, which predominantly activate STAT1 rather than STAT3, and to IL-6 and IL-21, which normally predominantly activate STAT3 rather than STAT1 (Figure 1) [75]. Moreover, these patients have low proportions of IL-17 T cells, accounting for CMC. This IL-17 phenotype may result from enhanced STAT1-mediated cellular responses to STAT1-dependent repressors of IL-17-producing T cells, such as IFN-γ, IFN-α/β and IL-27 [86-99], and/or from enhanced and potentially competing STAT1 responses to cytokines predominantly activating STAT3, which are required for the development of IL-17 T cells, such as IL-6, IL-21 and IL-23 [48, 100, 101]. In any case, this IL-17 defect in patients carrying gain-of-function STAT1 mutations lends weight to the argument that IL-17 immunity plays an important role in the development of CMC.

Conclusions

The recent discovery of the first genetic etiologies of CMCD — complete AR IL-17RA and partial AD IL-17 deficiencies and GOF STAT1 mutations — has provided the first insight into the function of human IL-17 in host defense in natura (Figure 1) [102-107]. These findings are consistent with the greater susceptibility of Il17ra- and Il17a-deficient mice to mucosal candidiasis and with the impaired IL-17 immunity observed in patients with PIDs associated with CMC, such as AD-HIES and APS-I. In patients with IL-17RA deficiency, CMCD results from the abolition of responses to IL-17A and IL-17F homo- and IL-17A/IL-17F hetero-dimers. In patients with IL-17F deficiency, the function of IL-17F homo-dimers and IL-17A/IL-17F hetero-dimers containing the mutant protein is severely impaired. Finally, STAT1 GOF mutations result in a developmental defect of IL-17-producing T cells. However, at odds with the mouse model, these experiments of Nature show that human IL-17 immunity is central to mucosal defense against C. albicans and, to a lesser extent, cutaneous staphylococcal infection, but largely redundant in host defense against most other common pathogens. This difference between mice and humans with IL-17 deficiencies is reminiscent of that observed for patients with inborn errors of IL-12 and IFN-γ immunity, whose infectious phenotype is much narrower than that of mice lacking the Th1 arm of immunity [49, 108, 109]. A careful clinical description of a large series of patients with inborn errors of IL-17 immunity, as previously carried out for IL-12 and IFN-γ immunity [50, 110], is required to determine the role of these cytokines more precisely, however. Moreover, the ongoing recruitment of new CMCD patients without mutations of STAT1, IL17RA or IL17F and the use genome-wide approaches should eventually lead to the identification of new players in IL-17 immunity. Finally, the use of recombinant IL-17 cytokines to treat patients with CMC due to GOF STAT1 mutations or IL-17F deficiency, but not IL-17RA deficiency, might be considered, perhaps at the risk of promoting autoimmune diseases [111, 112]. Treatment of the patients with G-CSF or GM-CSF is another potential approach [113]. Conversely, the use of anti-IL-17 antibody to treat patients with autoimmunity should be carefully overseen to prevent or treat CMC [114, 115].

Acknowledgments

We thank the members of the laboratory for helpful discussions, and Yelena Nemirovskaya, Eric Anderson, Martine Courat and Michele N’Guyen for secretarial assistance. This work was supported by grants from INSERM, University Paris Descartes, National Center for Research Resources and the National Center for Advancing Sciences (NCATS), National Institutes of Health grant number 8UL1TR000043, the ANR grant number GENCMCD 11-BSV3-005-01, the St. Giles Foundation, and the Candidoser Association awarded to Jean-Laurent Casanova. Support is provided by TÁMOP 4.2.1./B-09/1/KONV-2010-0007 grant to László Maródi. Sophie Cypowyj is supported by the AXA Research Fund.

References

  • 1.Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 2009;9:556–567. doi: 10.1038/nri2586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Wright JF, Bennett F, Li B, Brooks J, Luxenberg DP, Whitters MJ, Tomkinson KN, Fitz LJ, Wolfman NM, Collins M, Dunussi-Joannopoulos K, Chatterjee-Kishore M, Carreno BM. The human IL-17F/IL-17A heterodimeric cytokine signals through the IL-17RA/IL-17RC receptor complex. J Immunol. 2008;181:2799–2805. doi: 10.4049/jimmunol.181.4.2799. [DOI] [PubMed] [Google Scholar]
  • 3.Onishi RM, Gaffen SL. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology. 2010;129:311–321. doi: 10.1111/j.1365-2567.2009.03240.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Kolls JK, Khader SA. The role of Th17 cytokines in primary mucosal immunity. Cytokine Growth Factor Rev. 2010;21:443–448. doi: 10.1016/j.cytogfr.2010.11.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Khader SA, Gaffen SL, Kolls JK. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol. 2009;2:403–411. doi: 10.1038/mi.2009.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J, Shellito JE, Bagby GJ, Nelson S, Charrier K, Peschon JJ, Kolls JK. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med. 2001;194:519–527. doi: 10.1084/jem.194.4.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Garraud K, Cleret A, Mathieu J, Fiole D, Gauthier Y, Quesnel-Hellmann A, Tournier JN. Differential role of the interleukin-17 axis and neutrophils in resolution of inhalational anthrax. Infect Immun. 2012;80:131–142. doi: 10.1128/IAI.05988-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Gopal R, Lin Y, Obermajer N, Slight S, Nuthalapati N, Ahmed M, Kalinski P, Khader SA. IL-23-dependent IL-17 drives Th1-cell responses following Mycobacterium bovis BCG vaccination. Eur J Immunol. 2012;42:364–373. doi: 10.1002/eji.201141569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Crowe CR, Chen K, Pociask DA, Alcorn JF, Krivich C, Enelow RI, Ross TM, Witztum JL, Kolls JK. Critical role of IL-17RA in immunopathology of influenza infection. J Immunol. 2009;183:5301–5310. doi: 10.4049/jimmunol.0900995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Yu JJ, Ruddy MJ, Conti HR, Boonanantanasarn K, Gaffen SL. The interleukin-17 receptor plays a gender-dependent role in host protection against Porphyromonas gingivalis-induced periodontal bone loss. Infect Immun. 2008;76:4206–4213. doi: 10.1128/IAI.01209-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Algood HM, Allen SS, Washington MK, Peek RM, Jr., Miller GG, Cover TL. Regulation of gastric B cell recruitment is dependent on IL-17 receptor A signaling in a model of chronic bacterial infection. J Immunol. 2009;183:5837–5846. doi: 10.4049/jimmunol.0901206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Feinen B, Jerse AE, Gaffen SL, Russell MW. Critical role of Th17 responses in a murine model of Neisseria gonorrhoeae genital infection. Mucosal Immunol. 2010;3:312–321. doi: 10.1038/mi.2009.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Freitas A, Alves-Filho JC, Victoni T, Secher T, Lemos HP, Sonego F, Cunha FQ, Ryffel B. IL-17 receptor signaling is required to control polymicrobial sepsis. J Immunol. 2009;182:7846–7854. doi: 10.4049/jimmunol.0803039. [DOI] [PubMed] [Google Scholar]
  • 14.Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, Monroe HR, Magorien JE, Blauvelt A, Kolls JK, Cheung AL, Cheng G, Modlin RL, Miller LS. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest. 2010;120:1762–1773. doi: 10.1172/JCI40891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Kelly MN, Kolls JK, Happel K, Schwartzman JD, Schwarzenberger P, Combe C, Moretto M, Khan IA. Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infect Immun. 2005;73:617–621. doi: 10.1128/IAI.73.1.617-621.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Guiton R, Vasseur V, Charron S, Arias MT, Van Langendonck N, Buzoni-Gatel D, Ryffel B, Dimier-Poisson I. Interleukin 17 receptor signaling is deleterious during Toxoplasma gondii infection in susceptible BL6 mice. J Infect Dis. 2010;202:427–435. doi: 10.1086/653738. [DOI] [PubMed] [Google Scholar]
  • 17.Conti HR, Shen F, Nayyar N, Stocum E, Sun JN, Lindemann MJ, Ho AW, Hai JH, Yu JJ, Jung JW, Filler SG, Masso-Welch P, Edgerton M, Gaffen SL. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med. 2009;206:299–311. doi: 10.1084/jem.20081463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis. 2004;190:624–631. doi: 10.1086/422329. [DOI] [PubMed] [Google Scholar]
  • 19.Meeks KD, Sieve AN, Kolls JK, Ghilardi N, Berg RE. IL-23 is required for protection against systemic infection with Listeria monocytogenes. J Immunol. 2009;183:8026–8034. doi: 10.4049/jimmunol.0901588. [DOI] [PubMed] [Google Scholar]
  • 20.Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y, Fujikado N, Tanahashi Y, Akitsu A, Kotaki H, Sudo K, Nakae S, Sasakawa C, Iwakura Y. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity. 2009;30:108–119. doi: 10.1016/j.immuni.2008.11.009. [DOI] [PubMed] [Google Scholar]
  • 21.Sivick KE, Schaller MA, Smith SN, Mobley HL. The innate immune response to uropathogenic Escherichia coli involves IL-17A in a murine model of urinary tract infection. J Immunol. 2010;184:2065–2075. doi: 10.4049/jimmunol.0902386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Lin JS, Kummer LW, Szaba FM, Smiley ST. IL-17 contributes to cell-mediated defense against pulmonary Yersinia pestis infection. J Immunol. 2011;186:1675–1684. doi: 10.4049/jimmunol.1003303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Okamoto Yoshida Y, Umemura M, Yahagi A, O’Brien RL, Ikuta K, Kishihara K, Hara H, Nakae S, Iwakura Y, Matsuzaki G. Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. J Immunol. 2010;184:4414–4422. doi: 10.4049/jimmunol.0903332. [DOI] [PubMed] [Google Scholar]
  • 24.Henningsson L, Jirholt P, Lindholm C, Eneljung T, Silverpil E, Iwakura Y, Linden A, Gjertsson I. Interleukin-17A during local and systemic Staphylococcus aureus-induced arthritis in mice. Infect Immun. 2010;78:3783–3790. doi: 10.1128/IAI.00385-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Shi Y, Liu XF, Zhuang Y, Zhang JY, Liu T, Yin Z, Wu C, Mao XH, Jia KR, Wang FJ, Guo H, Flavell RA, Zhao Z, Liu KY, Xiao B, Guo Y, Zhang WJ, Zhou WY, Guo G, Zou QM. Helicobacter pylori-induced Th17 responses modulate Th1 cell responses, benefit bacterial growth, and contribute to pathology in mice. J Immunol. 2010;184:5121–5129. doi: 10.4049/jimmunol.0901115. [DOI] [PubMed] [Google Scholar]
  • 26.Lopez Kostka S, Dinges S, Griewank K, Iwakura Y, Udey MC, von Stebut E. IL-17 promotes progression of cutaneous leishmaniasis in susceptible mice. J Immunol. 2009;182:3039–3046. doi: 10.4049/jimmunol.0713598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Saijo S, Ikeda S, Yamabe K, Kakuta S, Ishigame H, Akitsu A, Fujikado N, Kusaka T, Kubo S, Chung SH, Komatsu R, Miura N, Adachi Y, Ohno N, Shibuya K, Yamamoto N, Kawakami K, Yamasaki S, Saito T, Akira S, Iwakura Y. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity. 2010;32:681–691. doi: 10.1016/j.immuni.2010.05.001. [DOI] [PubMed] [Google Scholar]
  • 28.Kagami S, Rizzo HL, Kurtz SE, Miller LS, Blauvelt A. IL-23 and IL-17A, but Not IL-12 and IL-22, Are Required for Optimal Skin Host Defense against Candida albicans. J Immunol. 2010;185:5453–5462. doi: 10.4049/jimmunol.1001153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Vinh DC. Insights into human antifungal immunity from primary immunodeficiencies. Lancet Infect Dis. 2011;11:780–792. doi: 10.1016/S1473-3099(11)70217-1. [DOI] [PubMed] [Google Scholar]
  • 30.Al-Herz W, Bousfiha A, Casanova JL, Chapel H, Conley ME, Cunningham-Rundles C, Etzioni A, Fischer A, Franco JL, Geha RS, Hammarström L, Nonoyama S, Notarangelo L, Ochs HD, Puck J, Roifman C, Seger R, Tang MLK. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency. Frontier in Immunology. 2011;2:1–26. doi: 10.3389/fimmu.2011.00054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Ramos ESM, Lima CM, Schechtman RC, Trope BM, Carneiro S. Superficial mycoses in immunodepressed patients (AIDS) Clin Dermatol. 2010;28:217–225. doi: 10.1016/j.clindermatol.2009.12.008. [DOI] [PubMed] [Google Scholar]
  • 32.Virgili A, Zampino MR, Mantovani L. Fungal skin infections in organ transplant recipients. Am J Clin Dermatol. 2002;3:19–35. doi: 10.2165/00128071-200203010-00003. [DOI] [PubMed] [Google Scholar]
  • 33.Ochs HDS, C.I., Puck JM. Primary immunodeficiency diseases: A molecular and genetic approach. Third edition. Oxford University press; 2012. 2012. [Google Scholar]
  • 34.Morgan NV, Goddard S, Cardno TS, McDonald D, Rahman F, Barge D, Ciupek A, Straatman-Iwanowska A, Pasha S, Guckian M, Anderson G, Huissoon A, Cant A, Tate WP, Hambleton S, Maher ER. Mutation in the TCRalpha subunit constant gene (TRAC) leads to a human immunodeficiency disorder characterized by a lack of TCRalphabeta+ T cells. J Clin Invest. 2011;121:695–702. doi: 10.1172/JCI41931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Feske S, Picard C, Fischer A. Immunodeficiency due to mutations in ORAI1 and STIM1. Clin Immunol. 2010;135:169–182. doi: 10.1016/j.clim.2010.01.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Picard C, Casanova JL, Puel A. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IkappaBalpha deficiency. Clin Microbiol Rev. 2011;24:490–497. doi: 10.1128/CMR.00001-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Abdollahpour H, Appaswamy G, Kotlarz D, Diestelhorst J, Beier R, Schaffer AA, Gertz EM, Schambach A, Kreipe HH, Pfeifer D, Engelhardt KR, Rezaei N, Grimbacher B, Lohrmann S, Sherkat R, Klein C. The phenotype of human STK4 deficiency. Blood. 2012 doi: 10.1182/blood-2011-09-378158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol. 2007;119:482–487. doi: 10.1016/j.jaci.2006.10.007. [DOI] [PubMed] [Google Scholar]
  • 39.Sharfe N, Dadi HK, Shahar M, Roifman CM. Human immune disorder arising from mutation of the alpha chain of the interleukin-2 receptor. Proc Natl Acad Sci U S A. 1997;94:3168–3171. doi: 10.1073/pnas.94.7.3168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, Azevedo J, Fortin A, Haniffa M, Ceron-Gutierrez L, Bacon CM, Menon G, Trouillet C, McDonald D, Carey P, Ginhoux F, Alsina L, Zumwalt TJ, Kong XF, Kumararatne D, Butler K, Hubeau M, Feinberg J, Al-Muhsen S, Cant A, Abel L, Chaussabel D, Doffinger R, Talesnik E, Grumach A, Duarte A, Abarca K, Moraes-Vasconcelos D, Burk D, Berghuis A, Geissmann F, Collin M, Casanova JL, Gros P. IRF8 Mutations and Human Dendritic-Cell Immunodeficiency. N Engl J Med. 2011 doi: 10.1056/NEJMoa1100066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Su HC, Jing H, Zhang Q. DOCK8 deficiency. Ann N Y Acad Sci. 2010;1246:26–33. doi: 10.1111/j.1749-6632.2011.06295.x. [DOI] [PubMed] [Google Scholar]
  • 42.Ma CS, Chew GY, Simpson N, Priyadarshi A, Wong M, Grimbacher B, Fulcher DA, Tangye SG, Cook MC. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med. 2008;205:1551–1557. doi: 10.1084/jem.20080218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Minegishi Y, Saito M, Nagasawa M, Takada H, Hara T, Tsuchiya S, Agematsu K, Yamada M, Kawamura N, Ariga T, Tsuge I, Karasuyama H. Molecular explanation for the contradiction between systemic Th17 defect and localized bacterial infection in hyper-IgE syndrome. J Exp Med. 2009;206:1291–1301. doi: 10.1084/jem.20082767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.de Beaucoudrey L, Puel A, Filipe-Santos O, Cobat A, Ghandil P, Chrabieh M, Feinberg J, von Bernuth H, Samarina A, Janniere L, Fieschi C, Stephan JL, Boileau C, Lyonnet S, Jondeau G, Cormier-Daire V, Le Merrer M, Hoarau C, Lebranchu Y, Lortholary O, Chandesris MO, Tron F, Gambineri E, Bianchi L, Rodriguez-Gallego C, Zitnik SE, Vasconcelos J, Guedes M, Vitor AB, Marodi L, Chapel H, Reid B, Roifman C, Nadal D, Reichenbach J, Caragol I, Garty BZ, Dogu F, Camcioglu Y, Gulle S, Sanal O, Fischer A, Abel L, Stockinger B, Picard C, Casanova JL. Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J Exp Med. 2008;205:1543–1550. doi: 10.1084/jem.20080321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, Kanno Y, Spalding C, Elloumi HZ, Paulson ML, Davis J, Hsu A, Asher AI, O’Shea J, Holland SM, Paul WE, Douek DC. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 2008;452:773–776. doi: 10.1038/nature06764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Renner ED, Rylaarsdam S, Anover-Sombke S, Rack AL, Reichenbach J, Carey JC, Zhu Q, Jansson AF, Barboza J, Schimke LF, Leppert MF, Getz MM, Seger RA, Hill HR, Belohradsky BH, Torgerson TR, Ochs HD. Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced T(H)17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. J Allergy Clin Immunol. 2008;122:181–187. doi: 10.1016/j.jaci.2008.04.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, Levy DE, Leonard WJ, Littman DR. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol. 2007;8:967–974. doi: 10.1038/ni1488. [DOI] [PubMed] [Google Scholar]
  • 48.Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–238. doi: 10.1038/nature04753. [DOI] [PubMed] [Google Scholar]
  • 49.Filipe-Santos O, Bustamante J, Chapgier A, Vogt G, de Beaucoudrey L, Feinberg J, Jouanguy E, Boisson-Dupuis S, Fieschi C, Picard C, Casanova JL. Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. Semin Immunol. 2006;18:347–361. doi: 10.1016/j.smim.2006.07.010. [DOI] [PubMed] [Google Scholar]
  • 50.de Beaucoudrey L, Samarina A, Bustamante J, Cobat A, Boisson-Dupuis S, Feinberg J, Al-Muhsen S, Janniere L, Rose Y, de Suremain M, Kong XF, Filipe-Santos O, Chapgier A, Picard C, Fischer A, Dogu F, Ikinciogullari A, Tanir G, Al-Hajjar S, Al-Jumaah S, Frayha HH, AlSum Z, Al-Ajaji S, Alangari A, Al-Ghonaium A, Adimi P, Mansouri D, Ben-Mustapha I, Yancoski J, Garty BZ, Rodriguez-Gallego C, Caragol I, Kutukculer N, Kumararatne DS, Patel S, Doffinger R, Exley A, Jeppsson O, Reichenbach J, Nadal D, Boyko Y, Pietrucha B, Anderson S, Levin M, Schandene L, Schepers K, Efira A, Mascart F, Matsuoka M, Sakai T, Siegrist CA, Frecerova K, Bluetters-Sawatzki R, Bernhoft J, Freihorst J, Baumann U, Richter D, Haerynck F, De Baets F, Novelli V, Lammas D, Vermylen C, Tuerlinckx D, Nieuwhof C, Pac M, Haas WH, Muller-Fleckenstein I, Fleckenstein B, Levy J, Raj R, Cohen AC, Lewis DB, Holland SM, Yang KD, Wang X, Jiang L, Yang X, Zhu C, Xie Y, Lee PP, Chan KW, Chen TX, Castro G, Natera I, Codoceo A, King A, Bezrodnik L, Di Giovani D, Gaillard MI, de Moraes-Vasconcelos D, Grumach AS, da Silva Duarte AJ, Aldana R, Espinosa-Rosales FJ, Bejaoui M, Bousfiha AA, Baghdadi JE, Ozbek N, Aksu G, Keser M. Revisiting human IL-12Rbeta1 deficiency: a survey of 141 patients from 30 countries. Medicine (Baltimore) 2010;89:381–402. doi: 10.1097/MD.0b013e3181fdd832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Glocker EO, Hennigs A, Nabavi M, Schaffer AA, Woellner C, Salzer U, Pfeifer D, Veelken H, Warnatz K, Tahami F, Jamal S, Manguiat A, Rezaei N, Amirzargar AA, Plebani A, Hannesschlager N, Gross O, Ruland J, Grimbacher B. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361:1727–1735. doi: 10.1056/NEJMoa0810719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Netea MG, Marodi L. Innate immune mechanisms for recognition and uptake of Candida species. Trends Immunol. 2010;31:346–353. doi: 10.1016/j.it.2010.06.007. [DOI] [PubMed] [Google Scholar]
  • 53.Kisand K, Boe Wolff AS, Podkrajsek KT, Tserel L, Link M, Kisand KV, Ersvaer E, Perheentupa J, Erichsen MM, Bratanic N, Meloni A, Cetani F, Perniola R, Ergun-Longmire B, Maclaren N, Krohn KJ, Pura M, Schalke B, Strobel P, Leite MI, Battelino T, Husebye ES, Peterson P, Willcox N, Meager A. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med. 2010;207:299–308. doi: 10.1084/jem.20091669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Puel A, Doffinger R, Natividad A, Chrabieh M, Barcenas-Morales G, Picard C, Cobat A, Ouachee-Chardin M, Toulon A, Bustamante J, Al-Muhsen S, Al-Owain M, Arkwright PD, Costigan C, McConnell V, Cant AJ, Abinun M, Polak M, Bougneres PF, Kumararatne D, Marodi L, Nahum A, Roifman C, Blanche S, Fischer A, Bodemer C, Abel L, Lilic D, Casanova JL. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med. 2010;207:291–297. doi: 10.1084/jem.20091983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Kisand K, Lilic D, Casanova JL, Peterson P, Meager A, Willcox N. Mucocutaneous candidiasis and autoimmunity against cytokines in APECED and thymoma patients: Clinical and pathogenetic implications. Eur J Immunol. 2011 doi: 10.1002/eji.201041253. [DOI] [PubMed] [Google Scholar]
  • 56.Puel A, Picard C, Cypowyj S, Lilic D, Abel L, Casanova JL. Inborn errors of mucocutaneous immunity to Candida albicans in humans: a role for IL-17 cytokines? Curr Opin Immunol. 2010;22:467–474. doi: 10.1016/j.coi.2010.06.009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Chilgren RA, Quie PG, Meuwissen HJ, Hong R. Chronic mucocutaneous candidiasis, deficiency of delayed hypersensitivity, and selective local antibody defect. Lancet. 1967;2:688–693. doi: 10.1016/s0140-6736(67)90974-9. [DOI] [PubMed] [Google Scholar]
  • 58.Williamson DM. Chronic hyperplastic candidiasis and squamous carcinoma. Br J Dermatol. 1969;81:125–127. doi: 10.1111/j.1365-2133.1969.tb15992.x. [DOI] [PubMed] [Google Scholar]
  • 59.Wells RS, Higgs JM, Macdonald A, Valdimarsson H, Holt PJ. Familial chronic muco-cutaneous candidiasis. J Med Genet. 1972;9:302–310. doi: 10.1136/jmg.9.3.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Blizzard RM, Gibbs JH. Candidiasis: studies pertaining to its association with endocrinopathies and pernicious anemia. Pediatrics. 1968;42:231–237. [PubMed] [Google Scholar]
  • 61.Goldberg LS, Bluestone R, Barnett EV, Landau JW. Studies on lymphocyte and monocyte function in chronic mucocutaneous candidiasis. Clin Exp Immunol. 1971;8:37–43. [PMC free article] [PubMed] [Google Scholar]
  • 62.Levy RL, Bach ML, Huang S, Bach FH, Hong R, Ammann AJ, Bortin M, Kay HE. Thymic transplantation in a case of chronic mucocutaneous candidiasis. Lancet. 1971;2:898–900. doi: 10.1016/s0140-6736(71)92503-7. [DOI] [PubMed] [Google Scholar]
  • 63.Lehner T, Wilton JM, Ivanyi L. Immunodeficiencies in chronic muco-cutaneous candidosis. Immunology. 1972;22:775–787. [PMC free article] [PubMed] [Google Scholar]
  • 64.Valdimarsson H, Moss PD, Holt PJ, H OJ. Treatment of chronic mucocutaneous candidiasis with leucocytes from HL-A compatible sibling. Lancet. 1972;1:469–472. doi: 10.1016/s0140-6736(72)90123-7. [DOI] [PubMed] [Google Scholar]
  • 65.Higgs JM, Wells RS. Chronic muco-cutaneous candidiasis: associated abnormalities of iron metabolism. Br. J. Derm. 1972;8(Supplement):88–101. [Google Scholar]
  • 66.Kirkpatrick CH, Rich RR, Graw RG, Jr., Smith TK, Mickenberg I, Rogentine GN. Treatment of chronic mucocutaneous moniliasis by immunologic reconstitution. Clin Exp Immunol. 1971;9:733–748. [PMC free article] [PubMed] [Google Scholar]
  • 67.Canales L, Middlemas RO, 3rd, Louro JM, South MA. Immunological observations in chronic mucocutaneous candidiasis. Lancet. 1969;2:567–571. doi: 10.1016/s0140-6736(69)90264-5. [DOI] [PubMed] [Google Scholar]
  • 68.Wells RS. Chronic oral candidiasis (autosomal recessive inheritance) (three cases) Proc R Soc Med. 1970;63:890–891. [PMC free article] [PubMed] [Google Scholar]
  • 69.Eyerich K, Foerster S, Rombold S, Seidl HP, Behrendt H, Hofmann H, Ring J, Traidl-Hoffmann C. Patients with chronic mucocutaneous candidiasis exhibit reduced production of Th17-associated cytokines IL-17 and IL-22. J Invest Dermatol. 2008;128:2640–2645. doi: 10.1038/jid.2008.139. [DOI] [PubMed] [Google Scholar]
  • 70.Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim HK, Migaud M, Israel L, Chrabieh M, Audry M, Gumbleton M, Toulon A, Bodemer C, El-Baghdadi J, Whitters M, Paradis T, Brooks J, Collins M, Wolfman NM, Al-Muhsen S, Galicchio M, Abel L, Picard C, Casanova JL. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011;332:65–68. doi: 10.1126/science.1200439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Buckley RH, Lucas ZJ, Hattler BG, Jr., Zmijewski CM, Amos DB. Defective cellular immunity associated with chronic mucocutaneous moniliasis and recurrent staphylococcal botryomycosis: immunological reconstitution by allogeneic bone marrow. Clin Exp Immunol. 1968;3:153–169. [PMC free article] [PubMed] [Google Scholar]
  • 72.Bader O, Weig MS, Gross U, Schon MP, Mempel M, Buhl T. Photo quiz. A 32-year-old man with ulcerative mucositis, skin lesions, and nail dystrophy. Chronic mucocutaneous candidiasis by multidrug-resistant Candida albicans. Clin Infect Dis. 2012;54:972, 1035–1036. doi: 10.1093/cid/cir958. [DOI] [PubMed] [Google Scholar]
  • 73.Smeekens SP, Plantinga TS, van de Veerdonk FL, Heinhuis B, Hoischen A, Joosten LA, Arkwright PD, Gennery A, Kullberg BJ, Veltman JA, Lilic D, van der Meer JW, Netea MG. STAT1 hyperphosphorylation and defective IL12R/IL23R signaling underlie defective immunity in autosomal dominant chronic mucocutaneous candidiasis. PLoS One. 2011;6:e29248. doi: 10.1371/journal.pone.0029248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.van de Veerdonk FL, Plantinga TS, Hoischen A, Smeekens SP, Joosten LA, Gilissen C, Arts P, Rosentul DC, Carmichael AJ, Smitsvan der Graaf CA, Kullberg BJ, van der Meer JW, Lilic D, Veltman JA, Netea MG. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med. 2011;365:54–61. doi: 10.1056/NEJMoa1100102. [DOI] [PubMed] [Google Scholar]
  • 75.Liu L, Okada S, Kong XF, Kreins AY, Cypowyj S, Abhyankar A, Toubiana J, Itan Y, Audry M, Nitschke P, Masson C, Toth B, Flatot J, Migaud M, Chrabieh M, Kochetkov T, Bolze A, Borghesi A, Toulon A, Hiller J, Eyerich S, Eyerich K, Gulacsy V, Chernyshova L, Chernyshov V, Bondarenko A, Grimaldo RM, Blancas-Galicia L, Beas IM, Roesler J, Magdorf K, Engelhard D, Thumerelle C, Burgel PR, Hoernes M, Drexel B, Seger R, Kusuma T, Jansson AF, Sawalle-Belohradsky J, Belohradsky B, Jouanguy E, Bustamante J, Bue M, Karin N, Wildbaum G, Bodemer C, Lortholary O, Fischer A, Blanche S, Al-Muhsen S, Reichenbach J, Kobayashi M, Rosales FE, Lozano CT, Kilic SS, Oleastro M, Etzioni A, Traidl-Hoffmann C, Renner ED, Abel L, Picard C, Marodi L, Boisson-Dupuis S, Puel A, Casanova JL. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208:1635–1648. doi: 10.1084/jem.20110958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Toth B, Mehes L, Tasko S, Szalai Z, Tulassay Z, Cypowyj S, Casanova JL, Puel A, Marodi L. Herpes in STAT1 mutation. Lancet. 2012;379:2500. doi: 10.1016/S0140-6736(12)60365-1. [DOI] [PubMed] [Google Scholar]
  • 77.Takezaki S, Yamada M, Kato M, Park MJ, Maruyama K, Yamazaki Y, Chida N, Ohara O, Kobayashi I, Ariga T. Chronic Mucocutaneous Candidiasis Caused by a Gain-of-Function Mutation in the STAT1 DNA-Binding Domain. J Immunol. 2012 doi: 10.4049/jimmunol.1200926. [DOI] [PubMed] [Google Scholar]
  • 78.Averbuch D, Chapgier A, Boisson-Dupuis S, Casanova JL, Engelhard D. The Clinical Spectrum of Patients with Deficiency of Signal Transducer and Activator of Transcription-1. Pediatr Infect Dis J. 2011;30:352–355. doi: 10.1097/INF.0b013e3181fdff4a. [DOI] [PubMed] [Google Scholar]
  • 79.Chapgier A, Boisson-Dupuis S, Jouanguy E, Vogt G, Feinberg J, Prochnicka-Chalufour A, Casrouge A, Yang K, Soudais C, Fieschi C, Santos OF, Bustamante J, Picard C, de Beaucoudrey L, Emile JF, Arkwright PD, Schreiber RD, Rolinck-Werninghaus C, Rosen-Wolff A, Magdorf K, Roesler J, Casanova JL. Novel STAT1 alleles in otherwise healthy patients with mycobacterial disease. PLoS Genet. 2006;2:e131. doi: 10.1371/journal.pgen.0020131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Chapgier A, Kong XF, Boisson-Dupuis S, Jouanguy E, Averbuch D, Feinberg J, Zhang SY, Bustamante J, Vogt G, Lejeune J, Mayola E, de Beaucoudrey L, Abel L, Engelhard D, Casanova JL. A partial form of recessive STAT1 deficiency in humans. J Clin Invest. 2009;119:1502–1514. doi: 10.1172/JCI37083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Dupuis S, Dargemont C, Fieschi C, Thomassin N, Rosenzweig S, Harris J, Holland SM, Schreiber RD, Casanova JL. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science. 2001;293:300–303. doi: 10.1126/science.1061154. [DOI] [PubMed] [Google Scholar]
  • 82.Dupuis S, Jouanguy E, Al-Hajjar S, Fieschi C, Al-Mohsen IZ, Al-Jumaah S, Yang K, Chapgier A, Eidenschenk C, Eid P, Al Ghonaium A, Tufenkeji H, Frayha H, Al-Gazlan S, Al-Rayes H, Schreiber RD, Gresser I, Casanova JL. Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat Genet. 2003;33:388–391. doi: 10.1038/ng1097. [DOI] [PubMed] [Google Scholar]
  • 83.Kong XF, Ciancanelli M, Al-Hajjar S, Alsina L, Zumwalt T, Bustamante J, Feinberg J, Audry M, Prando C, Bryant V, Kreins A, Bogunovic D, Halwani R, Zhang XX, Abel L, Chaussabel D, Al-Muhsen S, Casanova JL, Boisson-Dupuis S. A novel form of human STAT1 deficiency impairing early but not late responses to interferons. Blood. 2010;116:5895–5906. doi: 10.1182/blood-2010-04-280586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Kristensen IA, Veirum JE, Moller BK, Christiansen M. Novel STAT1 Alleles in a Patient with Impaired Resistance to Mycobacteria. J Clin Immunol. 2010 doi: 10.1007/s10875-010-9480-8. [DOI] [PubMed] [Google Scholar]
  • 85.Boisson-Dupuis S, Kong XF, Okada S, Cypowyj S, Puel A, Abel L, Casanova JL. Inborn errors of human STAT1: allelic heterogeneity governs the diversity of immunological and infectious phenotypes. Curr Opin Immunol. 2012 doi: 10.1016/j.coi.2012.04.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Yoshimura T, Takeda A, Hamano S, Miyazaki Y, Kinjyo I, Ishibashi T, Yoshimura A, Yoshida H. Two-sided roles of IL-27: induction of Th1 differentiation on naive CD4+ T cells versus suppression of proinflammatory cytokine production including IL-23-induced IL-17 on activated CD4+ T cells partially through STAT3-dependent mechanism. J Immunol. 2006;177:5377–5385. doi: 10.4049/jimmunol.177.8.5377. [DOI] [PubMed] [Google Scholar]
  • 87.Villarino AV, Gallo E, Abbas AK. STAT1-activating cytokines limit Th17 responses through both T-bet-dependent and -independent mechanisms. J Immunol. 2010;185:6461–6471. doi: 10.4049/jimmunol.1001343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Tanaka K, Ichiyama K, Hashimoto M, Yoshida H, Takimoto T, Takaesu G, Torisu T, Hanada T, Yasukawa H, Fukuyama S, Inoue H, Nakanishi Y, Kobayashi T, Yoshimura A. Loss of suppressor of cytokine signaling 1 in helper T cells leads to defective Th17 differentiation by enhancing antagonistic effects of IFN-gamma on STAT3 and Smads. J Immunol. 2008;180:3746–3756. doi: 10.4049/jimmunol.180.6.3746. [DOI] [PubMed] [Google Scholar]
  • 89.Stumhofer JS, Laurence A, Wilson EH, Huang E, Tato CM, Johnson LM, Villarino AV, Huang Q, Yoshimura A, Sehy D, Saris CJ, O’Shea JJ, Hennighausen L, Ernst M, Hunter CA. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol. 2006;7:937–945. doi: 10.1038/ni1376. [DOI] [PubMed] [Google Scholar]
  • 90.Ramgolam VS, Sha Y, Jin J, Zhang X, Markovic-Plese S. IFN-beta inhibits human Th17 cell differentiation. J Immunol. 2009;183:5418–5427. doi: 10.4049/jimmunol.0803227. [DOI] [PubMed] [Google Scholar]
  • 91.Liu H, Rohowsky-Kochan C. Interleukin-27-Mediated Suppression of Human Th17 Cells Is Associated with Activation of STAT1 and Suppressor of Cytokine Signaling Protein 1. J Interferon Cytokine Res. 2011 doi: 10.1089/jir.2010.0115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Guzzo C, Che Mat NF, Gee K. Interleukin-27 induces a STAT1/3- and NF-kappaB-dependent proinflammatory cytokine profile in human monocytes. J Biol Chem. 2010;285:24404–24411. doi: 10.1074/jbc.M110.112599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 93.Feng G, Gao W, Strom TB, Oukka M, Francis RS, Wood KJ, Bushell A. Exogenous IFN-gamma ex vivo shapes the alloreactive T-cell repertoire by inhibition of Th17 responses and generation of functional Foxp3+ regulatory T cells. Eur J Immunol. 2008;38:2512–2527. doi: 10.1002/eji.200838411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.El-behi M, Ciric B, Yu S, Zhang GX, Fitzgerald DC, Rostami A. Differential effect of IL-27 on developing versus committed Th17 cells. J Immunol. 2009;183:4957–4967. doi: 10.4049/jimmunol.0900735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Diveu C, McGeachy MJ, Boniface K, Stumhofer JS, Sathe M, Joyce-Shaikh B, Chen Y, Tato CM, McClanahan TK, de Waal Malefyt R, Hunter CA, Cua DJ, Kastelein RA. IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells. J Immunol. 2009;182:5748–5756. doi: 10.4049/jimmunol.0801162. [DOI] [PubMed] [Google Scholar]
  • 96.Crabe S, Guay-Giroux A, Tormo AJ, Duluc D, Lissilaa R, Guilhot F, Mavoungou-Bigouagou U, Lefouili F, Cognet I, Ferlin W, Elson G, Jeannin P, Gauchat JF. The IL-27 p28 subunit binds cytokine-like factor 1 to form a cytokine regulating NK and T cell activities requiring IL-6R for signaling. J Immunol. 2009;183:7692–7702. doi: 10.4049/jimmunol.0901464. [DOI] [PubMed] [Google Scholar]
  • 97.Chen M, Chen G, Nie H, Zhang X, Niu X, Zang YC, Skinner SM, Zhang JZ, Killian JM, Hong J. Regulatory effects of IFN-beta on production of osteopontin and IL-17 by CD4+ T Cells in MS. Eur J Immunol. 2009;39:2525–2536. doi: 10.1002/eji.200838879. [DOI] [PubMed] [Google Scholar]
  • 98.Batten M, Li J, Yi S, Kljavin NM, Danilenko DM, Lucas S, Lee J, de Sauvage FJ, Ghilardi N. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol. 2006;7:929–936. doi: 10.1038/ni1375. [DOI] [PubMed] [Google Scholar]
  • 99.Amadi-Obi A, Yu CR, Liu X, Mahdi RM, Clarke GL, Nussenblatt RB, Gery I, Lee YS, Egwuagu CE. TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat Med. 2007;13:711–718. doi: 10.1038/nm1585. [DOI] [PubMed] [Google Scholar]
  • 100.Spolski R, Leonard WJ. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol. 2008;26:57–79. doi: 10.1146/annurev.immunol.26.021607.090316. [DOI] [PubMed] [Google Scholar]
  • 101.Kishimoto T. Interleukin-6: from basic science to medicine--40 years in immunology. Annu Rev Immunol. 2005;23:1–21. doi: 10.1146/annurev.immunol.23.021704.115806. [DOI] [PubMed] [Google Scholar]
  • 102.Quintana-Murci L, Alcais A, Abel L, Casanova JL. Immunology in natura: clinical, epidemiological and evolutionary genetics of infectious diseases. Nat Immunol. 2007;8:1165–1171. doi: 10.1038/ni1535. [DOI] [PubMed] [Google Scholar]
  • 103.Casanova JL, Abel L. The human model: a genetic dissection of immunity to infection in natural conditions. Nat Rev Immunol. 2004;4:55–66. doi: 10.1038/nri1264. [DOI] [PubMed] [Google Scholar]
  • 104.Alcais A, Quintana-Murci L, Thaler DS, Schurr E, Abel L, Casanova JL. Life-threatening infectious diseases of childhood: single-gene inborn errors of immunity? Ann N Y Acad Sci. 2010;1214:18–33. doi: 10.1111/j.1749-6632.2010.05834.x. [DOI] [PubMed] [Google Scholar]
  • 105.Alcais A, Abel L, Casanova JL. Human genetics of infectious diseases: between proof of principle and paradigm. J Clin Invest. 2009;119:2506–2514. doi: 10.1172/JCI38111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Casanova JL, Abel L. Primary immunodeficiencies: a field in its infancy. Science. 2007;317:617–619. doi: 10.1126/science.1142963. [DOI] [PubMed] [Google Scholar]
  • 107.Casanova JL, Abel L. Inborn errors of immunity to infection: the rule rather than the exception. J Exp Med. 2005;202:197–201. doi: 10.1084/jem.20050854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108.Casanova JL, Abel L. Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol. 2002;20:581–620. doi: 10.1146/annurev.immunol.20.081501.125851. [DOI] [PubMed] [Google Scholar]
  • 109.Fieschi C, Casanova JL. The role of interleukin-12 in human infectious diseases: only a faint signature. Eur J Immunol. 2003;33:1461–1464. doi: 10.1002/eji.200324038. [DOI] [PubMed] [Google Scholar]
  • 110.Dorman SE, Picard C, Lammas D, Heyne K, van Dissel JT, Baretto R, Rosenzweig SD, Newport M, Levin M, Roesler J, Kumararatne D, Casanova JL, Holland SM. Clinical features of dominant and recessive interferon gamma receptor 1 deficiencies. Lancet. 2004;364:2113–2121. doi: 10.1016/S0140-6736(04)17552-1. [DOI] [PubMed] [Google Scholar]
  • 111.Martin DA, Towne JE, Kricorian G, Klekotka P, Gudjonsson JE, Krueger JG, Russell CB. The Emerging Role of IL-17 in the Pathogenesis of Psoriasis: Preclinical and Clinical Findings. J Invest Dermatol. 2012 doi: 10.1038/jid.2012.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Maddur MS, Miossec P, Kaveri SV, Bayry J. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol. 2012;181:8–18. doi: 10.1016/j.ajpath.2012.03.044. [DOI] [PubMed] [Google Scholar]
  • 113.Shahar E, Kriboy N, Pollack S. White cell enhancement in the treatment of severe candidosis. Lancet. 1995;346:974–975. doi: 10.1016/s0140-6736(95)91599-0. [DOI] [PubMed] [Google Scholar]
  • 114.Leonardi C, Matheson R, Zachariae C, Cameron G, Li L, Edson-Heredia E, Braun D, Banerjee S. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N Engl J Med. 2012;366:1190–1199. doi: 10.1056/NEJMoa1109997. [DOI] [PubMed] [Google Scholar]
  • 115.Garber K. Anti-IL-17 mAbs herald new options in psoriasis. Nat Biotechnol. 2012;30:475–477. doi: 10.1038/nbt0612-475. [DOI] [PubMed] [Google Scholar]
  • 116.Xu S, Han Y, Xu X, Bao Y, Zhang M, Cao X. IL-17A-producing gammadeltaT cells promote CTL responses against Listeria monocytogenes infection by enhancing dendritic cell cross-presentation. J Immunol. 2010;185:5879–5887. doi: 10.4049/jimmunol.1001763. [DOI] [PubMed] [Google Scholar]
  • 117.Songhet P, Barthel M, Rohn TA, Van Maele L, Cayet D, Sirard JC, Bachmann M, Kopf M, Hardt WD. IL-17A/F-signaling does not contribute to the initial phase of mucosal inflammation triggered by S. Typhimurium. PLoS One. 2010;5:e13804. doi: 10.1371/journal.pone.0013804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Mayuzumi H, Inagaki-Ohara K, Uyttenhove C, Okamoto Y, Matsuzaki G. Interleukin-17A is required to suppress invasion of Salmonella enterica serovar Typhimurium to enteric mucosa. Immunology. 2010;131:377–385. doi: 10.1111/j.1365-2567.2010.03310.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Scurlock AM, Frazer LC, Andrews CW, Jr., O’Connell CM, Foote IP, Bailey SL, Chandra-Kuntal K, Kolls JK, Darville T. Interleukin-17 contributes to generation of Th1 immunity and neutrophil recruitment during Chlamydia muridarum genital tract infection but is not required for macrophage influx or normal resolution of infection. Infect Immun. 2011;79:1349–1362. doi: 10.1128/IAI.00984-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Breslow JM, Meissler JJ, Jr., Hartzell RR, Spence PB, Truant A, Gaughan J, Eisenstein TK. Innate immune responses to systemic Acinetobacter baumannii infection in mice: neutrophils, but not interleukin-17, mediate host resistance. Infect Immun. 2011;79:3317–3327. doi: 10.1128/IAI.00069-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 121.Wozniak KL, Hardison SE, Kolls JK, Wormley FL. Role of IL-17A on resolution of pulmonary C. neoformans infection. PLoS One. 2011;6:e17204. doi: 10.1371/journal.pone.0017204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Rutitzky LI, Stadecker MJ. Exacerbated egg-induced immunopathology in murine Schistosoma mansoni infection is primarily mediated by IL-17 and restrained by IFN-gamma. Eur J Immunol. 2011;41:2677–2687. doi: 10.1002/eji.201041327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Fan Y, Weifeng W, Yuluan Y, Qing K, Yu P, Yanlan H. Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of coxsackievirus b3-induced viral myocarditis reduces myocardium inflammation. Virol J. 2011;8:17. doi: 10.1186/1743-422X-8-17. [DOI] [PMC free article] [PubMed] [Google Scholar]

RESOURCES