Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1979 May;63(5):985–997. doi: 10.1172/JCI109399

An Extrarenal Role for Parathyroid Hormone in the Disposal of Acute Acid Loads in Rats and Dogs

Donald S Fraley 1, Sheldon Adler 1
PMCID: PMC372040  PMID: 36406

Abstract

Acid infusion studies were performed in nephrectomized rats and dogs with either intact parathyroid glands (intact) or after thyroparathyroidectomy (thyroparathyroidectomized [TPTX]) to determine the role of parathyroid hormone (PTH) in extrarenal disposal and buffering of acutely administered acid. 29 intact rats given 5 mM/kg HCl and 6 intact dogs given 7 mM/kg HCl developed severe metabolic acidosis but all survived. However, each of 12 TPTX rats and 4 TPTX dogs given the same acid loads died. Intact rats and dogs buffered 39 and 50% of administered acid extracellularly, respectively, whereas extracellular buffering of administered acid was 97 and 78% in TPTX rats and dogs, respectively. 17 TPTX rats and 6 TPTX dogs given synthetic PTH 2 h before acid infusion survived. The blood bicarbonate and extracellular buffering in these animals, measured 2 h after acid infusion, was similar to intact animals. Changes in liver, heart, and skeletal muscle pH determined from [14C]5,5-dimethyl-2,4 oxazolidinedione distribution seemed insufficient to account for the increased cell buffering of PTH-replaced animals. Indeed, muscle pH in TPTX dogs given PTH and acid was only 0.06 pH units lower than in control dogs given no acid, suggesting that another tissue, presumably bone, was the target for PTH-mediated increased cell buffering. This conclusion was supported by the observation that PTH did not alter the pH of intact rat diaphragms in vitro. These results indicate that PTH is necessary for the optimal buffering of large, acute acid loads presumably by increasing bone buffering.

Full text

PDF
985

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADLER S., ROY A., RELMAN A. S. INTRACELLULAR ACID-BASE REGULATION. I. THE RESPONSE OF MUSCLE CELLS TO CHANGES IN CO2 TENSION OR EXTRACELLULAR BICARBONATE CONCENTRATION. J Clin Invest. 1965 Jan;44:8–20. doi: 10.1172/JCI105129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adler S. The role of pH, PCO2, and bicarbonate in regulating rat diaphragm citrate content. J Clin Invest. 1970 Sep;49(9):1647–1655. doi: 10.1172/JCI106382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BERGSTROM W. H. The relationship of sodium and potassium to carbonate in bone. J Biol Chem. 1954 Feb;206(2):711–715. [PubMed] [Google Scholar]
  4. BERGSTROM W. H., WALLACE W. M. Bone as a sodium and potassium reservoir. J Clin Invest. 1954 Jun;33(6):867–873. doi: 10.1172/JCI102959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BERNSTEIN R. E. Potassium and sodium balance in mammalian red cells. Science. 1954 Sep 17;120(3116):459–460. doi: 10.1126/science.120.3116.459. [DOI] [PubMed] [Google Scholar]
  6. Bettice J. A., Gamble J. L., Jr Skeletal buffering of acute metabolic acidosis. Am J Physiol. 1975 Dec;229(6):1618–1624. doi: 10.1152/ajplegacy.1975.229.6.1618. [DOI] [PubMed] [Google Scholar]
  7. Burnell J. M. Changes in bone sodium and carbonate in metabolic acidosis and alkalosis in the dog. J Clin Invest. 1971 Feb;50(2):327–331. doi: 10.1172/JCI106499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chase L. R., Fedak S. A., Aurbach G. D. Activation of skeletal adenyl cyclase by parathyroid hormone in vitro. Endocrinology. 1969 Apr;84(4):761–768. doi: 10.1210/endo-84-4-761. [DOI] [PubMed] [Google Scholar]
  9. Cohen R. D., Iles R. A., Barnett D., Howell M. E., Strunin J. The effect of changes in lactate uptake on the intracellular pH of the perfused rat liver. Clin Sci. 1971 Aug;41(2):159–170. doi: 10.1042/cs0410159. [DOI] [PubMed] [Google Scholar]
  10. Cohen R. D., Iles R. A. Intracellular pH: measurement, control, and metabolic interrelationships. CRC Crit Rev Clin Lab Sci. 1975 Sep;6(2):101–143. doi: 10.3109/10408367509151567. [DOI] [PubMed] [Google Scholar]
  11. Epel D. The program of fertilization. Sci Am. 1977 Nov;237(5):128–138. doi: 10.1038/scientificamerican1177-128. [DOI] [PubMed] [Google Scholar]
  12. GIEBISCH G., BERGER L., PITTS R. F. The extrarenal response to acute acid-base disturbances of respiratory origin. J Clin Invest. 1955 Feb;34(2):231–245. doi: 10.1172/JCI103076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GLYNN I. M. Sodium and potassium movements in human red cells. J Physiol. 1956 Nov 28;134(2):278–310. doi: 10.1113/jphysiol.1956.sp005643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. GOODMAN A. D., LEMANN J., Jr, LENNON E. J., RELMAN A. S. PRODUCTION, EXCRETION, AND NET BALANCE OF FIXED ACID IN PATIENTS WITH RENAL ACIDOSIS. J Clin Invest. 1965 Apr;44:495–506. doi: 10.1172/JCI105163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Garella S., Dana C. L., Chazan J. A. Severity of metabolic acidosis as a determinant of bicarbonate requirements. N Engl J Med. 1973 Jul 19;289(3):121–126. doi: 10.1056/NEJM197307192890303. [DOI] [PubMed] [Google Scholar]
  16. HIATT H. H., THOMPSON D. D. The effects of parathyroid extract on renal function in man. J Clin Invest. 1957 Apr;36(4):557–565. doi: 10.1172/JCI103454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hellman D. E., Au W. Y., Bartter F. C. Evidence for a direct effect of parathyroid hormone on urinary acidification. Am J Physiol. 1965 Sep;209(3):643–650. doi: 10.1152/ajplegacy.1965.209.3.643. [DOI] [PubMed] [Google Scholar]
  18. JOHNSTON C. C., Jr, DEISS W. P., Jr, FRENCH R. S. EFFECTS OF CHANGES IN PARATHYROID STATUS AND CALCIUM EQUILIBRIUM ON BONE MATRIX METABOLISM. Proc Soc Exp Biol Med. 1965 Feb;118:551–554. doi: 10.3181/00379727-118-29902. [DOI] [PubMed] [Google Scholar]
  19. KLEEMAN C. R., BERNSTEIN D., ROCKNEY R., DOWLING J. T., MAXWELL M. H. Studies on the renal clearance of diffusible calcium and the role of the parathyroid glands in its regulation. Yale J Biol Med. 1961 Aug;34:1–30. [PMC free article] [PubMed] [Google Scholar]
  20. LEVITT M. F., TURNER L. B., SWEET A. Y., PANDIRI D. The response of bone, connective tissue, and muscle to acute acidosis. J Clin Invest. 1956 Jan;35(1):98–105. doi: 10.1172/JCI103256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morris R. C., Jr, McSherry E., Sebastian A. Modulation of experimental renal dysfunction of hereditary fructose intolerance by circulating parathyroid hormone. Proc Natl Acad Sci U S A. 1971 Jan;68(1):132–135. doi: 10.1073/pnas.68.1.132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. RELMAN A. S., LENNON E. J., LEMANN J., Jr Endogenous production of fixed acid and the measurement of the net balance of acid in normal subjects. J Clin Invest. 1961 Sep;40:1621–1630. doi: 10.1172/JCI104384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Reiss E., Canterbury J. M., Kanter A. Circulating parathyroid hormone concentration in chronic renal insufficiency. Arch Intern Med. 1969 Oct;124(4):417–422. [PubMed] [Google Scholar]
  24. Roos A. Intracellular pH and buffering power of rat muscle. Am J Physiol. 1971 Jul;221(1):182–188. doi: 10.1152/ajplegacy.1971.221.1.182. [DOI] [PubMed] [Google Scholar]
  25. SCHLOERB P. R., GRANTHAM J. J. INTRACELLULAR PH MEASUREMENT WITH TRITIATED WATER, CARBON-14 LABELED 5,5-DIMETHYL-2, 4-OXAZOLIDINEDIONE, AND CHLORIDE-36. J Lab Clin Med. 1965 Apr;65:669–676. [PubMed] [Google Scholar]
  26. SCHWARTZ W. B., JENSON R. L., RELMAN A. S. The disposition of acid administered to sodium-depleted subjects: the renal response and the role of the whole body buffers. J Clin Invest. 1954 Apr;33(4):587–597. doi: 10.1172/JCI102930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. SCHWARTZ W. B., ORNING K. J., PORTER R. The internal distribution of hydrogen ions with varying degrees of metabolic acidosis. J Clin Invest. 1957 Mar;36(3):373–382. doi: 10.1172/JCI103433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. SWAN R. C., PITTS R. F. Neutralization of infused acid by nephrectomized dogs. J Clin Invest. 1955 Feb;34(2):205–212. doi: 10.1172/JCI103073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. TOBIN R. B. Plasma, extracellular and muscle electrolyte responses to acute metabolic acidosis. Am J Physiol. 1956 Jul;186(1):131–138. doi: 10.1152/ajplegacy.1956.186.1.131. [DOI] [PubMed] [Google Scholar]
  30. WATERS W. C., 3rd, HALL J. D., SCHWARTZ W. B. SPONTANEOUS LACTIC ACIDOSIS. THE NATURE OF THE ACID-BASE DISTURBANCE AND CONSIDERATIONS IN DIAGNOSIS AND MANAGEMENT. Am J Med. 1963 Dec;35:781–793. doi: 10.1016/0002-9343(63)90240-7. [DOI] [PubMed] [Google Scholar]
  31. WRONG O., DAVIES H. E. The excretion of acid in renal disease. Q J Med. 1959 Apr;28(110):259–313. [PubMed] [Google Scholar]
  32. Wachman A., Bernstein D. S. Diet and osteoporosis. Lancet. 1968 May 4;1(7549):958–959. doi: 10.1016/s0140-6736(68)90908-2. [DOI] [PubMed] [Google Scholar]
  33. Waddell W. J., Bates R. G. Intracellular pH. Physiol Rev. 1969 Apr;49(2):285–329. doi: 10.1152/physrev.1969.49.2.285. [DOI] [PubMed] [Google Scholar]
  34. Waite L. C., Volkert W. A., Kenny A. D. Inhibition of bone resorption by acetazolamide in the rat. Endocrinology. 1970 Dec;87(6):1129–1139. doi: 10.1210/endo-87-6-1129. [DOI] [PubMed] [Google Scholar]
  35. Wills M. R. Fundamental physiological role of parathyroid hormone in acid-base homoeostasis. Lancet. 1970 Oct 17;2(7677):802–804. doi: 10.1016/s0140-6736(70)91463-7. [DOI] [PubMed] [Google Scholar]
  36. YOSHIMURA H., FUJIMOTO M., OKUMURA O., SUGIMOTO J., KUWADA T. Three-step-regulation of acid-base balance in body fluid after acid load. Jpn J Physiol. 1961 Apr 15;11:109–125. doi: 10.2170/jjphysiol.11.109. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES