Abstract
Chronic clofibrate intake, on occasion, results in a muscular syndrome in man. We have investigated the effects of chronic clofibrate administration in rats on the electrical activity of a skeletal muscle (gastrocnemius), its composition, and its oxidation of palmitate and glucose. These effects have been compared with those in the liver. Clofibrate administration altered electromyographic pattern of gastrocnemius muscle (characteristic of myotonia), decreased its protein content, and impaired its oxidation of palmitate and glucose. These effects were quite different in the liver, because clofibrate intake increased the liver protein content and oxidation of palmitate without affecting the oxidation of glucose by this tissue. Whereas chronic clofibrate administration markedly increased the concentration of carnitine as well as the activity of mitochondrial carnitine palmitoyl-transferase in the liver, it decreased the activity of this enzyme in the gastrocnemius muscle without a significant effect on carnitine concentration in this tissue. Greater in vivo fatty acid oxidation by clofibratefed than by control rats was evidenced (a) by greater rate of production of 14CO2 in the expired air after injection of a tracer dose of [14C]palmitate and (b) by greater plasma and tissue concentrations of ketone bodies. We conclude that (a) paradoxical effects of clofibrate on fatty acid oxidation by the liver and skeletal muscle are related to changes in the activity of carnitine acyltransferase, (b) an increase in hepatic fatty acid oxidation may contribute to hypolipidemic effect of clofibrate, and (c) impairment of fatty acid and glucose oxidation by the muscle may be a factor in the development of muscular syndrome in patients receiving clofibrate treatment.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adrian R. H., Bryant S. H. On the repetitive discharge in myotonic muscle fibres. J Physiol. 1974 Jul;240(2):505–515. doi: 10.1113/jphysiol.1974.sp010620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aguilar-Parada E., Eisentraut A. M., Unger R. H. Pancreatic glucagon secretion in normal and diabetic subjects. Am J Med Sci. 1969 Jun;257(6):415–419. doi: 10.1097/00000441-196906000-00008. [DOI] [PubMed] [Google Scholar]
- Anthony L. E., Schmucker D. L., Mooney J. S., Jones A. L. A quantitative analysis of fine structure and drug metabolism in livers of clofibrate-treated young adult and retired breeder rats. J Lipid Res. 1978 Feb;19(2):154–165. [PubMed] [Google Scholar]
- Arnold A., Powers L. G., McAuliff J. P. Triparanol-induced desmoterol accumulation in clofibrate-effected hypocholesterolemia. Atherosclerosis. 1974 Sep-Oct;20(2):401–404. doi: 10.1016/0021-9150(74)90021-5. [DOI] [PubMed] [Google Scholar]
- BOWMAN R. E., WOLF R. C. A rapid and specific ultramicro method for total serum cholesterol. Clin Chem. 1962 May-Jun;8:302–309. [PubMed] [Google Scholar]
- Bieber L. L., Abraham T., Helmrath T. A rapid spectrophotometric assay for carnitine palmitoyltransferase. Anal Biochem. 1972 Dec;50(2):509–518. doi: 10.1016/0003-2697(72)90061-9. [DOI] [PubMed] [Google Scholar]
- Bridgman J. F., Rosen S. M., Thorp J. M. Complications during clofibrate treatment of nephrotic-syndrome hyperlipoproteinaemia. Lancet. 1972 Sep 9;2(7776):506–509. doi: 10.1016/s0140-6736(72)91905-8. [DOI] [PubMed] [Google Scholar]
- CARROLL N. V., LONGLEY R. W., ROE J. H. The determination of glycogen in liver and muscle by use of anthrone reagent. J Biol Chem. 1956 Jun;220(2):583–593. [PubMed] [Google Scholar]
- Cederblad G., Lindstedt S. A method for the determination of carnitine in the picomole range. Clin Chim Acta. 1972 Mar;37:235–243. doi: 10.1016/0009-8981(72)90438-x. [DOI] [PubMed] [Google Scholar]
- Eaton R. P. Effect of clofibrate on arginine-induced insulin and glucagon secretion. Metabolism. 1973 Jun;22(6):763–767. doi: 10.1016/0026-0495(73)90045-0. [DOI] [PubMed] [Google Scholar]
- Eaton R. P., Schade D. S. Effect of clofibrate on arginine-stimulated glucagon and insulin secretion in man. Metabolism. 1974 May;23(5):445–454. doi: 10.1016/0026-0495(74)90092-4. [DOI] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- FRITZ I. B. Factors influencing the rates of long-chain fatty acid oxidation and synthesis in mammalian systems. Physiol Rev. 1961 Jan;41:52–129. doi: 10.1152/physrev.1961.41.1.52. [DOI] [PubMed] [Google Scholar]
- Fedele D., Tiengo A., Muggeo M., Nosadini R., Crepaldi G. Effects of clofibrate treatment on arginine-induced insulin secretion in endogenous hypertriglyceridemia. Atherosclerosis. 1976 Nov-Dec;25(2-3):191–198. doi: 10.1016/0021-9150(76)90025-3. [DOI] [PubMed] [Google Scholar]
- Harano Y., Kowal J., Yamazaki R., Lavine L., Miller M. Carnitine palmitoyltransferase activities (1 and 2) and the rate of palmitate oxidation in liver mitochondria from diabetic rats. Arch Biochem Biophys. 1972 Dec;153(2):426–437. doi: 10.1016/0003-9861(72)90360-8. [DOI] [PubMed] [Google Scholar]
- Havel R. J., Kane J. P. Drugs and lipid metabolism. Annu Rev Pharmacol. 1973;13:287–308. doi: 10.1146/annurev.pa.13.040173.001443. [DOI] [PubMed] [Google Scholar]
- Herbert V., Lau K. S., Gottlieb C. W., Bleicher S. J. Coated charcoal immunoassay of insulin. J Clin Endocrinol Metab. 1965 Oct;25(10):1375–1384. doi: 10.1210/jcem-25-10-1375. [DOI] [PubMed] [Google Scholar]
- Hostetler K. Y., Hoppel C. L., Romine J. S., Sipe J. C., Gross S. R., Higginbottom P. A. Partial deficiency of muscle carnitine palmitoyltransferase with normal ketone production. N Engl J Med. 1978 Mar 9;298(10):553–557. doi: 10.1056/NEJM197803092981007. [DOI] [PubMed] [Google Scholar]
- Katsilambros N., Braaten J., Ferguson B. D., Bradley R. F. Muscular syndrome after clofibrate. N Engl J Med. 1972 May 18;286(20):1110–1111. doi: 10.1056/nejm197205182862014. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Langer T., Levy R. I. Acute muscular syndrome associated with administration of clofibrate. N Engl J Med. 1968 Oct 17;279(16):856–858. doi: 10.1056/NEJM196810172791604. [DOI] [PubMed] [Google Scholar]
- Lazarow P. B., De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackerer C. R. Effect of sub-acute administration of clofibrate on the oxidation of fatty acids by liver mitochondria. Biochem Pharmacol. 1977 Dec 1;26(23):2225–2230. doi: 10.1016/0006-2952(77)90283-0. [DOI] [PubMed] [Google Scholar]
- Mannaerts G. P., Thomas J., Debeer L. J., McGarry J. D., Foster D. W. Hepatic fatty acid oxidation and ketogenesis after clofibrate treatment. Biochim Biophys Acta. 1978 May 25;529(2):201–211. doi: 10.1016/0005-2760(78)90063-2. [DOI] [PubMed] [Google Scholar]
- Markwell M. A., Bieber L. L., Tolbert N. E. Differential increase of hepatic peroxisomal, mitochondrial and microsomal carnitine acyltransferases in clofibrate-fed rats. Biochem Pharmacol. 1977 Sep 15;26(18):1697–1702. doi: 10.1016/0006-2952(77)90147-2. [DOI] [PubMed] [Google Scholar]
- McGarry J. D., Foster D. W. Ketogenesis and its regulation. Am J Med. 1976 Jul;61(1):9–13. doi: 10.1016/0002-9343(76)90024-3. [DOI] [PubMed] [Google Scholar]
- McGarry J. D., Takabayashi Y., Foster D. W. The role of malonyl-coa in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes. J Biol Chem. 1978 Nov 25;253(22):8294–8300. [PubMed] [Google Scholar]
- Mishkel M. A., Webb W. F. The mechanisms underlying the hypolipidaemic effects of atromid S, nicotinic acid and benzalecene. I. The metabolism of free fatty acid-albumin complex by the isolated perfused liver. Biochem Pharmacol. 1967 May;16(5):897–905. doi: 10.1016/0006-2952(67)90062-7. [DOI] [PubMed] [Google Scholar]
- Miyazawa S., Sakurai T., Imura M., Hashimoto T. Effects of ethyl p-chlorophenoxyisobutyrate on carbohydrate and fatty acid metabolism in rat liver. J Biochem. 1975 Dec;78(6):1171–1176. doi: 10.1093/oxfordjournals.jbchem.a131013. [DOI] [PubMed] [Google Scholar]
- Paul H. S., Adibi S. A. Assessment of effect of starvation, glucose, fatty acids and hormones on alpha-decarboxylation of leucine in skeletal muscle of rat. J Nutr. 1976 Aug;106(8):1079–1088. doi: 10.1093/jn/106.8.1079. [DOI] [PubMed] [Google Scholar]
- Paul H. S., Adibi S. A. Effect of carnitine on branched-chain amino acid oxidation by liver and skeletal muscle. Am J Physiol. 1978 May;234(5):E494–E499. doi: 10.1152/ajpendo.1978.234.5.E494. [DOI] [PubMed] [Google Scholar]
- Paul H. S., Adibi S. A. Leucine oxidation in diabetes and starvation: effects of ketone bodies on branched-chain amino acid oxidation in vitro. Metabolism. 1978 Feb;27(2):185–200. doi: 10.1016/0026-0495(78)90164-6. [DOI] [PubMed] [Google Scholar]
- Pierides A. M., Alvarez-Ude F., Kerr D. N. Clofibrate-induced muscle damage in patients with chronic renal failure. Lancet. 1975 Dec 27;2(7948):1279–1282. doi: 10.1016/s0140-6736(75)90613-3. [DOI] [PubMed] [Google Scholar]
- Platt D. S., Thorp J. M. Changes in the weight and composition of the liver in the rat, dog and monkey treated with ethyl chlorophenoxyisobutyrate. Biochem Pharmacol. 1966 Jul;15(7):915–925. doi: 10.1016/0006-2952(66)90168-7. [DOI] [PubMed] [Google Scholar]
- Rosalki S. B. An improved procedure for serum creatine phosphokinase determination. J Lab Clin Med. 1967 Apr;69(4):696–705. [PubMed] [Google Scholar]
- Sekowski I., Samuel P. Clofibrate-induced acute muscular syndrome. Am J Cardiol. 1972 Oct;30(5):572–574. doi: 10.1016/0002-9149(72)90053-7. [DOI] [PubMed] [Google Scholar]
- Svoboda D. J., Azarnoff D. L. Response of hepatic microbodies to a hypolipidemic agent, ethyl chlorophenoxyisobutyrate (CPIB). J Cell Biol. 1966 Aug;30(2):442–450. doi: 10.1083/jcb.30.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILLIAMSON D. H., MELLANBY J., KREBS H. A. Enzymic determination of D(-)-beta-hydroxybutyric acid and acetoacetic acid in blood. Biochem J. 1962 Jan;82:90–96. doi: 10.1042/bj0820090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolfe B. M., Kane J. P., Havel R. J., Brewster H. P. Mechanism of the hypolipemic effect of clofibrate in postabsorptive man. J Clin Invest. 1973 Sep;52(9):2146–2159. doi: 10.1172/JCI107399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- d'Costa M. A., Smigura F. C., Kulhay K., Angel A. Effects of clofibrate on lipid synthesis, storage, and plasma Intralipid clearance. J Lab Clin Med. 1977 Nov;90(5):823–836. [PubMed] [Google Scholar]