Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1979 Aug;64(2):440–447. doi: 10.1172/JCI109481

Effects of Carnitine in Ischemic and Fatty Acid Supplemented Swine Hearts

A James Liedtke 1, Stephen H Nellis 1, Gary Copenhaver 1
PMCID: PMC372138  PMID: 457863

Abstract

Free fatty acids (FFA) in excess FFA: albumin molar ratios have been determined to additionally compromise mechanical performance in ischemic hearts. Carnitine, an intracellular carrier of FFA and an agent which is lost to the heart during ischemia, has been postulated to in part restore function with its replacement. To test whether its benefits are also operative in a setting of excess FFA, these studies were performed. In the main protocol, four groups of perfused swine hearts (n = 45) were compared during 50 min of control flow (179.7 ml/min) and 40 min of global ischemia (106.1 ml/min). Initial base-line serum FFA:albumin molar ratios and carnitine levels in all groups were 1.3:1 and 8.5 nmol/ml, respectively. In two of these groups FFA:albumin ratios were increased to 5.9:1 with constant infusions of Intralipid. In two alternate groups (one with and one without extra FFA supplements) dl-carnitine was supplied, sufficient to increase serum levels nearly 200-fold. Ischemia per se in 14 hearts significantly decreased several parameters of global and regional mechanical function including left ventricular (LV) and mean aortic pressures, LV isovolumetric pressure development (max dp/dt), LV epicardial motion, and LV work, together with concomitant decreases in myocardial oxygen consumption. Elevated FFA in 12 hearts rendered similarly ischemic further decreased mechanical function (LV pressure: −20.8%, P < 0.05; mean aortic pressure −26.9%, P < 0.05; LV max dp/dt: −39%, P < 0.05; regional LV shortening: −51.1%, P < 0.05; and LV work: −50.3%, P < 0.05) as compared with nonsupplemented hearts. dl-Carnitine treatments in nine hearts, not supplemented with extra FFA were without apparent effect in improving overall hemodynamic performance. However, dl-carnitine in 10 high FFA-ischemic hearts effected several improvements as compared with the untreated group: LV pressure was increased 25.6%, P < 0.025; mean aortic pressure: +43.5%, P < 0.05; LV max dp/dt: +41.5%, P < 0.05; regional LV shortening: +241.3%, P < 0.001; and LV work: +76.2%, P < 0.05 at comparable levels of myocardial oxygen consumption. In a separate protocol, the effects of stereospecificity were also studied by comparing l- with dl-carnitine in globally perfused, palmitate-supplemented hearts (five hearts in each treatment group). At similar conditions of flow and serum FFA, changes in mechanical function were comparable, except for a tendency to perform greater LV work at reduced flows in the l-carnitine-treated hearts. Thus, it was demonstrated that carnitine in ischemic hearts is capable of preserving mechanical function under conditions of excess FFA, presumably by modifying the toxic effects of FFA intermediates. The major therapeutic actions appeared to derive from the l-isomer of carnitine.

Full text

PDF
440

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BORST P., LOOS J. A., CHRIST E. J., SLATER E. C. Uncoupling activity of long-chain fatty acids. Biochim Biophys Acta. 1962 Aug 27;62:509–518. doi: 10.1016/0006-3002(62)90232-9. [DOI] [PubMed] [Google Scholar]
  2. Bremer J., Norum K. R. The mechanism of substrate inhibition of palmityl coenzyme A:carnitine palmityltransferase by palmityl coenzyme A. J Biol Chem. 1967 Apr 25;242(8):1744–1748. [PubMed] [Google Scholar]
  3. Böhmer T., Eiklid K., Jonsen J. Carnitine uptake into human heart cells in culture. Biochim Biophys Acta. 1977 Mar 17;465(3):627–633. doi: 10.1016/0005-2736(77)90278-4. [DOI] [PubMed] [Google Scholar]
  4. Christiansen R., Borrebaek B., Bremer J. The effect of (-)carnitine on the metabolism of palmitate in liver cells isolated from fasted and refed rats. FEBS Lett. 1976 Mar 1;62(3):313–317. doi: 10.1016/0014-5793(76)80083-x. [DOI] [PubMed] [Google Scholar]
  5. Duncombe W. G. The colorimetric micro-determination of long-chain fatty acids. Biochem J. 1963 Jul;88(1):7–10. doi: 10.1042/bj0880007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Folts J. D., Shug A. L., Koke J. R., Bittar N. Protection of the ischemic dog myocardium with carnitine. Am J Cardiol. 1978 Jun;41(7):1209–1214. doi: 10.1016/0002-9149(78)90877-9. [DOI] [PubMed] [Google Scholar]
  7. HULSMANN W. C., ELLIOTT W. B., SLATER E. C. The nature and mechanism of action of uncoupling agents present in mitochrome preparations. Biochim Biophys Acta. 1960 Apr 8;39:267–276. doi: 10.1016/0006-3002(60)90163-3. [DOI] [PubMed] [Google Scholar]
  8. Henderson A. H., Craig R. J., Gorlin R., Sonnenblick E. H. Free fatty acids and myocardial function in perfused rat hearts. Cardiovasc Res. 1970 Oct;4(4):466–472. doi: 10.1093/cvr/4.4.466. [DOI] [PubMed] [Google Scholar]
  9. Idell-Wenger J. A., Grotyohann L. W., Neely J. R. Coenzyme A and carnitine distribution in normal and ischemic hearts. J Biol Chem. 1978 Jun 25;253(12):4310–4318. [PubMed] [Google Scholar]
  10. Kjekshus J. K., Mjos O. D. Effect of free fatty acids on myocardial function and metabolism in the ischemic dog heart. J Clin Invest. 1972 Jul;51(7):1767–1776. doi: 10.1172/JCI106978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kurien V. A., Yates P. A., Oliver M. F. The role of free fatty acids in the production of ventricular arrhythmias after acute coronary artery occlusion. Eur J Clin Invest. 1971 Jan;1(4):225–241. doi: 10.1111/eci.1971.1.4.225. [DOI] [PubMed] [Google Scholar]
  12. LARDY H. A., PRESSMAN B. C. Effect of surface active agents on the latent ATPase of mitochondria. Biochim Biophys Acta. 1956 Sep;21(3):458–466. doi: 10.1016/0006-3002(56)90182-2. [DOI] [PubMed] [Google Scholar]
  13. Lamers J. M., Hülsmann W. C. Inhibition of (Na+ + K+)-stimulated ATPase of heart by fatty acids. J Mol Cell Cardiol. 1977 Apr;9(4):343–346. doi: 10.1016/s0022-2828(77)80039-4. [DOI] [PubMed] [Google Scholar]
  14. Liedtke A. J., Hughes H. C., Neely J. R. Metabolic responses to varying restrictions of coronary blood flow in swine. Am J Physiol. 1975 Feb;228(2):655–662. doi: 10.1152/ajplegacy.1975.228.2.655. [DOI] [PubMed] [Google Scholar]
  15. Liedtke A. J., Nellis S., Neely J. R. Effects of excess free fatty acids on mechanical and metabolic function in normal and ischemic myocardium in swine. Circ Res. 1978 Oct;43(4):652–661. doi: 10.1161/01.res.43.4.652. [DOI] [PubMed] [Google Scholar]
  16. McGarry J. D., Foster D. W. An improved and simplified radioisotopic assay for the determination of free and esterified carnitine. J Lipid Res. 1976 May;17(3):277–281. [PubMed] [Google Scholar]
  17. Neely J. R., Liebermeister H., Morgan H. E. Effect of pressure development on membrane transport of glucose in isolated rat heart. Am J Physiol. 1967 Apr;212(4):815–822. doi: 10.1152/ajplegacy.1967.212.4.815. [DOI] [PubMed] [Google Scholar]
  18. Nellis S. H., Liedtke A. J. Development and use of a new high-frequency, low mechanical impedance strain gauge. Am J Physiol. 1979 Apr;236(4):H657–H663. doi: 10.1152/ajpheart.1979.236.4.H657. [DOI] [PubMed] [Google Scholar]
  19. Oliver M. F., Kurien V. A., Greenwood T. W. Relation between serum-free-fatty acids and arrhythmias and death after acute myocardial infarction. Lancet. 1968 Apr 6;1(7545):710–714. doi: 10.1016/s0140-6736(68)92163-6. [DOI] [PubMed] [Google Scholar]
  20. Oram J. F., Wenger J. I., Neely J. R. Regulation of long chain fatty acid activation in heart muscle. J Biol Chem. 1975 Jan 10;250(1):73–78. [PubMed] [Google Scholar]
  21. Pande S. V. A mitochondrial carnitine acylcarnitine translocase system. Proc Natl Acad Sci U S A. 1975 Mar;72(3):883–887. doi: 10.1073/pnas.72.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pande S. V., Mead J. F. Inhibition of enzyme activities by free fatty acids. J Biol Chem. 1968 Dec 10;243(23):6180–6185. [PubMed] [Google Scholar]
  23. Rogers W. J., McDaniel H. G., Moraski R. E., Rackley C. E., Russell R. O., Jr Effect of heparin-induced free fatty acid elevation on myocardial oxygen consumption in man. Am J Cardiol. 1977 Sep;40(3):365–372. doi: 10.1016/0002-9149(77)90158-8. [DOI] [PubMed] [Google Scholar]
  24. Severeid L., Connor W. E., Long J. P. The depressant effect of fatty acids on the isolated rabbit heart. Proc Soc Exp Biol Med. 1969 Sep;131(4):1239–1243. doi: 10.3181/00379727-131-34078. [DOI] [PubMed] [Google Scholar]
  25. Shug A. L., Koke J. R., Folts J. D., Bittar N. Role of adenine nucleotide translocase in metabolic change caused by ischemia. Recent Adv Stud Cardiac Struct Metab. 1975;10:365–378. [PubMed] [Google Scholar]
  26. Shug A. L., Shrago E., Bittar N., Folts J. D., Koke J. R. Acyl-CoA inhibition of adenine nucleotide translocation in ischemic myocardium. Am J Physiol. 1975 Mar;228(3):689–692. doi: 10.1152/ajplegacy.1975.228.3.689. [DOI] [PubMed] [Google Scholar]
  27. Shug A. L., Thomsen J. H., Folts J. D., Bittar N., Klein M. I., Koke J. R., Huth P. J. Changes in tissue levels of carnitine and other metabolites during myocardial ischemia and anoxia. Arch Biochem Biophys. 1978 Apr 15;187(1):25–33. doi: 10.1016/0003-9861(78)90003-6. [DOI] [PubMed] [Google Scholar]
  28. Theroux P., Franklin D., Ross J., Jr, Kemper W. S. Regional myocardial function during acute coronary artery occlusion and its modification by pharmacologic agents in the dog. Circ Res. 1974 Dec;35(6):896–908. doi: 10.1161/01.res.35.6.896. [DOI] [PubMed] [Google Scholar]
  29. Tuttle R. R., Pollock G. D., Todd G., MacDonald B., Tust R., Dusenberry W. The effect of dobutamine on cardiac oxygen balance, regional blood flow, and infarction severity after coronary artery narrowing in dogs. Circ Res. 1977 Sep;41(3):357–364. doi: 10.1161/01.res.41.3.357. [DOI] [PubMed] [Google Scholar]
  30. Vignais P. V. Molecular and physiological aspects of adenine nucleotide transport in mitochondria. Biochim Biophys Acta. 1976 Apr 30;456(1):1–38. doi: 10.1016/0304-4173(76)90007-0. [DOI] [PubMed] [Google Scholar]
  31. WOJTCZAK L., WOJTCZAK A. B. Uncoupling of oxidative phosphorylation and inhibition of ATP-Pi exchange by a substance from insect mitochondria. Biochim Biophys Acta. 1960 Apr 8;39:277–286. doi: 10.1016/0006-3002(60)90164-5. [DOI] [PubMed] [Google Scholar]
  32. Whitmer J. T., Idell-Wenger J. A., Rovetto M. J., Neely J. R. Control of fatty acid metabolism in ischemic and hypoxic hearts. J Biol Chem. 1978 Jun 25;253(12):4305–4309. [PubMed] [Google Scholar]
  33. Willerbrands A. F., ter Welle H. F., Tasseron S. J. The effect of a high molar FFA-albumin ratio in the perfusion medium on rhythm and contractility of the isolated rat heart. J Mol Cell Cardiol. 1973 Jun;5(3):259–273. doi: 10.1016/0022-2828(73)90066-7. [DOI] [PubMed] [Google Scholar]
  34. Wood J. M., Bush B., Pitts B. J., Schwartz A. Inhibition of bovine heart Na+, K+-ATPase by palmitylcarnitine and palmityl-CoA. Biochem Biophys Res Commun. 1977 Jan 24;74(2):677–684. doi: 10.1016/0006-291x(77)90356-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES