Abstract
The effect of catecholamines on membrane-associated protein kinase in the mature human erythrocyte was investigated. Protein kinase activity was assayed after isolation of membranes from intact erythrocytes incubated with and without catecholamines. Activation of the enzyme is expressed as the ratio of the extent of phosphorylation of exogenous protein substrate in the absence to that in the presence of 2.5 microM cyclic AMP (cAMP). The potent beta-adrenergic agonist, (-)isoproterenol (2 microM), (-)epinephrine (10 microM) and (-)norepinephrine (10 microM) stimulated the cAMP-dependent protein kinase in membranes, 38 +/- 7%, 31 +/- 6%, and 30 +/- 6%, respectively. Maximal stimulation of membrane protein kinase by 10 microM (-)epinephrine was obtained approximately equal to 30 min after initiation of the incubation of erythrocytes with the hormone. The concentrations of (-)catecholamines that gave half-maximal stimulation of the membrane protein kinase were 0.17 microM for isoproterenol, 0.35 microM for epinephrine, and 0.63 microM for norepinephrine. The membrane protein kinase response to beta-adrenergic agonists was found to be stereospecific. The stimulation of membrane protein kinase by 10 microM (-)epinephrine was inhibited by the beta-adrenergic antagonist, (-)propranolol with EC50 = 0.60 microM, and the inhibition of agonist stimulation of the cAMP-dependent protein kinase by propranolol was stereospecific. These studies suggest that a functional beta-adrenergic receptor exists in the mature human erythrocyte.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen J. E., Rasmussen H. Human red blood cells: prostaglandin E2, epinephrine, and isoproterenol alter deformability. Science. 1971 Oct 29;174(4008):512–514. doi: 10.1126/science.174.4008.512. [DOI] [PubMed] [Google Scholar]
- Avruch J., Fairbanks G. Phosphorylation of endogenous substrates by erythrocyte membrane protein kinases. I. A monovalent cation-stimulated reaction. Biochemistry. 1974 Dec 31;13(27):5507–5514. doi: 10.1021/bi00724a009. [DOI] [PubMed] [Google Scholar]
- Azhar S., Menon K. M. Cyclic adenosine 3',5'-monophosphate and luteinizing hormone stimulated protein kinase from bovine corpus luteum: evidence for activation through separate mechanisms. FEBS Lett. 1975 Mar 1;51(1):25–28. doi: 10.1016/0014-5793(75)80847-7. [DOI] [PubMed] [Google Scholar]
- Bodemann H., Passow H. Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis. J Membr Biol. 1972;8(1):1–26. doi: 10.1007/BF01868092. [DOI] [PubMed] [Google Scholar]
- Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
- CANNAN R. K. Proposal for a certified standard for use in hemoglobinometry. Am J Clin Pathol. 1958 Sep;30(3):211–concl. doi: 10.1093/ajcp/30.3.211. [DOI] [PubMed] [Google Scholar]
- Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
- DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
- Erlichman J., Hirsch A. H., Rosen O. M. Interconversion of cyclic nucleotide-activated and cyclic nucleotide-independent forms of a protein kinase from beef heart. Proc Natl Acad Sci U S A. 1971 Apr;68(4):731–735. doi: 10.1073/pnas.68.4.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fairbanks G., Avruch J. Phosphorylation of endogenous substrates by erythrocyte membrane protein kinases. II. Cyclic adenosine monophosphate-stimulated reactions. Biochemistry. 1974 Dec 31;13(27):5514–5521. doi: 10.1021/bi00724a010. [DOI] [PubMed] [Google Scholar]
- Gardner J. D., Klaeveman H. L., Bilezikian J. P., Aurbach G. D. Effect of beta-adrenergic catecholamines on sodium transport in turkey erythrocytes. J Biol Chem. 1973 Aug 25;248(16):5590–5597. [PubMed] [Google Scholar]
- Gross R. A., Clark R. B. Regulation of adenosine 3',5'-monophosphate content in human astrocytoma cells by isoproterenol and carbachol. Mol Pharmacol. 1977 Mar;13(2):242–250. [PubMed] [Google Scholar]
- Guthrow C. E., Jr, Allen J. E., Rasmussen H. Phosphorylation of an endogenous membrane protein by an endogenous, membrane-associated cyclic adenosine 3',5'-monophosphate-dependent protein kinase in human erythrocyte ghosts. J Biol Chem. 1972 Dec 25;247(24):8145–8153. [PubMed] [Google Scholar]
- Haber E., Wrenn S. Problems in identification of the beta-adrenergic receptor. Physiol Rev. 1976 Apr;56(2):317–338. doi: 10.1152/physrev.1976.56.2.317. [DOI] [PubMed] [Google Scholar]
- Hanahan D. J., Ekholm J. E. The preparation of red cell ghosts (membranes). Methods Enzymol. 1974;31:168–172. doi: 10.1016/0076-6879(74)31018-x. [DOI] [PubMed] [Google Scholar]
- Hosey M. M., Tao M. An analysis of the autophosphorylation of rabbit and human erythrocyte membranes. Biochemistry. 1976 Apr 6;15(7):1561–1568. doi: 10.1021/bi00652a029. [DOI] [PubMed] [Google Scholar]
- Hosey M. M., Tao M. Effect of 5'guanylylimidodiphosphate on prostaglandin- and fluoride- sensitive adenylate cyclase of rabbit red blood cells. Biochem Biophys Res Commun. 1975 Jun 16;64(4):1263–1269. doi: 10.1016/0006-291x(75)90828-1. [DOI] [PubMed] [Google Scholar]
- Hosey M. M., Tao M. Phosphorylation of rabbit and human erythrocyte membranes by soluble adenosine 3':5'-monophosphate-dependent and -independent protein kinases. J Biol Chem. 1977 Jan 10;252(1):102–109. [PubMed] [Google Scholar]
- Johnson G. L., Wolfe B. B., Harden T. K., Molinoff P. B., Perkins J. P. Role of beta-adrenergic receptors in catecholamine-induced desensitization of adenylate cyclase in human astrocytoma cells. J Biol Chem. 1978 Mar 10;253(5):1472–1480. [PubMed] [Google Scholar]
- Kaiser G., Quiring K., Gauger D., Palm D., Becker H., Schoeppe W. Occurrence of adenyl cyclase activity in human erythrocytes. Blut. 1974 Aug;29(2):115–122. doi: 10.1007/BF01633835. [DOI] [PubMed] [Google Scholar]
- Keely S. L., Jr, Corbin J. D., Park C. R. On the question of translocation of heart cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1501–1504. doi: 10.1073/pnas.72.4.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Maguire M. E., Ross E. M., Gilman A. G. beta-Adrenergic receptor: ligand binding properties and the interaction with adenylyl cyclase. Adv Cyclic Nucleotide Res. 1977;8:1–83. [PubMed] [Google Scholar]
- Rasmussen H., Lake W., Allen J. E. The effect of catecholamines and prostaglandins upon human and rat erythrocytes. Biochim Biophys Acta. 1975 Nov 10;411(1):63–73. doi: 10.1016/0304-4165(75)90285-8. [DOI] [PubMed] [Google Scholar]
- Rodan S. B., Rodan G. A., Sha'afi R. I. Demonstration of adenylate cyclase activity in human red blood cell ghosts. Biochim Biophys Acta. 1976 Apr 23;428(2):509–515. doi: 10.1016/0304-4165(76)90059-3. [DOI] [PubMed] [Google Scholar]
- Rubin C. S., Erlichman J., Rosen O. M. Cyclic adenosine 3',5'-monophosphate-dependent protein kinase of human erythrocyte membranes. J Biol Chem. 1972 Oct 10;247(19):6135–6139. [PubMed] [Google Scholar]
- Rubin C. S., Rosen O. M. The role of cyclic AMP in the phosphorylation of proteins in human erythrocyte membranes. Biochem Biophys Res Commun. 1973 Jan 23;50(2):421–429. doi: 10.1016/0006-291x(73)90857-7. [DOI] [PubMed] [Google Scholar]
- Sheppard H., Burghardt C. R. The stimulation of adenyl cyclase of rat erythrocyte ghosts. Mol Pharmacol. 1970 Jul;6(4):425–429. [PubMed] [Google Scholar]
- Sheppard H., Burghardt C. Adenyl cyclase in non-nucleated erythrocytes of several mammalian species. Biochem Pharmacol. 1969 Oct;18(10):2576–2578. doi: 10.1016/0006-2952(69)90374-8. [DOI] [PubMed] [Google Scholar]
- Vesin M. F., Harbon S. The effects of epinephrine, prostaglandins, and their antagonists on adenosine cyclic 3',5'-monophosphate concentrations and motility of the rat uterus. Mol Pharmacol. 1974 May;10(3):457–473. [PubMed] [Google Scholar]
- Zail S. S., Van den Hoek A. K. Studies on protein kinase activity and the binding of adenosine 3'5-monophosphate by membranes of hereditary spherocytosis erythrocytes. Biochem Biophys Res Commun. 1975 Oct 6;66(3):1078–1086. doi: 10.1016/0006-291x(75)90750-0. [DOI] [PubMed] [Google Scholar]