Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1979 Sep;64(3):834–841. doi: 10.1172/JCI109531

Regulation of Sodium and Potassium Transport in Phytohemagglutinin-Stimulated Human Blood Lymphocytes

George B Segel 1,2,3,4, William Simon 1,2,3,4, Marshall A Lichtman 1,2,3,4
PMCID: PMC372189  PMID: 224078

Abstract

Phytohemagglutinin (PHA) or concanavalin A treatment of lymphocytes causes an increase in membrane permeability so that the leak rates of Na and K increase 1.5- to 2-fold. Active Na and K transport increase proportionately in response to the increased membrane permeability. We have examined the role of lymphocyte Na concentration in sustaining the increased Na and K transport observed after PHA treatment. Cell Na concentration increases from 14.8 to 20.5 mmol/liter cell water in PHA-treated lymphocytes (P < 0.001). Four lines of evidence suggest that the 5-6 mmol/liter cell water increase in lymphocyte Na accounts for the increase in active Na and K transport in mitogen-treated lymphocytes. First, PHA does not increase directly the maximal Na, K-ATPase activity of isolated lymphocyte membrane vesicles. Second, when the Na concentration is increased by 6 mmol/liter cell water in unstimulated lymphocytes, Na and K transport increase nearly twofold. Third, the cell Na concentration (15 mmol/liter cell water) is near the Km for Na activation of the Na, K-ATPase in lymphocyte membranes. The ATPase activity thus, is capable of increasing as the cell Na rises above normal. Fourth, if lymphocytes are incubated in a medium containing a low Na concentration, K transport does not maintain the internal K concentration and the fall in cell K is accentuated in PHA-treated lymphocytes. These studies indicate that the adaptive acceleration of Na and K transport in mitogen-treated lymphocytes is mediated by a small increase in cell Na.

Full text

PDF
834

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Averdunk R., Lauf P. K. Effects of mitogens on sodium-potassium transport, 3H-ouabain binding, and adenosine triphosphatase activity in lymphocytes. Exp Cell Res. 1975 Jul;93(2):331–342. doi: 10.1016/0014-4827(75)90458-9. [DOI] [PubMed] [Google Scholar]
  2. Böyum A. Isolation of leucocytes from human blood. A two-phase system for removal of red cells with methylcellulose as erythrocyte-aggregating agent. Scand J Clin Lab Invest Suppl. 1968;97:9–29. [PubMed] [Google Scholar]
  3. Garay R. P., Garrahan P. J. The interaction of sodium and potassium with the sodium pump in red cells. J Physiol. 1973 Jun;231(2):297–325. doi: 10.1113/jphysiol.1973.sp010234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Garrahan P. J., Rega A. F. Cation loading of red blood cells. J Physiol. 1967 Nov;193(2):459–466. doi: 10.1113/jphysiol.1967.sp008371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hamilton L. J., Kaplan J. G. Flux of 86Rb in activated human lymphocytes. Can J Biochem. 1977 Jul;55(7):774–778. doi: 10.1139/o77-113. [DOI] [PubMed] [Google Scholar]
  6. Iversen J. G. Unidirectional K+ fluxes in rat thymocytes stimulated by concanavalin A. J Cell Physiol. 1976 Oct;89(2):267–276. doi: 10.1002/jcp.1040890210. [DOI] [PubMed] [Google Scholar]
  7. POST R. L., JOLLY P. C. The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. Biochim Biophys Acta. 1957 Jul;25(1):118–128. doi: 10.1016/0006-3002(57)90426-2. [DOI] [PubMed] [Google Scholar]
  8. Pommier G., Ripert G., Azoulay E., Depieds R. Effect of concanavalin A on membrane-bound enzymes from mouse lymphocytes. Biochim Biophys Acta. 1975 May 21;389(3):483–494. doi: 10.1016/0005-2736(75)90159-5. [DOI] [PubMed] [Google Scholar]
  9. Quastel M. R., Kaplan J. G. Early stimulation of potassium uptake in lymphocytes treated with PHA. Exp Cell Res. 1970 Nov;63(1):230–233. doi: 10.1016/0014-4827(70)90360-5. [DOI] [PubMed] [Google Scholar]
  10. Segel G. B., Androphy E. J., Lichtman M. A. Increased ouabain-sensitive glycolysis of lymphocytes treated with phytohemagglutinin: relationship to potassium transport. J Cell Physiol. 1978 Dec;97(3 Pt 2 Suppl 1):407–412. doi: 10.1002/jcp.1040970315. [DOI] [PubMed] [Google Scholar]
  11. Segel G. B., Gordon B. R., Lichtman M. A., Hollander M. M., Klemperer M. R. Exodus of 42K+ and 86Rb+ from rat thymic and human blood lymphocytes exposed to phytohemagglutinin. J Cell Physiol. 1976 Mar;87(3):337–343. doi: 10.1002/jcp.1040870309. [DOI] [PubMed] [Google Scholar]
  12. Segel G. B., Hollander M. M., Gordon B. R., Klemperer M. R., Lichtman M. A. A rapid phytohemagglutinin induced alteration in lymphocyte potassium permeability. J Cell Physiol. 1975 Oct;86(2 Pt 2 Suppl 1):327–335. doi: 10.1002/jcp.1040860404. [DOI] [PubMed] [Google Scholar]
  13. Segel G. B., Kovach G., Lichtman M. A. Sodium-potassium adenosine triphosphatase activity of human lymphocyte membrane vesicles: kinetic parameters, substrate specificity, and effects of phytohemagglutinin. J Cell Physiol. 1979 Jul;100(1):109–117. doi: 10.1002/jcp.1041000111. [DOI] [PubMed] [Google Scholar]
  14. Segel G. B., Lichtman M. A., Gordon B. R., MacPherson J. L., Nusbacher J. Plateletpheresis residues: a source of large quantities of human blood lymphocytes. Transfusion. 1976 Sep-Oct;16(5):455–459. doi: 10.1046/j.1537-2995.1976.16577039302.x. [DOI] [PubMed] [Google Scholar]
  15. Segel G. B., Lichtman M. A., Hollander M. M., Gordon B. R., Klemperer M. R. Human lymphocyte potassium content during the initiation of phytohemagglutinin-induced mitogenesis. J Cell Physiol. 1976 May;88(1):43–48. doi: 10.1002/jcp.1040880106. [DOI] [PubMed] [Google Scholar]
  16. Segel G. B., Lichtman M. A. Potasssium transport in human blood lymphocytes treated with phytohemagglutinin. J Clin Invest. 1976 Dec;58(6):1358–1369. doi: 10.1172/JCI108591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Segel G. B., Lichtman M. A. The effect of method on the measurement of K+ concentration in PHA-treated human blood lymphocytes. Exp Cell Res. 1978 Mar 1;112(1):95–102. doi: 10.1016/0014-4827(78)90529-3. [DOI] [PubMed] [Google Scholar]
  18. Smith J. B., Rozengurt E. Serum stimulates the Na+,K+ pump in quiescent fibroblasts by increasing Na+ entry. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5560–5564. doi: 10.1073/pnas.75.11.5560. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES