Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1977 Jun;59(6):1143–1150. doi: 10.1172/JCI108738

Exaggerated prostaglandin biosynthesis and its influence on renal resistance in the isolated hydronephrotic rabbit kidney.

K Nishikawa, A Morrison, P Needleman
PMCID: PMC372327  PMID: 864006

Abstract

Basal and hormone-stimulated prostaglandin biosynthesis was compared in isolated perfused rabbit kidneys with and without ureteral obstruction. At 72 h there was enhanced responsiveness to bradykinin in the ureter-obstructed hydronephrotic kidney. The amount of prostaglandin-like substance released from the perfused kidneys by 25 ng of bradykinin was 533+/-163 ng from the ureter-obstructed, 28+/-4 ng from the contralateral, and 26+/-3 ng from the normal kidney. The enhanced response was also noted with angiotensin II and with norepinephrine. This exaggerated responsiveness by the ureter-obstructed kidney could not be explained by decreased prostaglandin (PG) destruction or by decreased renal peptide inactivation (bradykinin or angiotensin). There was no enhanced PG biosynthesis with exogenous arachidonate, suggesting there was no increase in cyclo-oxygenase activity in the ureter-obstructed kidney. Renal tubular transport of PG from medulla to cortex was apparently not essential for the enhanced PG biosynthesis to hormone stimulation since the same exaggerated responses were noted during perfusion with the ureter ligated. The cyclo-oxygenase inhibitor, indomethacin, increased basal perfusion pressure in the obstructed kidney and enhanced the magnitude and duration of the renal vasoconstriction produced by angiotensin II in the hydronephrotic kidney. These results suggest that the local exaggerated biosynthesis of PG may be occurring in the cortical resistance vessels and may be important to the alteration in blood flow and excretory function that occur in ureteral obstruction.

Full text

PDF
1143

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiken J. W. Effects of prostaglandin synthesis inhibitors on angiotensin tachyphylaxis in the isolated coeliac and mesenteric arteries of the rabbit. Pol J Pharmacol Pharm. 1974 Jan-Apr;26(1):217–227. [PubMed] [Google Scholar]
  2. Alexander R. W., Gimbrone M. A., Jr Stimulation of prostaglandin E synthesis in cultured human umbilical vein smooth muscle cells. Proc Natl Acad Sci U S A. 1976 May;73(5):1617–1620. doi: 10.1073/pnas.73.5.1617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blumberg A. L., Denny S. E., Marshall G. R., Needleman P. Blood vessel-hormone interactions: angiotensin, bradykinin, and prostaglandins. Am J Physiol. 1977 Mar;232(3):H305–H310. doi: 10.1152/ajpheart.1977.232.3.H305. [DOI] [PubMed] [Google Scholar]
  4. Colina-Chourio J., McGiff J. C., Miller M. P., Nasjletti A. Possible influence of intrarenal generation of kinins on prostaglandin release from the rabbit perfused kidney. Br J Pharmacol. 1976 Oct;58(2):165–172. doi: 10.1111/j.1476-5381.1976.tb10392.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Comai K., Farber S. J., Paulsrud J. R. Analyses of renal medullary lipid droplets from normal, hydronephrotic, and indomethacin treated rabbits. Lipids. 1975 Sep;10(9):555–561. doi: 10.1007/BF02532360. [DOI] [PubMed] [Google Scholar]
  6. Comai K., Prose P., Farber S. J., Paulsrud J. R. Correlation of renal medullary prostaglandin content and renal interstitial cell lipid droplets. Prostaglandins. 1974 Jun 10;6(5):375–379. doi: 10.1016/0090-6980(74)90010-0. [DOI] [PubMed] [Google Scholar]
  7. Daniels E. G., Hinman J. W., Leach B. E., Muirhead E. E. Identification of prostaglandin E2 as the principal vasodepressor lipid of rabbit renal medulla. Nature. 1967 Sep 16;215(5107):1298–1299. doi: 10.1038/2151298a0. [DOI] [PubMed] [Google Scholar]
  8. Danon A., Chang L. C., Sweetman B. J., Nies A. S., Oates J. A. Synthesis of prostaglandins by the rat renal papilla in vitro. Mechanism of stimulation by angiotensin II. Biochim Biophys Acta. 1975 Apr 18;388(1):71–83. doi: 10.1016/0005-2760(75)90063-6. [DOI] [PubMed] [Google Scholar]
  9. Eckenfels A., Vane J. R. Prostaglandins, oxygen tension and smooth muscle tone. Br J Pharmacol. 1972 Jul;45(3):451–462. doi: 10.1111/j.1476-5381.1972.tb08101.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ferreira S. H., Vane J. R. Prostaglandins: their disappearance from and release into the circulation. Nature. 1967 Dec 2;216(5118):868–873. doi: 10.1038/216868a0. [DOI] [PubMed] [Google Scholar]
  11. Frolich J. C., Sweetman B. J., Carr K., Oates J. A. Prostaglandin synthesis in rabbit renal medulla. Life Sci. 1975 Oct 10;17(7):1105–1111. doi: 10.1016/0024-3205(75)90331-8. [DOI] [PubMed] [Google Scholar]
  12. Frölich J. C., Wilson T. W., Sweetman B. J., Smigel M., Nies A. S., Carr K., Watson J. T., Oates J. A. Urinary prostaglandins. Identification and origin. J Clin Invest. 1975 Apr;55(4):763–770. doi: 10.1172/JCI107987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grantham J. J., Orloff J. Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3',5'-monophosphate, and theophylline. J Clin Invest. 1968 May;47(5):1154–1161. doi: 10.1172/JCI105804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Herbaczynska-Cedro K., Vane J. R. Contribution of intrarenal generation of prostaglandin to autoregulation of renal blood flow in the dog. Circ Res. 1973 Oct;33(4):428–436. doi: 10.1161/01.res.33.4.428. [DOI] [PubMed] [Google Scholar]
  15. IDBOHRN H., MUREN A. Renal blood flow in experimental hydronephrosis. Acta Physiol Scand. 1956 Dec 31;38(2):200–206. doi: 10.1111/j.1748-1716.1957.tb01384.x. [DOI] [PubMed] [Google Scholar]
  16. Isakson P. C., Raz A., Needleman P. Selective incorporation of 14C-arachidonic acid into the phospholipids of intact tissues and subsequent metabolism to 14C-prostaglandins. Prostaglandins. 1976 Nov;12(5):739–748. doi: 10.1016/0090-6980(76)90049-6. [DOI] [PubMed] [Google Scholar]
  17. Johnston H. H., Herzog J. P., Lauler D. P. Effect of prostaglandin E1 on renal hemodynamics, sodium and water excretion. Am J Physiol. 1967 Oct;213(4):939–946. doi: 10.1152/ajplegacy.1967.213.4.939. [DOI] [PubMed] [Google Scholar]
  18. KERR W. S., Jr Effect of complete ureteral obstruction for one week on kidney function. J Appl Physiol. 1954 Jun;6(12):762–772. doi: 10.1152/jappl.1954.6.12.762. [DOI] [PubMed] [Google Scholar]
  19. Larsson C., Anggård E. Regional differences in the formation and metabolism of prostaglandins in the rabbit kidney. Eur J Pharmacol. 1973 Jan;21(1):30–36. doi: 10.1016/0014-2999(73)90202-1. [DOI] [PubMed] [Google Scholar]
  20. Limas C., Limas C. J., Gesell M. S. Effects of indomethacin on renomedullary interstitial cells. Lab Invest. 1976 May;34(5):522–528. [PubMed] [Google Scholar]
  21. Lozzio B. B., Buonocore E., Kentera D. Radiologic and functional studies in rats with hereditary hydronephrosis. Invest Urol. 1972 Jul;10(1):84–87. [PubMed] [Google Scholar]
  22. McGiff J. C., Crowshaw K., Itskovitz H. D. Prostaglandins and renal function. Fed Proc. 1974 Jan;33(1):39–47. [PubMed] [Google Scholar]
  23. Nagle R. B., Bulger R. E., Cutler R. E., Jervis H. R., Benditt E. P. Unilateral obstructive nephropathy in the rabbit. I. Early morphologic, physiologic, and histochemical changes. Lab Invest. 1973 Apr;28(4):456–467. [PubMed] [Google Scholar]
  24. Needleman P., Marshall G. R., Douglas J. R., Jr Prostaglandin release from vasculature by angiotensin II: dissociation from lipolysis. Eur J Pharmacol. 1973 Sep;23(3):316–319. doi: 10.1016/0014-2999(73)90103-9. [DOI] [PubMed] [Google Scholar]
  25. PRIDGEN W. R., WOODHEAD D. M., YOUNGER R. K. Alterations in renal function produced by ureteral obstruction. Determination of critical obstruction time in relation to renal survival. JAMA. 1961 Nov 11;178:563–564. doi: 10.1001/jama.1961.73040450004005a. [DOI] [PubMed] [Google Scholar]
  26. Pong S. S., Levine L. Biosynthesis of prostaglandins in rabbit renal cortex. Res Commun Chem Pathol Pharmacol. 1976 Jan;13(1):115–123. [PubMed] [Google Scholar]
  27. Regoli D., Gauthier R. Site of action of angiotensin and other vasoconstrictors on the kidney. Can J Physiol Pharmacol. 1971 Jun;49(6):608–612. doi: 10.1139/y71-078. [DOI] [PubMed] [Google Scholar]
  28. SCHMIDT-NIELSEN B., O'DELL R. Structure and concentrating mechanism in the mammalian kidney. Am J Physiol. 1961 Jun;200:1119–1124. doi: 10.1152/ajplegacy.1961.200.6.1119. [DOI] [PubMed] [Google Scholar]
  29. Schramm L. P., Carlson D. E. Inhibition of renal vasoconstriction by elevated ureteral pressure. Am J Physiol. 1975 Apr;228(4):1126–1133. doi: 10.1152/ajplegacy.1975.228.4.1126. [DOI] [PubMed] [Google Scholar]
  30. Schubert G. E., Staudhammer R., Rolle K., Kneissler U. Tubular dimensions and juxtaglomerular granulation index in rat kidneys after unilateral obstruction of the ureter. A study of the morphogenesis of hydronephrosis. Urol Res. 1975 Oct 29;3(3):115–122. doi: 10.1007/BF00256032. [DOI] [PubMed] [Google Scholar]
  31. THURAU K. RENAL HEMODYNAMICS. Am J Med. 1964 May;36:698–719. doi: 10.1016/0002-9343(64)90181-0. [DOI] [PubMed] [Google Scholar]
  32. Terragno D. A., Crowshaw K., Terragno N. A., McGiff J. C. Prostaglandin synthesis by bovine mesenteric arteries and veins. Circ Res. 1975 Jun;36(6 Suppl 1):76–80. doi: 10.1161/01.res.36.6.76. [DOI] [PubMed] [Google Scholar]
  33. Vane J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971 Jun 23;231(25):232–235. doi: 10.1038/newbio231232a0. [DOI] [PubMed] [Google Scholar]
  34. Vaughan E. D., Jr, Sorenson E. J., Gillenwater J. Y. The renal hemodynamic response to chronic unilateral complete ureteral occlusion. Invest Urol. 1970 Jul;8(1):78–90. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES