Abstract
The ability of human Hageman factor (coagulation factor XII) to bind to a glass surface and its susceptibility to limited proteolytic cleavage during the contact activation of plasma have been studied using normal human plasma and plasmas genetically deficient in factor XI, prekallikrein, or high molecular weight kininogen (HMWK). When diluted normal plasma containing 125I-Hageman factor was exposed to a glass surface for varying times, the Hageman factor was found to bind to the surface, and within 5 min became maximally cleaved from its native 80,000 mol wt to yield fragments of 52,000 and 28,000 mol wt. Hageman factor in factor XI-deficient plasma behaved similarly. In prekallikrein-deficient plasma, the binding of Hageman factor to the glass surface occurred at the same rate as in normal plasma but the cleavage was significantly slower, and did not reach maximum until 60 min of incubation. Cleavage of Hageman factor in HMWK-deficient plasma occurred at an even slower rate, with greater than 110 min of incubation required for maximal cleavage, although the rate of binding to the glass was again the same as in normal plasma. Normal rates of cleavage of Hageman factor were observed for the deficient plasmas after reconstitution with purified human prekallikrein or HMWK, respectively. These observations suggest that normal contact activation in plasma is associated with proteolytic activation of surfacebound Hageman factor.
The cleavage of the surface-bound Hageman factor molecule responsible for the formation of the 52,000-and 28,000-mol wt fragments occurred at two closely situated sites, one of which was within a disulfide loop. Cleavage at the site external to the disulfide bond resulted in the release from the surface of the 28,000-mol wt fragment. Cleavage at the site within the disulfide loop resulted in the formation of a 28,000-mol wt fragment which remained surface bound, presumably by virtue of the disulfide linkage to the larger fragment.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bagdasarian A., Lahiri B., Colman R. W. Origin of the high molecular weight activator of prekallikrein. J Biol Chem. 1973 Nov 25;248(22):7742–7747. [PubMed] [Google Scholar]
- Burrowes C. E., Movat H. Z., Soltay M. J. The kinin system of human plasma. VI. The action of plasmin. Proc Soc Exp Biol Med. 1971 Dec;138(3):959–966. doi: 10.3181/00379727-138-36027. [DOI] [PubMed] [Google Scholar]
- Cochrane C. G., Revak S. D., Wuepper K. D. Activation of Hageman factor in solid and fluid phases. A critical role of kallikrein. J Exp Med. 1973 Dec 1;138(6):1564–1583. doi: 10.1084/jem.138.6.1564. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cochrane C. G., Wuepper K. D. The first component of the kinin-forming system in human and rabbit plasma. Its relationship to clotting factor XII (Hageman Factor). J Exp Med. 1971 Oct 1;134(4):986–1004. doi: 10.1084/jem.134.4.986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colman R. W., Bagdasarian A., Talamo R. C., Scott C. F., Seavey M., Guimaraes J. A., Pierce J. V., Kaplan A. P. Williams trait. Human kininogen deficiency with diminished levels of plasminogen proactivator and prekallikrein associated with abnormalities of the Hageman factor-dependent pathways. J Clin Invest. 1975 Dec;56(6):1650–1662. doi: 10.1172/JCI108247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donaldson V. H., Glueck H. I., Miller M. A., Movat H. Z., Habal F. Kininogen deficiency in Fitzgerald trait: role of high molecular weight kininogen in clotting and fibrinolysis. J Lab Clin Med. 1976 Feb;87(2):327–337. [PubMed] [Google Scholar]
- Griffin J. H., Cochrane C. G. Human factor XII (Hageman factor). Methods Enzymol. 1976;45:56–65. doi: 10.1016/s0076-6879(76)45009-7. [DOI] [PubMed] [Google Scholar]
- Griffin J. H., Cochrane C. G. Mechanisms for the involvement of high molecular weight kininogen in surface-dependent reactions of Hageman factor. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2554–2558. doi: 10.1073/pnas.73.8.2554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Habal F. M., Movat H. Z., Burrowes C. E. Isolation of two functionally different kininogens from human plasma--separation from proteinase inhibitors and interaction with plasma kallikrein. Biochem Pharmacol. 1974 Aug 15;23(16):2291–2303. doi: 10.1016/0006-2952(74)90558-9. [DOI] [PubMed] [Google Scholar]
- Hathaway W. E., Alsever J. The relation of 'Fletcher Factor' to factors XI and XII. Br J Haematol. 1970 Feb;18(2):161–169. doi: 10.1111/j.1365-2141.1970.tb01431.x. [DOI] [PubMed] [Google Scholar]
- Hathaway W. E., Belhasen L. P., Hathaway H. S. Evidence for a new plasma thromboplastin factor. I. Case report, coagulation studies and physicochemical properties. Blood. 1965 Nov;26(5):521–532. [PubMed] [Google Scholar]
- Kaplan A. P., Austen K. F. A pre-albumin activator of prekallikrein. J Immunol. 1970 Oct;105(4):802–811. [PubMed] [Google Scholar]
- Kaplan A. P., Austen K. F. A prealbumin activator of prekallikrein. II. Derivation of activators of prekallikrein from active Hageman factor by digestion with plasmin. J Exp Med. 1971 Apr 1;133(4):696–712. doi: 10.1084/jem.133.4.696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McConahey P. J., Dixon F. J. A method of trace iodination of proteins for immunologic studies. Int Arch Allergy Appl Immunol. 1966;29(2):185–189. doi: 10.1159/000229699. [DOI] [PubMed] [Google Scholar]
- Revak S. D., Cochrane C. G., Johnston A. R., Hugli T. E. Structural changes accompanying enzymatic activation of human Hageman factor. J Clin Invest. 1974 Sep;54(3):619–627. doi: 10.1172/JCI107799. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Revak S. D., Cochrane C. G. The relationship of structure and function in human Hageman factor. The association of enzymatic and binding activities with separate regions of the molecule. J Clin Invest. 1976 Apr;57(4):852–860. doi: 10.1172/JCI108361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saito H., Ratnoff O. D., Waldmann R., Abraham J. P. Fitzgerald Trait: Deficiency of a Hitherto Unrecognized Agent, Fitzgerald Factor, Participating in Surface-Mediated Reactions of Clotting, Fibrinolysis, Generation of Kinins, and the Property of Diluted Plasma Enhancing Vascular Permeability (PF/Dil). J Clin Invest. 1975 May;55(5):1082–1089. doi: 10.1172/JCI108009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schiffman S., Lee P. Partial purification and characterization of contact activation cofactor. J Clin Invest. 1975 Nov;56(5):1082–1092. doi: 10.1172/JCI108182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schiffman S., Lee P. Preparation, characterization, and activation of a highly purified factor XI: evidence that a hitherto unrecognized plasma activity participates in the interaction of factors XI and XII. Br J Haematol. 1974 May;27(1):101–114. doi: 10.1111/j.1365-2141.1974.tb06778.x. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- Weiss A. S., Gallin J. I., Kaplan A. P. Fletcher factor deficiency. A diminished rate of Hageman factor activation caused by absence of prekallikrein with abnormalities of coagulation, fibrinolysis, chemotactic activity, and kinin generation. J Clin Invest. 1974 Feb;53(2):622–633. doi: 10.1172/JCI107597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wuepper K. D., Cochrane C. G. Effect of plasma kallikrein on coagulation in vitro. Proc Soc Exp Biol Med. 1972 Oct;141(1):271–276. doi: 10.3181/00379727-141-36757. [DOI] [PubMed] [Google Scholar]
- Wuepper K. D., Cochrane C. G. Plasma prekallikrein: isolation, characterization, and mechanism of activation. J Exp Med. 1972 Jan;135(1):1–20. doi: 10.1084/jem.135.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wuepper K. D., Miller D. R., Lacombe M. J. Flaujeac trait. Deficiency of human plasma kininogen. J Clin Invest. 1975 Dec;56(6):1663–1672. doi: 10.1172/JCI108248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wuepper K. D. Prekallikrein deficiency in man. J Exp Med. 1973 Dec 1;138(6):1345–1355. doi: 10.1084/jem.138.6.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]