Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1977 Jul;60(1):61–69. doi: 10.1172/JCI108769

Metabolic control of circulation. Effects of iodoacetate and fluoroacetate.

C S Liang
PMCID: PMC372343  PMID: 874090

Abstract

The circulatory effects of selective metabolic inhibition of glycolysis and of the tricarboxylic acid cycle by iodoacetate and fluoroacetate were studied in intact chloralose-anesthetized dogs. Pulmonary arterial blood pressure and vascular resistance increased after administration of both inhibitors, but neither systemic hemodynamics nor myocardial contractility changed significantly. Coronary blood flow did not change after iodoacetate administration but increased four- to five-fold after fluoroacetate. Administration of normal saline had no effect on any of the parameters. The changes in pulmonary arterial blood pressure and coronary blood flow after fluoroacetate were not mediated via the autonomic nerves or adrenergic neurohumors because they still occurred after autonomic nervous system inhibition. Neither myocardial oxygen consumption nor left ventricular work changed. A selective increase in myocardial blood flow also occurred in conscious dogs after fluoroacetate administration; hepatic artery flow was reduced, but other organ flows did not change significantly. These results indicate that pulmonary pressor and coronary dilator effects may be produced in intact dogs by selective metabolic blockade, in the absence of reduced oxygen supply or impairment in the electron transport system. These results also suggest that the increases in pulmonary arterial blood pressure, coronary blood flow, and cardiac output that occur during hypoxia probably are related to separate metabolic events in the tissue.

Full text

PDF
61

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERNE R. M., BLACKMON J. R., GARDNER T. H. Hypoxemia and coronary blood flow. J Clin Invest. 1957 Jul;36(7):1101–1106. doi: 10.1172/JCI103505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buckberg G. D., Luck J. C., Payne D. B., Hoffman J. I., Archie J. P., Fixler D. E. Some sources of error in measuring regional blood flow with radioactive microspheres. J Appl Physiol. 1971 Oct;31(4):598–604. doi: 10.1152/jappl.1971.31.4.598. [DOI] [PubMed] [Google Scholar]
  3. Cleaveland C. R., Rangno R. E., Shand D. G. A standardized isoproterenol sensitivity test. The effects of sinus arrhythmia, atropine, and propranolol. Arch Intern Med. 1972 Jul;130(1):47–52. doi: 10.1001/archinte.130.1.47. [DOI] [PubMed] [Google Scholar]
  4. DUKE H. N., KILLICK E. M. Pulmonary vasomotor responses of isolated perfused cat lungs to anoxia. J Physiol. 1952 Jul;117(3):303–316. doi: 10.1113/jphysiol.1952.sp004750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FARAH A., GRAHAM G., KODA F. The action of sodium fluoroacetate on the renal tubular transport of para-aminohippurate and glucose in the dog. J Pharmacol Exp Ther. 1953 Aug;108(4):410–423. [PubMed] [Google Scholar]
  6. FISCHER A., TAKACS L., MOLNAR G. Hepatic circulation in arterial hypoxia. Acta Med Acad Sci Hung. 1960;16:61–74. [PubMed] [Google Scholar]
  7. FRIEDLAND I. M., DIETRICH L. S. A rapid enzymic determination of L-lactic acid. Anal Biochem. 1961 Aug;2:390–392. doi: 10.1016/0003-2697(61)90014-8. [DOI] [PubMed] [Google Scholar]
  8. Gregg D. E., Khouri E. M., Donald D. E., Lowensohn H. S., Pasyk S. Coronary circulation in the conscious dog with cardiac neural ablation. Circ Res. 1972 Aug;31(2):129–144. doi: 10.1161/01.res.31.2.129. [DOI] [PubMed] [Google Scholar]
  9. HACKEL D. B., GOODALE W. T., KLEINERMAN J. Effects of hypoxia on the myocardial metabolism of intact dogs. Circ Res. 1954 Mar;2(2):169–174. doi: 10.1161/01.res.2.2.169. [DOI] [PubMed] [Google Scholar]
  10. HAGAN E. C., RAMSEY L. L., WOODARD G. Absorption, distribution, and excretion of sodium fluoroacetate (1080) in rats. J Pharmacol Exp Ther. 1950 Aug;99(41):432–434. [PubMed] [Google Scholar]
  11. HUCKABEE W. E. Control of concentration gradients of pyruvate and lactate across cell membranes in blood. J Appl Physiol. 1956 Sep;9(2):163–170. doi: 10.1152/jappl.1956.9.2.163. [DOI] [PubMed] [Google Scholar]
  12. Haddy F. J., Scott J. B. Metabolically linked vasoactive chemicals in local regulation of blood flow. Physiol Rev. 1968 Oct;48(4):688–707. doi: 10.1152/physrev.1968.48.4.688. [DOI] [PubMed] [Google Scholar]
  13. Hilton R., Eichholtz F. The influence of chemical factors on the coronary circulation. J Physiol. 1925 Mar 31;59(6):413–425. doi: 10.1113/jphysiol.1925.sp002200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KRASNOW N., LEVINE H. J., WAGMAN R. J., GORLIN R. Coronary blood flow measured by I-131 iodo-antipyrine. Circ Res. 1963 Jan;12:58–62. doi: 10.1161/01.res.12.1.58. [DOI] [PubMed] [Google Scholar]
  15. Korner P. I., White S. W. Circulatory control in hypoxia by the sympathetic nerves and adrenal medulla. J Physiol. 1966 May;184(2):272–290. doi: 10.1113/jphysiol.1966.sp007915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LILJESTRAND G. Chemical control of the distribution of the pulmonary blood flow. Acta Physiol Scand. 1958 Dec 15;44(3-4):216–240. doi: 10.1111/j.1748-1716.1958.tb01623.x. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., PASSONNEAU J. V., HASSELBERGER F. X., SCHULZ D. W. EFFECT OF ISCHEMIA ON KNOWN SUBSTRATES AND COFACTORS OF THE GLYCOLYTIC PATHWAY IN BRAIN. J Biol Chem. 1964 Jan;239:18–30. [PubMed] [Google Scholar]
  18. Liang C., Huckabee W. E. Effects of splenectomy and beta-adrenoceptor blockade on cardiac output response to acute hypoxemia. J Clin Invest. 1973 Dec;52(12):3129–3134. doi: 10.1172/JCI107512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Liang C., Huckabee W. E. Mechanisms regulating the cardiac output response to cyanide infusion, a model of hypoxia. J Clin Invest. 1973 Dec;52(12):3115–3128. doi: 10.1172/JCI107511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mellander S., Johansson B. Control of resistance, exchange, and capacitance functions in the peripheral circulation. Pharmacol Rev. 1968 Sep;20(3):117–196. [PubMed] [Google Scholar]
  21. NEWSHOLME E. A., RANDLE P. J. Regulation of glucose uptake by muscle. 5. Effects of anoxia, insulin, adrenaline and prolonged starving on concentrations of hexose phosphates in isolated rat diaphragm and perfused isolated rat heart. Biochem J. 1961 Sep;80:655–662. doi: 10.1042/bj0800655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. NOVAK M. COLORIMETRIC ULTRAMICRO METHOD FOR THE DETERMINATION OF FREE FATTY ACIDS. J Lipid Res. 1965 Jul;6:431–433. [PubMed] [Google Scholar]
  23. Opie L. H. Metabolic response during impending myocardial infarction. I. Relevance of studies of glucose and fatty acid metabolism in animals. Circulation. 1972 Feb;45(2):483–490. doi: 10.1161/01.cir.45.2.483. [DOI] [PubMed] [Google Scholar]
  24. Opie L. H. Metabolism of the heart in health and disease. I. Am Heart J. 1968 Nov;76(5):685–698. doi: 10.1016/0002-8703(68)90168-3. [DOI] [PubMed] [Google Scholar]
  25. PETERS R. A. Lethal synthesis. Proc R Soc Lond B Biol Sci. 1952 Feb 28;139(895):143–170. doi: 10.1098/rspb.1952.0001. [DOI] [PubMed] [Google Scholar]
  26. PETERS R. A. Mechanism of the toxicity of the active constituent of Dichapetalum cymosum and related compounds. Adv Enzymol Relat Subj Biochem. 1957;18:113–159. doi: 10.1002/9780470122631.ch3. [DOI] [PubMed] [Google Scholar]
  27. Richardson D. W., Kontos H. A., Raper A. J., Patterson J. L., Jr Modification by beta-adrenergic blockade of the circulatory respones to acute hypoxia in man. J Clin Invest. 1967 Jan;46(1):77–85. doi: 10.1172/JCI105513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rudolph A. M., Heymann M. A. The circulation of the fetus in utero. Methods for studying distribution of blood flow, cardiac output and organ blood flow. Circ Res. 1967 Aug;21(2):163–184. doi: 10.1161/01.res.21.2.163. [DOI] [PubMed] [Google Scholar]
  29. Schultz V., Lowenstein J. M. Purine nucleotide cycle. Evidence for the occurrence of the cycle in brain. J Biol Chem. 1976 Jan 25;251(2):485–492. [PubMed] [Google Scholar]
  30. Shepherd A. P., Granger H. J., Smith E. E., Guyton A. C. Local control of tissue oxygen delivery and its contribution to the regulation of cardiac output. Am J Physiol. 1973 Sep;225(3):747–755. doi: 10.1152/ajplegacy.1973.225.3.747. [DOI] [PubMed] [Google Scholar]
  31. Somlyo A. P., Somlyo A. V. Vascular smooth muscle. II. Pharmacology of normal and hypotensive vessels. Pharmacol Rev. 1970 Jun;22(2):249–353. [PubMed] [Google Scholar]
  32. Vance J. P., Parratt J. R., Ledingham I. M. The effects of hypoxia on myocardial blood flow and oxygen consumption: negative role of beta adrenoreceptors. Clin Sci. 1971 Sep;41(3):257–273. doi: 10.1042/cs0410257. [DOI] [PubMed] [Google Scholar]
  33. WASHKO M. E., RICE E. W. Determination of glucose by an improved enzymatic procedure. Clin Chem. 1961 Oct;7:542–545. [PubMed] [Google Scholar]
  34. WILLIS J. B. Determination of calcium in blood serum by atomic absorption spectroscopy. Nature. 1960 Apr 16;186:249–250. doi: 10.1038/186249a0. [DOI] [PubMed] [Google Scholar]
  35. Williamson J. R. Glycolytic control mechanisms. 3. Effects of iodoacetamide and fluoroacetate on glucose metabolism in the perfused rat heart. J Biol Chem. 1967 Oct 10;242(19):4476–4485. [PubMed] [Google Scholar]
  36. Williamson J. R. Glycolytic control mechanisms. II. Kinetics of intermediate changes during the aerobic-anoxic transition in perfused rat heart. J Biol Chem. 1966 Nov 10;241(21):5026–5036. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES