Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1977 Jul;60(1):197–214. doi: 10.1172/JCI108757

Spatial and Nonspatial Influences on the TQ-ST Segment Deflection of Ischemia

THEORETICAL AND EXPERIMENTAL ANALYSIS IN THE PIG

Roger P Holland 1, Harold Brooks 1, Barbara Lidl 1
PMCID: PMC372358  PMID: 874084

Abstract

Spatial and nonspatial aspects of TQ-ST segment mapping were studied with the solid angle theorem and randomly coded data from 15,000 electrograms of 160 anterior descending artery occlusions each of 100-s duration performed in 18 pigs. Factors analyzed included electrode location, ischemic area and shape, wall thickness, and increases in plasma potassium (K+). Change from control in the TQ-ST recorded at 60 s (ΔTQ-ST) was measured at 22 ischemic (IS) and nonischemic (NIS) epicardial sites overlying right (RV) and left (LV) ventricles. In IS regions, ΔTQ-ST decreased according to LV > septum > RV and LV base > LV apex. In NIS regions, LV sites had negative (Neg) ΔTQ-ST which increased as LV IS border was approached. However, RV NIS had positive (Pos) ΔTQ-ST which again increased as RV IS border was approached. With large artery occlusion IS area increased 123±18%, ΔTQ-ST at IS sites decreased (−38.1±3.6%), and sum of ΔTQ-ST at IS sites increased by only 67.3±10.3%. In RV NIS Pos ΔTQ-ST became Neg. With increased K+, ΔTQ-ST decreased proportionately to log K+ (r = 0.97±0.01) at IS and NIS sites on the epicardium and precordium. TQ-ST at 60 s was obliterated when K+ = 8.7±0.2 mM. All findings were significant (P < 0.005) and agreed with the solid angle theorem. Thus, a transmembrane potential difference and current flow at the IS boundary alone are responsible for the TQ-ST. Nonspatial factors affect the magnitude of transmembrane potential difference, while spatial factors alter the position of the boundary to the electrode site.

Full text

PDF
197

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BELLET S., GAZES P. C., STEIGER W. A. The effect of potassium on the electrocardiogram in the normal dog and in dogs with myocardial infarction. Am J Med Sci. 1950 Sep;220(3):237–246. doi: 10.1097/00000441-195022030-00001. [DOI] [PubMed] [Google Scholar]
  2. BROWN E. B., Jr, GOOTT B. Intrcellular hydrogen ion changes and potassium movement. Am J Physiol. 1963 May;204:765–770. doi: 10.1152/ajplegacy.1963.204.5.765. [DOI] [PubMed] [Google Scholar]
  3. Becker L. C., Ferreira R., Thomas M. Effect of propranolol and isoprenaline on regional left ventricular blood flow in experimental myocardial ischaemia. Cardiovasc Res. 1975 Mar;9(2):178–186. doi: 10.1093/cvr/9.2.178. [DOI] [PubMed] [Google Scholar]
  4. Becker L. C., Ferreira R., Thomas M. Mapping of left ventricular blood flow with radioactive microspheres in experimental coronary artery occlusion. Cardiovasc Res. 1973 May;7(3):391–400. doi: 10.1093/cvr/7.3.391. [DOI] [PubMed] [Google Scholar]
  5. Belardinelli L., Lucchese F. A., Wagner E. M., Sant'Anna J. R., Rodrigues R. Reduço da isquemia aguda do miocárdio pelo Verapamil. Avaliaço através do mapeamento epicárdico. Arq Bras Cardiol. 1975 Dec;28(6):599–607. [PubMed] [Google Scholar]
  6. Boineau J. P., Spach M. S. The relationship between the electrocardiogram and the electrical activity of the heart. J Electrocardiol. 1968;1(1):117–124. doi: 10.1016/s0022-0736(68)80014-7. [DOI] [PubMed] [Google Scholar]
  7. Braunwald E., Maroko P. R. The reduction of infarct size--an idea whose time (for testing) has come. Circulation. 1974 Aug;50(2):206–209. doi: 10.1161/01.cir.50.2.206. [DOI] [PubMed] [Google Scholar]
  8. Brooks H., Al-Sadir J., Schwartz J., Rich B., Harper P., Resnekov L. Biventricular dynamics during quantitated anteroseptal infarction in the porcine heart. Am J Cardiol. 1975 Nov;36(6):765–775. doi: 10.1016/0002-9149(75)90458-0. [DOI] [PubMed] [Google Scholar]
  9. Bruyneel K. J. Use of moving epicardial electrodes in defining ST-segment changes after acute coronary occlusion in the baboon. Relation to primary ventricular fibrillation. Am Heart J. 1975 Jun;89(6):731–741. doi: 10.1016/0002-8703(75)90188-x. [DOI] [PubMed] [Google Scholar]
  10. Capone R. J., Most A. S., Sydik P. A. Precordial ST segment mapping. A sensitive technique for the evaluation of myocardial injury? Chest. 1975 May;67(5):577–582. doi: 10.1378/chest.67.5.577. [DOI] [PubMed] [Google Scholar]
  11. Case R. B., Nasser M. G., Crampton R. S. Biochemical aspects of early myocardial ischemia. Am J Cardiol. 1969 Dec;24(6):766–775. doi: 10.1016/0002-9149(69)90465-2. [DOI] [PubMed] [Google Scholar]
  12. Cohen D., Kaufman L. A. Magnetic determination of the relationship between the S-T segment shift and the injury current produced by coronary artery occlusion. Circ Res. 1975 Mar;36(3):414–424. doi: 10.1161/01.res.36.3.414. [DOI] [PubMed] [Google Scholar]
  13. Cohn P. F., Kirk E. S., Downey J. M., Sonnenblick E. H., Gorlin R. Autoradiographic evaluation of myocardial collateral circulation in the canine heart. Cardiovasc Res. 1973 Mar;7(2):181–185. doi: 10.1093/cvr/7.2.181. [DOI] [PubMed] [Google Scholar]
  14. DURRER D., FORMIJNE P., van DAM R., van LIER A., BULLER J., MEYLER F. L. The electrocardiogram in normal and some abnormal conditions; in revived human fetal heart and in acute and chronic coronary occlusion. Am Heart J. 1961 Mar;61:303–316. doi: 10.1016/0002-8703(61)90599-3. [DOI] [PubMed] [Google Scholar]
  15. EDEIKEN J. Elevation of the RS-T segment, apparent or real, in the right precordial leads as a probable normal variant. Am Heart J. 1954 Sep;48(3):331–339. doi: 10.1016/0002-8703(54)90022-8. [DOI] [PubMed] [Google Scholar]
  16. EKMEKCI A., TOYOSHIMA H., KWOCZYNSKI J. K., NAGAYA T., PRINZMETAL M. Angina pectoris. IV. Clinical and experimental difference between ischemia with S-T elevation and ischemia with S-T depression. Am J Cardiol. 1961 Mar;7:412–426. doi: 10.1016/0002-9149(61)90485-4. [DOI] [PubMed] [Google Scholar]
  17. EKMEKCI A., TOYOSHIMA H., KWOCZYNSKI J. K., NAGAYA T., PRINZMETAL M. Angina pectoris. V. Giant R and receding S wave in myocardial ischemia and certain nonischemic conditions. Am J Cardiol. 1961 Apr;7:521–532. doi: 10.1016/0002-9149(61)90510-0. [DOI] [PubMed] [Google Scholar]
  18. FULTON W. F. Chronic generalized myocardial ischaemia with advanced coronary artery disease. Br Heart J. 1956 Jul;18(3):341–354. doi: 10.1136/hrt.18.3.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fozzard H. A., DasGupta D. S. ST-segment potentials and mapping. Theory and experiments. Circulation. 1976 Oct;54(4):533–537. doi: 10.1161/01.cir.54.4.533. [DOI] [PubMed] [Google Scholar]
  20. GETTES L. S., SURAWICZ B., SHIUE J. C. Effect of high K, and low K quinindine on QRS duration and ventricular action potential. Am J Physiol. 1962 Dec;203:1135–1140. doi: 10.1152/ajplegacy.1962.203.6.1135. [DOI] [PubMed] [Google Scholar]
  21. GOERKE J., PAGE E. CAT HEART MUSCLE IN VITRO. VI. POTASSIUM EXCHANGE IN PAPILLARY MUSCLES. J Gen Physiol. 1965 May;48:933–948. doi: 10.1085/jgp.48.5.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. GOLDMAN M. J. RS-T segment elevation in mid- and left precordial leads as a normal variant. Am Heart J. 1953 Dec;46(6):817–820. doi: 10.1016/0002-8703(53)90080-5. [DOI] [PubMed] [Google Scholar]
  23. Ginks W. R., Sybers H. D., Maroko P. R., Covell J. W., Sobel B. E., Ross J., Jr Coronary artery reperfusion. II. Reduction of myocardial infarct size at 1 week after the coronary occlusion. J Clin Invest. 1972 Oct;51(10):2717–2723. doi: 10.1172/JCI107091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Graham T. P., Jr, Ross J., Jr, Covell J. W., Sonnenblick E. H., Clancy R. L. Myocardial oxygen consumption in acute experimental cardiac depression. Circ Res. 1967 Aug;21(2):123–138. doi: 10.1161/01.res.21.2.123. [DOI] [PubMed] [Google Scholar]
  25. Grayson J., Irvine M. Myocardial infarction in the monkey: studies on the collateral circulation after acute coronary occlusion. Cardiovasc Res. 1968 Apr;2(2):170–178. doi: 10.1093/cvr/2.2.170. [DOI] [PubMed] [Google Scholar]
  26. Griggs D. M., Jr, Tchokoev V. V., Chen C. C. Transmural differences in ventricular tissue substrate levels due to coronary constriction. Am J Physiol. 1972 Mar;222(3):705–709. doi: 10.1152/ajplegacy.1972.222.3.705. [DOI] [PubMed] [Google Scholar]
  27. HAJDU S., LEONARD E. The cellular basis of cardiac glycoside action. Pharmacol Rev. 1959 Jun;11(2 Pt 1):173–209. [PubMed] [Google Scholar]
  28. Hamlin R. L., Smith C. R., Hellerstein H. K., Pipers F. S. Alterations in QRS during ischemia of the left ventricular free-wall in goats. J Electrocardiol. 1969 Jul;2(3):223–228. doi: 10.1016/s0022-0736(69)80081-6. [DOI] [PubMed] [Google Scholar]
  29. Holland R. P., Brooks H. Precordial and epicardial surface potentials during Myocardial ischemia in the pig. A theoretical and experimental analysis of the TQ and ST segments. Circ Res. 1975 Oct;37(4):471–480. doi: 10.1161/01.res.37.4.471. [DOI] [PubMed] [Google Scholar]
  30. Holland R. P., Brooks H. The QRS complex during myocardial ischemia. An experimental analysis in the porcine heart. J Clin Invest. 1976 Mar;57(3):541–550. doi: 10.1172/JCI108309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Holland R., Pashkow F., Brooks H. Atraumatic epicardial electrode and rapid sampling switch for cardiac surface mapping. J Appl Physiol. 1974 Sep;37(3):424–427. doi: 10.1152/jappl.1974.37.3.424. [DOI] [PubMed] [Google Scholar]
  32. Howe B. B., Fehn P. A., Pensinger R. R. Comparative anatomical studies of the coronary arteries of canine and porcine hearts. I. Free ventricular walls. Acta Anat (Basel) 1968;71(1):13–21. doi: 10.1159/000143165. [DOI] [PubMed] [Google Scholar]
  33. Karlsson J., Templeton G. H., Willerson J. T. Relationship between epicardial S-T segment changes and myocardial metabolism during acute coronary insufficiency. Circ Res. 1973 Jun;32(6):725–730. doi: 10.1161/01.res.32.6.725. [DOI] [PubMed] [Google Scholar]
  34. Khuri S. F., Flaherty J. T., O'Riordan J. B., Pitt B., Brawley R. K., Donahoo J. S., Gott V. L. Changes in intramyocardial ST segment voltage and gas tensions with regional myocardial ischemia in the dog. Circ Res. 1975 Oct;37(4):455–463. doi: 10.1161/01.res.37.4.455. [DOI] [PubMed] [Google Scholar]
  35. Kupersmith J., Shiang H., Litwak R. S., Herman M. V. Electrophysiological and antiarrhythmic effects of propranolol in canine acute myocardial ischemia. Circ Res. 1976 Apr;38(4):302–307. doi: 10.1161/01.res.38.4.302. [DOI] [PubMed] [Google Scholar]
  36. Lichtig C., Brooks H. Myocardial ultrastructure and function during progressive early ischemia in the intact heart. J Thorac Cardiovasc Surg. 1975 Aug;70(2):309–315. [PubMed] [Google Scholar]
  37. Maroko P. R., Kjekshus J. K., Sobel B. E., Watanabe T., Covell J. W., Ross J., Jr, Braunwald E. Factors influencing infarct size following experimental coronary artery occlusions. Circulation. 1971 Jan;43(1):67–82. doi: 10.1161/01.cir.43.1.67. [DOI] [PubMed] [Google Scholar]
  38. McFEE R., JOHNSTON F. D. Electrocardiographic leads. I. Introduction. Circulation. 1953 Oct;8(4):554–568. doi: 10.1161/01.cir.8.4.554. [DOI] [PubMed] [Google Scholar]
  39. Muller J. E., Maroko P. R., Braunwald E. Evaluation of precordial electrocardiographic mapping as a means of assessing changes in myocardial ischemic injury. Circulation. 1975 Jul;52(1):16–27. doi: 10.1161/01.cir.52.1.16. [DOI] [PubMed] [Google Scholar]
  40. Nayler W. G. Calcium exchange in cardiac muscle: a basic mechanism of drug action. Am Heart J. 1967 Mar;73(3):379–394. doi: 10.1016/0002-8703(67)90435-8. [DOI] [PubMed] [Google Scholar]
  41. Nielsen B. L. ST-segment elevation in acute myocardial infarction. Prognostic importance. Circulation. 1973 Aug;48(2):338–345. doi: 10.1161/01.cir.48.2.338. [DOI] [PubMed] [Google Scholar]
  42. Norris R. M., Barratt-Boyes C., Heng M. K., Singh B. N. Failure of ST segment elevation to predict severity of acute myocardial infarction. Br Heart J. 1976 Jan;38(1):85–92. doi: 10.1136/hrt.38.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. PAGE E., GOERKE R. J., STORM S. R. CAT HEART MUSCLE IN VITRO. IV. INHIBITION OF TRANSPORT IN QUIESCENT MUSCLES. J Gen Physiol. 1964 Jan;47:531–543. doi: 10.1085/jgp.47.3.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. PITT B. Interarterial coronary anastomoses. Occurrence in normal hearts and in certain pathologic conditions. Circulation. 1959 Nov;20:816–822. doi: 10.1161/01.cir.20.5.816. [DOI] [PubMed] [Google Scholar]
  45. Parker J. O., Chiong M. A., West R. O., Case R. B. The effect of ischemia and alterations of heart rate on myocardial potassium balance in man. Circulation. 1970 Aug;42(2):205–217. doi: 10.1161/01.cir.42.2.205. [DOI] [PubMed] [Google Scholar]
  46. Plonsey R. An evaluation of several cardiac activation models. J Electrocardiol. 1974;7(3):237–244. doi: 10.1016/s0022-0736(74)80035-x. [DOI] [PubMed] [Google Scholar]
  47. Polimeni P. I., Vassalle M. Potassium fluxes in Purkinje and ventricular muscle fibers during rest and activity. Am J Physiol. 1970 May;218(5):1381–1388. doi: 10.1152/ajplegacy.1970.218.5.1381. [DOI] [PubMed] [Google Scholar]
  48. Redwood D. R., Smith E. R., Epstein S. E. Coronary artery occlusion in the conscious dog. Effects of alterations in heart rate and arterial pressure on the degree of myocardial ischemia. Circulation. 1972 Aug;46(2):323–332. doi: 10.1161/01.cir.46.2.323. [DOI] [PubMed] [Google Scholar]
  49. Reid D. S., Pelides L. J., Shillingford J. P. Surface mapping of RS-T segment in acute myocardial infarction. Br Heart J. 1971 May;33(3):370–374. doi: 10.1136/hrt.33.3.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Reimer K. A., Rasmussen M. M., Jennings R. B. Reduction by propranolol of myocardial necrosis following temporary coronary artery occlusion in dogs. Circ Res. 1973 Sep;33(3):353–363. doi: 10.1161/01.res.33.3.353. [DOI] [PubMed] [Google Scholar]
  51. SAMSON W. E., SCHER A. M. Mechanism of S-T segment alteration during acute myocardial injury. Circ Res. 1960 Jul;8:780–787. doi: 10.1161/01.res.8.4.780. [DOI] [PubMed] [Google Scholar]
  52. SAYEN J. J., PEIRCE G., KATCHER A. H., SHELDON W. F. Correlation of intramyocardial electrocardiograms with polarographic oxygen and contractility in the nonischemic and regionally ischemic left ventricle. Circ Res. 1961 Nov;9:1268–1279. doi: 10.1161/01.res.9.6.1268. [DOI] [PubMed] [Google Scholar]
  53. SAYEN J. J., SHELDON W. F., PEIRCE G., KUO P. T. Polarographic oxygen, the epicardial electrocardiogram and muscle contraction in experimental acute regional ischemia of the left ventricle. Circ Res. 1958 Nov;6(6):779–798. doi: 10.1161/01.res.6.6.779. [DOI] [PubMed] [Google Scholar]
  54. SJOSTRAND T. The relationship between the heart frequency and the S-T level of the electrocardiogram. Acta Med Scand. 1950;138(3):201–210. [PubMed] [Google Scholar]
  55. Sarnoff S. J., Gilmore J. P., McDonald R. H., Jr, Daggett W. M., Weisfeldt M. L., Mansfield P. B. Relationship between myocardial K+ balance, O2 consumption, and contractility. Am J Physiol. 1966 Aug;211(2):361–375. doi: 10.1152/ajplegacy.1966.211.2.361. [DOI] [PubMed] [Google Scholar]
  56. Shigenobu K., Schneider J. A., Sperelakis N. Verapamil blockade of slow Na+ and Ca++ responses in myocardial cells. J Pharmacol Exp Ther. 1974 Aug;190(2):280–288. [PubMed] [Google Scholar]
  57. Smith H. J., Singh B. N., Norris R. M., John M. B., Hurley P. J. Changes in myocardial blood flow and S-T segment elevation following coronary artery occlusion in dogs. Circ Res. 1975 Jun;36(6):697–705. doi: 10.1161/01.res.36.6.697. [DOI] [PubMed] [Google Scholar]
  58. Surawicz B. Relationship between electrocardiogram and electrolytes. Am Heart J. 1967 Jun;73(6):814–834. doi: 10.1016/0002-8703(67)90233-5. [DOI] [PubMed] [Google Scholar]
  59. TOYOSHIMA H., PRINZMETAL M., HORIBA M., KOBAYASHI T., MIZUNO Y., NAKAYAMA R., YAMADA K. THE NATURE OF NORMAL AND ABNORMAL ELECTROCARDIOGRAMS. 8. RELATION OF ST SEGMENT AND T WAVE CHANGES TO INTRACELLULAR POTENTIALS. Arch Intern Med. 1965 Jan;115:4–15. doi: 10.1001/archinte.1965.03860130006002. [DOI] [PubMed] [Google Scholar]
  60. Timogiannakis G., Amende I., Martinez E., Thomas M. ST segment deviation and regional myocardial blood flow during experimental partial coronary artery occlusion. Cardiovasc Res. 1974 Jul;8(4):469–477. doi: 10.1093/cvr/8.4.469. [DOI] [PubMed] [Google Scholar]
  61. VANCITTERS R. L., FRANKLIN D. L., RUSHMER R. F. LEFT VENTRICULAR DYNAMICS IN DOGS DURING ANESTHESIA WITH ALPHA-CHLORALOSE AND SODIUM PENTOBARBITAL. Am J Cardiol. 1964 Mar;13:349–354. doi: 10.1016/0002-9149(64)90451-5. [DOI] [PubMed] [Google Scholar]
  62. Vassalle M., Barnabei O. Norepinephrine and potassium fluxes in cardiac Purkinje fibers. Pflugers Arch. 1971;322(4):287–303. doi: 10.1007/BF00587747. [DOI] [PubMed] [Google Scholar]
  63. WILSON F. N., BAYLEY R. H. The electric field of an eccentric dipole in a homogeneous spherical conducting medium. Circulation. 1950 Jan;1(1):84–92. doi: 10.1161/01.cir.1.1.84. [DOI] [PubMed] [Google Scholar]
  64. Wit A. L., Hoffman B. F., Rosen M. R. Electrophysiology and pharmacology of cardiac arrhythmias. IX. Cardiac electrophysiologic effects of beta adrenergic receptor stimulation and blockade. Part A. Am Heart J. 1975 Oct;90(4):521–533. doi: 10.1016/0002-8703(75)90436-6. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES