Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1977 Aug;60(2):411–420. doi: 10.1172/JCI108790

The Origin of Chylomicron Phosphatidylcholine in the Rat

Charles M Mansbach II 1,2,3
PMCID: PMC372382  PMID: 874099

Abstract

This study investigates the pathways of origin of chylomicron phosphatidylcholine (PC) using a lymph- and bile-fistulated rat infused with a stabilized triolein emulsion. [14C-glycerol]PC was used to evaluate chylomicron PC generated by lyso PC acyltransferase. The percentage of chylomicron PC derived from the PC infused was directly proportional to the PC concentration in the infusate. When the infusate PC concentration was 10 mM, essentially all the chylomicron PC was derived therefrom at 4-6 h of infusion. Incorporation of the radiolabel was not found to be as great in the lymph subnatant PC as in chylomicron PC, suggesting that chylomicron and lymph subnatant PC might be supplied from different PC precursor pools.

32Pi was infused into similarly prepared rats to judge chylomicron PC synthesized from de novo sources. In these experiments it was found that the percentage of chylomicron PC derived from de novo synthesis was inversely related to the PC concentration of the infusate. This suggests that exogenously infused PC inhibits de novo PC synthesis.

When [32P]rat bile PC was infused with [14C-glycerol]potato PC, the bile PC was preferred as a chylomicron precursor despite the greater similarity of the saturated fatty acids of potato PC to those of chylomicron PC. When the saturated fatty acids of bile and chylomicron PC were compared, chylomicron PC was significantly richer in stearate, suggesting extensive enterocyte modification of the saturated fatty acids of bile PC.

Full text

PDF
411

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASHWORTH C. T., JOHNSTON J. M. THE INTESTINAL ABSORPTION OF FATTY ACID: A BIOCHEMICAL AND ELECTRON MICROSCOPIC STUDY. J Lipid Res. 1963 Oct;4:454–460. [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Clark S. B., Lawergren B., Martin J. V. Regional intestinal absorptive capacities for triolein: an alternative to markers. Am J Physiol. 1973 Sep;225(3):574–585. doi: 10.1152/ajplegacy.1973.225.3.574. [DOI] [PubMed] [Google Scholar]
  4. Clark S. B. The uptake of oleic acid by rat small intestine: a comparison of methodologies. J Lipid Res. 1971 Jan;12(1):43–55. [PubMed] [Google Scholar]
  5. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  6. Fallon H. J., Barwick J., Lamb R. G., van den Bosch H. Studies of rat liver microsomal diglyceride acyltransferase and cholinephosphotransferase using microsomal-bound substrate: effects of high fructose intake. J Lipid Res. 1975 Mar;16(2):107–115. [PubMed] [Google Scholar]
  7. Galliard T. A simple biochemical method for the preparation of high specific activity ( 14 C) acyl-labelled phosphatidylcholine and other phospholipids. Biochim Biophys Acta. 1972 Apr 18;260(4):541–546. doi: 10.1016/0005-2760(72)90003-3. [DOI] [PubMed] [Google Scholar]
  8. Gurr M. I., Brindley D. N., Hübscher G. Metabolism of phospholipids. 8. Biosynthesis of phosphatidylcholine in the intestinal mucosa. Biochim Biophys Acta. 1965 Jun 1;98(3):486–501. doi: 10.1016/0005-2760(65)90145-1. [DOI] [PubMed] [Google Scholar]
  9. Hofmann A. F., Small D. M. Detergent properties of bile salts: correlation with physiological function. Annu Rev Med. 1967;18:333–376. doi: 10.1146/annurev.me.18.020167.002001. [DOI] [PubMed] [Google Scholar]
  10. Kano H., Ono K. Utilization of endogenous phospholipids by the backreaction of CDP-choline (-ethanolamine): 1,2-diglyceride choline (ethanolamine)-phosphotransferase in rat liver microsomes. Biochim Biophys Acta. 1973 May 24;306(2):203–217. [PubMed] [Google Scholar]
  11. LANDS W. E. Metabolism of glycerolipids. 2. The enzymatic acylation of lysolecithin. J Biol Chem. 1960 Aug;235:2233–2237. [PubMed] [Google Scholar]
  12. LEA C. H., RHODES D. N., STOLL R. D. Phospholipids. 3. On the chromatographic separation of glycerophospholipids. Biochem J. 1955 Jul;60(3):353–363. doi: 10.1042/bj0600353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MENZEL D. B., OLCOTT H. S. POSITIONAL DISTRIBUTION OF FATTY ACIDS IN FISH AND OTHER ANIMAL LECITHINS. Biochim Biophys Acta. 1964 Apr 20;84:133–139. doi: 10.1016/0926-6542(64)90069-1. [DOI] [PubMed] [Google Scholar]
  14. MINARI O., ZILVERSMIT D. B. BEHAVIOR OF DOG LYMPH CHYLOMICRON LIPID CONSTITUENTS DURING INCUBATION WITH SERUM. J Lipid Res. 1963 Oct;4:424–436. [PubMed] [Google Scholar]
  15. Mansbach C. M., 2nd, Cohen R. S., Leff P. B. Isolation and properties of the mixed lipid micelles present in intestinal content during fat digestion in man. J Clin Invest. 1975 Oct;56(4):781–791. doi: 10.1172/JCI108156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mansbach C. M., 2nd Complex lipid synthesis in hamster intestine. Biochim Biophys Acta. 1973 Feb 14;296(2):386–402. doi: 10.1016/0005-2760(73)90097-0. [DOI] [PubMed] [Google Scholar]
  17. Mansbach C. M., 2nd Effect of acute dietary alteration upon intestinal lipid synthesis. Lipids. 1975 Jun;10(6):318–321. doi: 10.1007/BF02532452. [DOI] [PubMed] [Google Scholar]
  18. Mansbach C. M., 2nd Intramicrosomal location in intestine of enzymes which synthesize complex lipid. Enzyme. 1976;21(2):137–141. doi: 10.1159/000458852. [DOI] [PubMed] [Google Scholar]
  19. Mansbach C. M., 2nd Lysolecithin acyltransferase in hamster intestinal mucosa. Lipids. 1972 Sep;7(9):593–595. doi: 10.1007/BF02531961. [DOI] [PubMed] [Google Scholar]
  20. Mansbach C. M. Effect of fat feeding on complex lipid synthesis in hamster intestine. Gastroenterology. 1975 Apr;68(4 Pt 1):708–714. [PubMed] [Google Scholar]
  21. NOMA A. STUDIES ON THE PHOSPHOLIPID METABOLISM OF THE INTESTINAL MUCOSA DURING FAT ABSORPTION. J Biochem. 1964 Dec;56:522–532. doi: 10.1093/oxfordjournals.jbchem.a128030. [DOI] [PubMed] [Google Scholar]
  22. Nilsson A. Intestinal absorption of lecithin and lysolecithin by lymph fistula rats. Biochim Biophys Acta. 1968 Mar 4;152(2):379–390. doi: 10.1016/0005-2760(68)90047-7. [DOI] [PubMed] [Google Scholar]
  23. SENIOR J. R. INTESTINAL ABSORPTION OF FATS. J Lipid Res. 1964 Oct;5:495–521. [PubMed] [Google Scholar]
  24. SNYDER F., STEPHENS N. A simplified spectrophotometric determination of ester groups in lipids. Biochim Biophys Acta. 1959 Jul;34:244–245. doi: 10.1016/0006-3002(59)90255-0. [DOI] [PubMed] [Google Scholar]
  25. Sabesin S. M., Holt P. R. Intestinal lipid absorption: evidence for an intrinsic defect of chylomicron secretion by normal rat distal intestine. Lipids. 1975 Dec;10(12):840–846. doi: 10.1007/BF02532330. [DOI] [PubMed] [Google Scholar]
  26. Saunders D. R., Ways P. O., Parmentier C. M., Rubin C. E. Studies on the lipid composition of human small bowel mucosa. J Clin Invest. 1966 Sep;45(9):1516–1525. doi: 10.1172/JCI105458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Scow R. O., Stein Y., Stein O. Incorporation of dietary lecithin and lysolecithin into lymph chylomicrons in the rat. J Biol Chem. 1967 Nov 10;242(21):4919–4924. [PubMed] [Google Scholar]
  28. Stein Y., Stein O. Metabolism of labeled lysolecithin, lysophosphatidyl ethanolamine and lecithin in the rat. Biochim Biophys Acta. 1966 Feb 1;116(1):95–107. doi: 10.1016/0005-2760(66)90095-6. [DOI] [PubMed] [Google Scholar]
  29. Subbaiah P. V., Sastry P. S., Ganguly J. Acylation of lysolecithin to lecithin by a brush-border-free particular preparation from rat intestinal mucosa. Biochem J. 1969 Jun;113(2):441–442. doi: 10.1042/bj1130441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sundler R., Akesson B. Regulation of phospholipid biosynthesis in isolated rat hepatocytes. Effect of different substrates. J Biol Chem. 1975 May 10;250(9):3359–3367. [PubMed] [Google Scholar]
  31. Treble D. H., Frumkin S., Balint J. A., Beeler D. A. The entry of choline into lecithin, in vivo, by base exchange. Biochim Biophys Acta. 1970 Feb 10;202(1):163–171. doi: 10.1016/0005-2760(70)90227-4. [DOI] [PubMed] [Google Scholar]
  32. WEISS S. B., SMITH S. W., KENNEDY E. P. The enzymatic formation of lecithin from cytidine diphosphate choline and D-1,2-diglyceride. J Biol Chem. 1958 Mar;231(1):53–64. [PubMed] [Google Scholar]
  33. WHYTE M., GOODMAN D. S., KARMEN A. FATTY ACID ESTERIFICATION AND CHYLOMICRON FORMATION DURING FAT ABSORPTION IN RAT. 3. POSITIONAL RELATIONS IN TRIGLYCERIDES AND LECITHIN. J Lipid Res. 1965 Apr;6:233–240. [PubMed] [Google Scholar]
  34. Warshaw A. L. A simplified method of cannulating the intestinal lymphatic of the rat. Gut. 1972 Jan;13(1):66–67. doi: 10.1136/gut.13.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Weinhold P. A., Skinner R. S., Sanders R. D. Activity and some properties of choline kinase, cholinephosphate cytidyltransferase and choline phosphotransferase during liver development in the rat. Biochim Biophys Acta. 1973 Oct 17;326(1):43–51. doi: 10.1016/0005-2760(73)90026-x. [DOI] [PubMed] [Google Scholar]
  36. Zilversmit D. B. The composition and structure of lymph chylomicrons in dog, rat, and man. J Clin Invest. 1965 Oct;44(10):1610–1622. doi: 10.1172/JCI105267. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES