Abstract
Muscular exercise is associated with hypermetabolism and increased hypoxic ventilatory response (HVR). In order to dissociate mechanical and metabolic factors, the effect of hypermetabolism on hypoxic ventilatory response was evaluated at rest. Carbohydrate and protein feeding increases metabolic rate, and their effects on chemosensitivity, ventilation, and blood pH were evaluated in six normal subjects 2 h and 3 h after calorically equal test meals (1,000 cal).
After carbohydrate, base-line oxygen consumption (V̇o2) increased from 237±11.3 ml/min (SEM) to 302±19.4 (P < 0.001) and 303±18.5 (P < 0.001) at 2 h and 3 h, respectively. Hypoxic ventilatory response, measured as shape parameter A, increased from a control of 144±11.8 to 330±61.0 (P < 0.01) at 2 h and 286±57.0 (P < 0.05) at 3 h. These changes were associated with a mild metabolic acidosis as pH decreased from a control of 7.402±0.004 to 7.371±0.009 (P < 0.005) at 2 h and 7.377±0.008 (P < 0.005) at 3 h.
After protein, V̇o2 increased from 241±6.7 to 265±6.2 (P < 0.02) and 270±5.4 (P < 0.001), an overall increase less than that which occurred after carbohydrate (P < 0.01). Hypoxic ventilatory response increased from 105±14.5 to 198±24.3 (P < 0.02) at 2 h and 219±17.3 (P < 0.01) at 3 h, which was not different from the increase with carbohydrate. After protein, no acidosis occurred. Thus, after protein, HVR increased despite the absence of a systemic acidosis.
We conclude that both carbohydrate and protein feedings are associated with resting hypermetabolism and increased HVR compared with the fasting state. For both meals, increased metabolic rate was correlated with increased hypoxic response.
Full text
PDF![900](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94af/372438/8a3aac7d9c51/jcinvest00658-0130.png)
![901](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94af/372438/c2ca4843f4c1/jcinvest00658-0131.png)
![902](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94af/372438/0ca2a164d22e/jcinvest00658-0132.png)
![903](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94af/372438/a1b12424fc4d/jcinvest00658-0133.png)
![904](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94af/372438/15ac0744bb60/jcinvest00658-0134.png)
![905](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94af/372438/f3f82714a771/jcinvest00658-0135.png)
![906](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94af/372438/25bd239aa308/jcinvest00658-0136.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDERTON J. L., HARRIS E. A., ROBSON J. S. THE VENTILATORY RESPONSE TO CARBON DIOXIDE AND HYDROGEN ION IN RENAL FAILURE. Clin Sci. 1965 Apr;28:251–258. [PubMed] [Google Scholar]
- Berl T., Brautbar N., Ben-David M., Czaczkes W., Kleeman C. Osmotic control of prolactin release and its effect on renal water excretion in man. Kidney Int. 1976 Aug;10(2):158–163. doi: 10.1038/ki.1976.90. [DOI] [PubMed] [Google Scholar]
- Bhattacharyya N. K., Cunningham D. J., Goode R. C., Howson M. G., Lloyd B. B. Hypoxia, ventilation, PCO2 and exercise. Respir Physiol. 1970 Jun;9(3):329–347. doi: 10.1016/0034-5687(70)90090-3. [DOI] [PubMed] [Google Scholar]
- Doekel R. C., Jr, Zwillich C. W., Scoggin C. H., Kryger M., Weil J. V. Clinical semi-starvation: depression of hypoxic ventilatory response. N Engl J Med. 1976 Aug 12;295(7):358–361. doi: 10.1056/NEJM197608122950703. [DOI] [PubMed] [Google Scholar]
- Edelman N. H., Santiago T. V., Conn H. L., Jr Luft's syndrome: O2 cost of exercise and chemical control of breathing. J Appl Physiol. 1975 Nov;39(5):857–859. doi: 10.1152/jappl.1975.39.5.857. [DOI] [PubMed] [Google Scholar]
- Engel L. A., Ritchie B. Ventilatory response to inhaled carbon dioxide in hyperthyroidism. J Appl Physiol. 1971 Feb;30(2):173–177. doi: 10.1152/jappl.1971.30.2.173. [DOI] [PubMed] [Google Scholar]
- Forster H. V., Dempsey J. A., Thomson J., Vidruk E., DoPico G. A. Estimation of arterial PO2, PCO2, pH, and lactate from arterialized venous blood. J Appl Physiol. 1972 Jan;32(1):134–137. doi: 10.1152/jappl.1972.32.1.134. [DOI] [PubMed] [Google Scholar]
- Gabel R. A., Weiskopf R. B. Ventilatory interaction between hypoxia and [H+] at chemoreceptors of man. J Appl Physiol. 1975 Aug;39(2):292–296. doi: 10.1152/jappl.1975.39.2.292. [DOI] [PubMed] [Google Scholar]
- Gaudio R., Jr, Abramson N. Heat-induced hyperventilation. J Appl Physiol. 1968 Dec;25(6):742–746. doi: 10.1152/jappl.1968.25.6.742. [DOI] [PubMed] [Google Scholar]
- Gibson G. J., Streeton J. A. Ventilatory responses and acute acid-base changes in response to inhaled carbon dioxide in patients with chronic renal failure on long-term haemodialysis. Respiration. 1973;30(5):389–401. doi: 10.1159/000193052. [DOI] [PubMed] [Google Scholar]
- Hamilton R. W., Epstein P. E., Henderson L. W., Edelman N. H., Fishman A. P. Control of breathing in uremia: ventilatory response to CO2 after hemodialysis. J Appl Physiol. 1976 Aug;41(2):216–222. doi: 10.1152/jappl.1976.41.2.216. [DOI] [PubMed] [Google Scholar]
- Heinemann H. O., Goldring R. M. Bicarbonate and the regulation of ventilation. Am J Med. 1974 Sep;57(3):361–370. doi: 10.1016/0002-9343(74)90131-4. [DOI] [PubMed] [Google Scholar]
- Hirshman C. A., McCullough R. E., Weil J. V. Normal values for hypoxic and hypercapnic ventilaroty drives in man. J Appl Physiol. 1975 Jun;38(6):1095–1098. doi: 10.1152/jappl.1975.38.6.1095. [DOI] [PubMed] [Google Scholar]
- Kallos T., Hudson H. E., Rouge J. C., Smith T. C. Interaction of the effects of naloxone and oxymorphone on human respiration. Anesthesiology. 1972 Mar;36(3):278–285. doi: 10.1097/00000542-197203000-00016. [DOI] [PubMed] [Google Scholar]
- Kronenberg R. S., Drage C. W. Attenuation of the ventilatory and heart rate responses to hypoxia and hypercapnia with aging in normal men. J Clin Invest. 1973 Aug;52(8):1812–1819. doi: 10.1172/JCI107363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine S., Huckabee W. E. Ventilatory response to drug-induced hypermetabolism. J Appl Physiol. 1975 May;38(5):827–833. doi: 10.1152/jappl.1975.38.5.827. [DOI] [PubMed] [Google Scholar]
- Natalino M. R., Zwillich C. W., Weil J. V. Effects of hyperthermia on hypoxic ventilatory response in normal man. J Lab Clin Med. 1977 Mar;89(3):564–572. [PubMed] [Google Scholar]
- RAMSAY A. G. Effects of metabolism and anesthesia on pulmonary ventilation. J Appl Physiol. 1959 Jan;14(1):102–104. doi: 10.1152/jappl.1959.14.1.102. [DOI] [PubMed] [Google Scholar]
- Read D. J. A clinical method for assessing the ventilatory response to carbon dioxide. Australas Ann Med. 1967 Feb;16(1):20–32. doi: 10.1111/imj.1967.16.1.20. [DOI] [PubMed] [Google Scholar]
- Saltzman H. A., Salzano J. V. Effects of carbohydrate metabolism upon respiratory gas exchange in normal men. J Appl Physiol. 1971 Feb;30(2):228–231. doi: 10.1152/jappl.1971.30.2.228. [DOI] [PubMed] [Google Scholar]
- VALTIN H., TENNEY S. M. Respiratory adaption to hyperthyroidism. J Appl Physiol. 1960 Nov;15:1107–1112. doi: 10.1152/jappl.1960.15.6.1107. [DOI] [PubMed] [Google Scholar]
- Vejby-Christensen H., Strange Petersen E. Effect of body temperature and hypoxia on the ventilatory CO2 response in man. Respir Physiol. 1973 Dec;19(3):322–332. doi: 10.1016/0034-5687(73)90036-4. [DOI] [PubMed] [Google Scholar]
- Wasserman K., Whipp B. J., Castagna J. Cardiodynamic hyperpnea: hyperpnea secondary to cardiac output increase. J Appl Physiol. 1974 Apr;36(4):457–464. doi: 10.1152/jappl.1974.36.4.457. [DOI] [PubMed] [Google Scholar]
- Weil J. V., Byrne-Quinn E., Sodal I. E., Friesen W. O., Underhill B., Filley G. F., Grover R. F. Hypoxic ventilatory drive in normal man. J Clin Invest. 1970 Jun;49(6):1061–1072. doi: 10.1172/JCI106322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weil J. V., Byrne-Quinn E., Sodal I. E., Kline J. S., McCullough R. E., Filley G. F. Augmentation of chemosensitivity during mild exercise in normal man. J Appl Physiol. 1972 Dec;33(6):813–819. doi: 10.1152/jappl.1972.33.6.813. [DOI] [PubMed] [Google Scholar]
- Weil J. V., Jamieson G., Brown D. W., Grover R. F. The red cell mass--arterial oxygen relationship in normal man. Application to patients with chronic obstructive airway disease. J Clin Invest. 1968 Jul;47(7):1627–1639. doi: 10.1172/JCI105854. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weil J. V., Sodal I. E., Speck R. P. A modified fuel cell for the analysis of oxygen concentration of gases. J Appl Physiol. 1967 Sep;23(3):419–422. doi: 10.1152/jappl.1967.23.3.419. [DOI] [PubMed] [Google Scholar]
- Zwillich C. W., Pierson D. J., Hofeldt F. D., Lufkin E. G., Weil J. V. Ventilatory control in myxedema and hypothyroidism. N Engl J Med. 1975 Mar 27;292(13):662–665. doi: 10.1056/NEJM197503272921302. [DOI] [PubMed] [Google Scholar]