Abstract
The response of chick intestine to vitamin D and its metabolites was studied in an organ culture preparation of chick ileum explants. Both 25-hydroxycholecalciferol (25-OHD3) at a concentration of 20 ng/ml or greater and 1,25-dihydroxycholecalciferol [1,25-(OH)2D3] at a concentration of 50 pg/ml or greater stimulated the rate of accumulation of [32P]phosphate and 45Ca by the explants and the incorporation of [3H]thymidine into DNA. The accumulation of [32P]phosphate by the explants was against a concentration gradient and inhibited by ouabain and dinitrophenol. Two saturable mechanisms appeared to mediate the cellular accumulation of phosphate with Ka of 0.0047 and 0.125 mM, respectively. The Vmax of the lower affinity transport mechanism was accelerated by 1,25-(OH)2D3. Actinomycin D (5.0 μg/ml) did not block the intestinal response to 1,25-(OH)2D3 stimulation of both [32p]phosphate and 45Ca accumulation. Significant stimulation of [32P]phosphate accumulation was observed 30 min after the addition of 1,25-(OH)2D3, preceding the sterol-induced increase in the rate of 45Ca uptake by 30 min and the sterol-induced increase in [3H]thymidine incorporation into DNA by 150 min. Increasing extracellular phosphate concentration to 3.0 mM increased [3H]thymidine incorporation into DNA and the rate of 45Ca uptake by the explants. Reducing extracellular phosphate concentration to 0.05 mM attenuated the response of the explants to 1,25-(OH)2D3. From these observations it is postulated that the primary action of vitamin D sterols in the intestine is to enhance the ability of the mucosal cell to accumulate phosphate. The data suggest that restoration of intracellular phosphate levels may then permit expression of the cells' response to vitamin D sterols.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams T. H., Norman A. W. Studies on the mechanism of action of calciferol. I. Basic parameters of vitamin D-mediated calcium transport. J Biol Chem. 1970 Sep 10;245(17):4421–4431. [PubMed] [Google Scholar]
- BONTING S. L., JONES M. Determination of microgram quantities of deoxyribonucleic acid and protein in tissues grown in vitro. Arch Biochem Biophys. 1957 Feb;66(2):340–353. doi: 10.1016/s0003-9861(57)80009-5. [DOI] [PubMed] [Google Scholar]
- Baxter L. A., DeLuca H. F. Stimulation of 25-hydroxyvitamin D3-1alpha-hydroxylase by phosphate depletion. J Biol Chem. 1976 May 25;251(10):3158–3161. [PubMed] [Google Scholar]
- Birge S. J., Alpers D. H. Stimulation of intestinal mucosal proliferation by vitamin D. Gastroenterology. 1973 May;64(5):977–982. [PubMed] [Google Scholar]
- Birge S. J., Haddad J. G. 25-hydroxycholecalciferol stimulation of muscle metabolism. J Clin Invest. 1975 Nov;56(5):1100–1107. doi: 10.1172/JCI108184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birge S. J., Switzer S. C., Leonard D. R. Influence of sodium and parathyroid hormone on calcium release from intestinal mucosal cells. J Clin Invest. 1974 Sep;54(3):702–709. doi: 10.1172/JCI107808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borle A. B. Kinetic analyses of calcium movements in cell cultures. IV. Effects of phosphate and parathyroid hormone in kidney cells. Endocrinology. 1970 Jun;86(6):1389–1393. doi: 10.1210/endo-86-6-1389. [DOI] [PubMed] [Google Scholar]
- Boyle I. T., Miravet L., Gray R. W., Holick M. F., Deluca H. F. The response of intestinal calcium transport to 25-hydroxy and 1,25-dihydroxy vitamin D in nephrectomized rats. Endocrinology. 1972 Mar;90(3):605–608. doi: 10.1210/endo-90-3-605. [DOI] [PubMed] [Google Scholar]
- CERIOTTI G. A microchemical determination of desoxyribonucleic acid. J Biol Chem. 1952 Sep;198(1):297–303. [PubMed] [Google Scholar]
- Chen T. C., Castillo L., Korycka-Dahl M., DeLuca H. F. Role of vitamin D metabolites in phosphate transport of rat intestine. J Nutr. 1974 Aug;104(8):1056–1060. doi: 10.1093/jn/104.8.1056. [DOI] [PubMed] [Google Scholar]
- Cox R. F., Mathias A. P. Cytoplasmic effects of cortisol in liver. Biochem J. 1969 Dec;115(4):777–787. doi: 10.1042/bj1150777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeLuca H. F., Schnoes H. K. Metabolism and mechanism of action of vitamin D. Annu Rev Biochem. 1976;45:631–666. doi: 10.1146/annurev.bi.45.070176.003215. [DOI] [PubMed] [Google Scholar]
- Fleck A., Begg D. The estimation of ribonucleic acid using ultraviolet absorption measurements. Biochim Biophys Acta. 1965 Nov 8;108(3):333–339. doi: 10.1016/0005-2787(65)90025-0. [DOI] [PubMed] [Google Scholar]
- Fraser D. R., Kodicek E. Unique biosynthesis by kidney of a biological active vitamin D metabolite. Nature. 1970 Nov 21;228(5273):764–766. doi: 10.1038/228764a0. [DOI] [PubMed] [Google Scholar]
- Freund T., Bronner F. Stimulation in vitro by 1,25-dihydroxy-vitamin D3 of intestinal cell calcium uptake and calcium-binding protein. Science. 1975 Dec 26;190(4221):1300–1302. doi: 10.1126/science.1198113. [DOI] [PubMed] [Google Scholar]
- Gray R., Boyle I., DeLuca H. F. Vitamin D metabolism: the role of kidney tissue. Science. 1971 Jun 18;172(3989):1232–1234. doi: 10.1126/science.172.3989.1232. [DOI] [PubMed] [Google Scholar]
- HARRISON H. E., HARRISON H. C. Intestinal transport of phosphate: action of vitamin D, calcium, and potassium. Am J Physiol. 1961 Dec;201:1007–1012. doi: 10.1152/ajplegacy.1961.201.6.1007. [DOI] [PubMed] [Google Scholar]
- Haddad J. G., Birge S. J. Widespread, specific binding of 25-hydroxycholecalciferol in rat tissues. J Biol Chem. 1975 Jan 10;250(1):299–303. [PubMed] [Google Scholar]
- Helbock H. J., Forte J. G., Saltman P. The mechanism of calcium transport by rat intestine. Biochim Biophys Acta. 1966 Sep 5;126(1):81–93. doi: 10.1016/0926-6585(66)90039-2. [DOI] [PubMed] [Google Scholar]
- Holick M. F., Garabedian M., DeLuca H. F. 5,6-Trans-25-hydroxycholecalciferol: vitamin D analog effective on intestine of anephric rats. Science. 1972 Jun 16;176(4040):1247–1248. doi: 10.1126/science.176.4040.1247. [DOI] [PubMed] [Google Scholar]
- Hughes M. R., Brumbaugh P. F., Hussler M. R., Wergedal J. E., Baylink D. J. Regulation of serum 1alpha,25-dihydroxyvitamin D3 by calcium and phosphate in the rat. Science. 1975 Nov 7;190(4214):578–580. doi: 10.1126/science.1188357. [DOI] [PubMed] [Google Scholar]
- KECK K. An ultramicro technique for the determination of deoxypentose nucleic acid. Arch Biochem Biophys. 1956 Aug;63(2):446–451. doi: 10.1016/0003-9861(56)90059-5. [DOI] [PubMed] [Google Scholar]
- Kowarski S., Schachter D. Effects of vitamin D on phosphate transport and incorporation into mucosal constituents of rat intestinal mucosa. J Biol Chem. 1969 Jan 10;244(1):211–217. [PubMed] [Google Scholar]
- Kulkarni S. B., Netrawali M. S., Pradhan D. S., Sreenivasan A. Action of hydrocortisone at a translational level in the rat liver. Mol Cell Endocrinol. 1976 Feb;4(3):195–203. doi: 10.1016/0303-7207(76)90038-1. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lawson D. E., Charman M., Wilson P. W., Edelstein S. Some characteristics of new tissue-binding proteins for metabolites of vitamin D other than 1,25-dihydroxyvitamin D. Biochim Biophys Acta. 1976 Jul 21;437(2):403–415. doi: 10.1016/0304-4165(76)90010-6. [DOI] [PubMed] [Google Scholar]
- Martin D. L., Deluca H. F. Calcium transport and the role of vitamin D. Arch Biochem Biophys. 1969 Oct;134(1):139–148. doi: 10.1016/0003-9861(69)90260-4. [DOI] [PubMed] [Google Scholar]
- Munro H. N., Fleck A. Recent developments in the measurement of nucleic acids in biological materials. A supplementary review. Analyst. 1966 Feb;91(79):78–88. doi: 10.1039/an9669100078. [DOI] [PubMed] [Google Scholar]
- Norman A. W., Midgett R. J., Myrtle J. F., Nowicki H. G. Studies on calciferol metabolism. I. Production of vitamin D metabolite 4B from 25-OH-cholecalciferol by kidney homogenates. Biochem Biophys Res Commun. 1971 Mar 19;42(6):1082–1087. doi: 10.1016/0006-291x(71)90015-5. [DOI] [PubMed] [Google Scholar]
- Popovtzer M. M., Robinette J. B., DeLuca H. F., Holick M. F. The acute effect of 25-hydroxycholecalciferol on renal handling of phosphorus. Evidence for a parathyroid hormone-dependent mechanism. J Clin Invest. 1974 Mar;53(3):913–921. doi: 10.1172/JCI107632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puschett J. B., Beck W. S., Jr Parathyroid hormone and 25-hydroxy vitamin D3: synergistic and antagonistic effects on renal phosphate transport. Science. 1975 Oct 31;190(4213):473–475. doi: 10.1126/science.1166316. [DOI] [PubMed] [Google Scholar]
- Puschett J. B., Moranz J., Kurnick W. S. Evidence for a direct action of cholecalciferol and 25-hydroxycholecalciferol on the renal transport of phosphate, sodium, and calcium. J Clin Invest. 1972 Feb;51(2):373–385. doi: 10.1172/JCI106823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raisz L. G. Physiologic and pharmacologic regulation of bone resorption. N Engl J Med. 1970 Apr 16;282(16):909–916. doi: 10.1056/NEJM197004162821608. [DOI] [PubMed] [Google Scholar]
- Rosenberg L. E., Downing S., Durant J. L., Segal S. Cystinuria: biochemical evidence for three genetically distinct diseases. J Clin Invest. 1966 Mar;45(3):365–371. doi: 10.1172/JCI105351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rutherford W. E., Hruska K., Blondin J., Holick M., DeLuca H., Klahr S., Slatopolsky E. The effect of 5,6-trans vitamin D3 on calcium absorption in chronic renal disease. J Clin Endocrinol Metab. 1975 Jan;40(1):13–18. doi: 10.1210/jcem-40-1-13. [DOI] [PubMed] [Google Scholar]
- STEENBOCK H., HERTING D. C. Vitamin D and growth. J Nutr. 1955 Dec 10;57(4):449–468. doi: 10.1093/jn/57.4.449. [DOI] [PubMed] [Google Scholar]
- Short E. M., Binder H. J., Rosenberg L. E. Familial hypophosphatemic rickets: defective transport of inorganic phosphate by intestinal mucosa. Science. 1973 Feb 16;179(4074):700–702. doi: 10.1126/science.179.4074.700. [DOI] [PubMed] [Google Scholar]
- Spielvogel A. M., Farley R. D., Norman A. W. Studies on the mechanism of action of calciferol. V. Turnover time of chick intestinal epithelial cells in relation to the intestinal action of vitamin D. Exp Cell Res. 1972 Oct;74(2):359–366. doi: 10.1016/0014-4827(72)90388-6. [DOI] [PubMed] [Google Scholar]
- Steele T. H., Engle J. E., Tanaka Y., Lorenc R. S., Dudgeon K. L., DeLuca H. F. Phosphatemic action of 1,25-dihydroxyvitamin D3. Am J Physiol. 1975 Aug;229(2):489–495. doi: 10.1152/ajplegacy.1975.229.2.489. [DOI] [PubMed] [Google Scholar]
- Taylor A. N. In vitro phosphate transport in chick ileum: effect of cholecalciferol, calcium, sodium and metabolic inhibitors. J Nutr. 1974 Apr;104(4):489–494. doi: 10.1093/jn/104.4.489. [DOI] [PubMed] [Google Scholar]
- Walling M. W., Kimberg D. V. Effects of 1alpha,25-dihydroxyvitamin D3 and Solanum glaucophyllum on intestinal calcium and phosphate transport and on plasma Ca, Mg and P levels in the rat. Endocrinology. 1975 Dec;97(6):1567–1576. doi: 10.1210/endo-97-6-1567. [DOI] [PubMed] [Google Scholar]
- Wasserman R. H., Taylor A. N. Intestinal absorption of phosphate in the chick: effect of vitamin D and other parameters. J Nutr. 1973 Apr;103(4):586–599. doi: 10.1093/jn/103.4.586. [DOI] [PubMed] [Google Scholar]
- Wong R. G., Norman A. W., Reddy C. R., Coburn J. W. Biologic effects of 1,25-dihydroxycholecalciferol (a highly active vitamin D metabolite) in acutely uremic rats. J Clin Invest. 1972 May;51(5):1287–1291. doi: 10.1172/JCI106923. [DOI] [PMC free article] [PubMed] [Google Scholar]