Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1978 Jun;61(6):1528–1538. doi: 10.1172/JCI109073

Activation of human factor IX (Christmas factor).

R G Di Scipio, K Kurachi, E W Davie
PMCID: PMC372679  PMID: 659613

Abstract

Human Factor IX (Christmas factor) is a single-chain plasma glycoprotein (mol wt 57,000) that participates in the middle phase of the intrinsic pathway of blood coagulation. It is present in plasma as a zymogen and is converted to a serine protease, Factor IXabeta, by Factor XIa (activated plasma thromboplastin antecedent) in the presence of calcium ions. In the activation reaction, two internal peptide bonds are hydrolyzed in Factor IX. These cleavages occur at a specific arginyl-alanine peptide bond and a specific arginyl-valine peptide bond. This results in the release of an activation peptide (mol wt approximately equal to 11,000) from the internal region of the precursor molecule and the generation of Factor IXabeta (mol wt approximately equal to 46,000). Factor IXabeta is composed of a light chain (mol wt approximately equal to 18,000) and a heavy chain (mol wt approximately equal to 28,000), and these chains are held together by a disulfide bond(s). The light chain originates from the amino terminal portion of the precursor molecule and has an amino terminal sequence of Tyr-Asn-Ser-Gly-Lys. The heavy chain originates from the carboxyl terminal region of the precursor molecule and contains an amino terminal sequence of Val-Val-Gly-Gly-Glu. The heavy chain of Factor IXabeta also contains the active site sequence of Phe-Cys-Ala-Gly-Phe-His-Glu-Gly-Arg-Asp-Ser-Cys-Gln-Gly-Asp-SER-Gly-Gly-Pro. The active site serine residue is shown in capital letters. Factor IX is also converted to Factor IXaalpha by a protease from Russell's viper venom. This activation reaction, however, occurs in a single step and involves only the cleavage of the internal arginyl-valine peptide bond. Human Factor IXabeta was inhibited by human antithrombin III by the formation of a one-to-one complex of enzyme and inhibitor. In this reaction, the inhibitor was tightly bound to the heavy chain of the enzyme. These data indicate that the mechanism of activation of human Factor IX and its inhibition by antithrombin III is essentially identical to that previously shown for bovine Factor IX.

Full text

PDF
1528

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson L. O., Borg H., Miller-Andersson M. Purification and characterization of human factor IX. Thromb Res. 1975 Sep;7(3):451–459. doi: 10.1016/0049-3848(75)90039-0. [DOI] [PubMed] [Google Scholar]
  2. Blow D. M., Janin J., Sweet R. M. Mode of action of soybean trypsin inhibitor (Kunitz) as a model for specific protein-protein interactions. Nature. 1974 May 3;249(452):54–57. doi: 10.1038/249054a0. [DOI] [PubMed] [Google Scholar]
  3. Bridgen P. J., Cross G. A., Bridgen J. N-terminal amino acid sequences of variant-specific surface antigens from Trypanosoma brucei. Nature. 1976 Oct 14;263(5578):613–614. doi: 10.1038/263613a0. [DOI] [PubMed] [Google Scholar]
  4. Bucher D., Nebelin E., Thomsen J., Stenflo J. Identification of gamma-carboxyglutamic acid residues in bovine factors IX and X, and in a new vitamin K-dependent protein. FEBS Lett. 1976 Oct 1;68(2):293–296. doi: 10.1016/0014-5793(76)80456-5. [DOI] [PubMed] [Google Scholar]
  5. CRESTFIELD A. M., MOORE S., STEIN W. H. The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem. 1963 Feb;238:622–627. [PubMed] [Google Scholar]
  6. Cuatrecasas P. Protein purification by affinity chromatography. Derivatizations of agarose and polyacrylamide beads. J Biol Chem. 1970 Jun;245(12):3059–3065. [PubMed] [Google Scholar]
  7. Davie E. W., Fujikawa K. Basic mechanisms in blood coagulation. Annu Rev Biochem. 1975;44:799–829. doi: 10.1146/annurev.bi.44.070175.004055. [DOI] [PubMed] [Google Scholar]
  8. Di Scipio R. G., Hermodson M. A., Davie E. W. Activation of human factor X (Stuart factor) by a protease from Russell's viper venom. Biochemistry. 1977 Nov 29;16(24):5253–5260. doi: 10.1021/bi00643a015. [DOI] [PubMed] [Google Scholar]
  9. Di Scipio R. G., Hermodson M. A., Yates S. G., Davie E. W. A comparison of human prothrombin, factor IX (Christmas factor), factor X (Stuart factor), and protein S. Biochemistry. 1977 Feb 22;16(4):698–706. doi: 10.1021/bi00623a022. [DOI] [PubMed] [Google Scholar]
  10. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
  11. Edman P., Begg G. A protein sequenator. Eur J Biochem. 1967 Mar;1(1):80–91. doi: 10.1007/978-3-662-25813-2_14. [DOI] [PubMed] [Google Scholar]
  12. FRAENKEL-CONRAT H., HARRIS J. I., LEVY A. L. Recent developments in techniques for terminal and sequence studies in peptides and proteins. Methods Biochem Anal. 1955;2:359–425. doi: 10.1002/9780470110188.ch12. [DOI] [PubMed] [Google Scholar]
  13. Friedman M., Krull L. H., Cavins J. F. The chromatographic determination of cystine and cysteine residues in proteins as s-beta-(4-pyridylethyl)cysteine. J Biol Chem. 1970 Aug 10;245(15):3868–3871. [PubMed] [Google Scholar]
  14. Fryklund L., Borg H., Andersson L. O. Amino-terminal sequence of human factor IX: presence of gamma-carboxyl glumatic acid residues. FEBS Lett. 1976 Jun 1;65(2):187–189. doi: 10.1016/0014-5793(76)80476-0. [DOI] [PubMed] [Google Scholar]
  15. Fujikawa K., Legaz M. E., Davie E. W. Bovine factors X 1 and X 2 (Stuart factor). Isolation and characterization. Biochemistry. 1972 Dec 19;11(26):4882–4891. doi: 10.1021/bi00776a002. [DOI] [PubMed] [Google Scholar]
  16. Fujikawa K., Legaz M. E., Kato H., Davie E. W. The mechanism of activation of bovine factor IX (Christmas factor) by bovine factor XIa (activated plasma thromboplastin antecedent). Biochemistry. 1974 Oct 22;13(22):4508–4516. doi: 10.1021/bi00719a006. [DOI] [PubMed] [Google Scholar]
  17. GARDELL S. Determination of hexosamines. Methods Biochem Anal. 1958;6:289–317. [PubMed] [Google Scholar]
  18. Hermodson M. A., Ericsson L. H., Titani K., Neurath H., Walsh K. A. Application of sequenator analyses to the study of proteins. Biochemistry. 1972 Nov 21;11(24):4493–4502. doi: 10.1021/bi00774a011. [DOI] [PubMed] [Google Scholar]
  19. Kalousek F., Konigsberg W., Nemerson Y. Activation of factor IX by activated factor X: a link between the extrinsic and intrinsic coagulation systems. FEBS Lett. 1975 Feb 15;50(3):382–385. doi: 10.1016/0014-5793(75)80533-3. [DOI] [PubMed] [Google Scholar]
  20. Kisiel W., Fujikawa K., Davie E. W. Activation of bovine factor VII (proconvertin) by factor XIIa (activated Hageman factor). Biochemistry. 1977 Sep 20;16(19):4189–4194. doi: 10.1021/bi00638a009. [DOI] [PubMed] [Google Scholar]
  21. Kisiel W., Hermodson M. A., Davie E. W. Factor X activating enzyme from Russell's viper venom: isolation and characterization. Biochemistry. 1976 Nov 2;15(22):4901–4906. doi: 10.1021/bi00667a023. [DOI] [PubMed] [Google Scholar]
  22. Koide T., Hermodson M. A., Davie E. W. Active site of bovine factor XI (plasma thromboplastin antecedent). Nature. 1977 Apr 21;266(5604):729–730. doi: 10.1038/266729a0. [DOI] [PubMed] [Google Scholar]
  23. Krieger M., Kay L. M., Stroud R. M. Structure and specific binding of trypsin: comparison of inhibited derivatives and a model for substrate binding. J Mol Biol. 1974 Feb 25;83(2):209–230. doi: 10.1016/0022-2836(74)90388-x. [DOI] [PubMed] [Google Scholar]
  24. Kurachi K., Davie E. W. Activation of human factor XI (plasma thromboplastin antecedent) by factor XIIa (activated Hageman factor). Biochemistry. 1977 Dec 27;16(26):5831–5839. doi: 10.1021/bi00645a030. [DOI] [PubMed] [Google Scholar]
  25. Kurachi K., Fujikawa K., Schmer G., Davie E. W. Inhibition of bovine factor IXa and factor Xabeta by antithrombin III. Biochemistry. 1976 Jan 27;15(2):373–377. doi: 10.1021/bi00647a021. [DOI] [PubMed] [Google Scholar]
  26. Kurachi K., Schmer G., Hermodson M. A., Teller D. C., Davie E. W. Characterization of human, bovine, and horse antithrombin III. Biochemistry. 1976 Jan 27;15(2):368–373. doi: 10.1021/bi00647a020. [DOI] [PubMed] [Google Scholar]
  27. Lindquist P. A., Fujikawa K., Davie E. W. Activation of bovine factor IX (Christmas factor) by factor XIa (activated plasma thromboplastin antecedent) and a protease from Russell's viper venom. J Biol Chem. 1978 Mar 25;253(6):1902–1909. [PubMed] [Google Scholar]
  28. MARES-GUIA M., SHAW E. STUDIES ON THE ACTIVE CENTER OF TRYPSIN. THE BINDING OF AMIDINES AND GUANIDINES AS MODELS OF THE SUBSTRATE SIDE CHAIN. J Biol Chem. 1965 Apr;240:1579–1585. [PubMed] [Google Scholar]
  29. Osterud B., Flengsrud R. Purification and some characteristics of the coagulation factor IX from human plasma. Biochem J. 1975 Mar;145(3):469–474. doi: 10.1042/bj1450469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Roffman S., Sanocka U., Troll W. Sensitive proteolytic enzyme assay using differential solubilities of radioactive substrates and products in biphasic systems. Anal Biochem. 1970 Jul;36(1):11–17. doi: 10.1016/0003-2697(70)90326-x. [DOI] [PubMed] [Google Scholar]
  31. Rosenberg J. S., McKenna P. W., Rosenberg R. D. Inhibition of human factor IXa by human antithrombin. J Biol Chem. 1975 Dec 10;250(23):8883–8888. [PubMed] [Google Scholar]
  32. Rühlmann A., Kukla D., Schwager P., Bartels K., Huber R. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. Crystal structure determination and stereochemistry of the contact region. J Mol Biol. 1973 Jul 5;77(3):417–436. doi: 10.1016/0022-2836(73)90448-8. [DOI] [PubMed] [Google Scholar]
  33. SCHEIDEGGER J. J. Une micro-méthode de l'immuno-electrophorèse. Int Arch Allergy Appl Immunol. 1955;7(2):103–110. [PubMed] [Google Scholar]
  34. Sigler P. B., Blow D. M., Matthews B. W., Henderson R. Structure of crystalline -chymotrypsin. II. A preliminary report including a hypothesis for the activation mechanism. J Mol Biol. 1968 Jul 14;35(1):143–164. doi: 10.1016/s0022-2836(68)80043-9. [DOI] [PubMed] [Google Scholar]
  35. Stroud R. M., Kay L. M., Dickerson R. E. The structure of bovine trypsin: electron density maps of the inhibited enzyme at 5 Angstrom and at 2-7 Angstron resolution. J Mol Biol. 1974 Feb 25;83(2):185–208. doi: 10.1016/0022-2836(74)90387-8. [DOI] [PubMed] [Google Scholar]
  36. Suomela H. Human coagulation factor IX. Isolation and characterization. Eur J Biochem. 1976 Dec;71(1):145–154. doi: 10.1111/j.1432-1033.1976.tb11100.x. [DOI] [PubMed] [Google Scholar]
  37. Sweet R. M., Wright H. T., Janin J., Chothia C. H., Blow D. M. Crystal structure of the complex of porcine trypsin with soybean trypsin inhibitor (Kunitz) at 2.6-A resolution. Biochemistry. 1974 Sep 24;13(20):4212–4228. doi: 10.1021/bi00717a024. [DOI] [PubMed] [Google Scholar]
  38. Thompson A. R. Factor IX antigen by radioimmunoassay. Abnormal factor IX protein in patients on warfarin therapy and with hemophilia B. J Clin Invest. 1977 May;59(5):900–910. doi: 10.1172/JCI108712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  40. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES