Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1978 Jun;61(6):1551–1554. doi: 10.1172/JCI109075

Choline pathways during normal and stimulated renal growth in rats.

G H Bean, L M Lowenstein
PMCID: PMC372681  PMID: 659614

Abstract

Cellular membrane synthesis occurs during normal and stimulated renal growth. Choline in the kidney is utilized as a precursor for membrane synthesis via the choline kinase reaction. We investigated choline phosphorylation during normal and stimulated renal growth. Rapidly growing neonatal rat kidneys contained relatively high levels of choline kinase activity (61 pmol phosphorylcholine/min per mg protein). Choline kinase activity and phosphorylcholine production then fell gradually over the 1st mo of life; by 1 mo phosphorylcholine production was 34 pmol phosphorylcholine/min per mg protein. Choline kinase activity increased by 27% (P less than 0.001) in 28-day-old rats when renal growth was stimulated by contralateral nephrectomy; the increase occurred within 2 h after surgery. Thus, changes in the activity of this important enzyme in the initiation of membrane synthesis is associated both with normal renal development and with adaptation to nephron loss. The findings further suggest that the cell membrane may be involved in the initiation of compensatory renal growth.

Full text

PDF
1551

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson W. A. The fine structure of compensatory growth in the rat kidney after unilateral nephrectomy. Am J Anat. 1967 Sep;121(2):217–247. doi: 10.1002/aja.1001210204. [DOI] [PubMed] [Google Scholar]
  2. BANDELIN F. J., PANKRATZ R. E. The estimation of betaine and choline in mixtures. J Am Pharm Assoc Am Pharm Assoc. 1953 Jul;42(7):442–443. doi: 10.1002/jps.3030420715. [DOI] [PubMed] [Google Scholar]
  3. Coe F. L., Korty P. R. Protein synthesis during compensatory renal hypertrophy. Am J Physiol. 1967 Dec;213(6):1585–1589. doi: 10.1152/ajplegacy.1967.213.6.1585. [DOI] [PubMed] [Google Scholar]
  4. Cohen E. L., Wurtman R. J. Brain acetylcholine: increase after systemic choline administration. Life Sci. 1975 Apr 1;16(7):1095–1102. doi: 10.1016/0024-3205(75)90194-0. [DOI] [PubMed] [Google Scholar]
  5. Cunningham D. D., Pardee A. B. Transport changes rapidly initiated by serum addition to "contact inhibited" 3T3 cells. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1049–1056. doi: 10.1073/pnas.64.3.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dicker S. E., Shirley D. G. Compensatory renal growth after unilateral nephrectomy in the new-born rat. J Physiol. 1973 Jan;228(1):193–202. doi: 10.1113/jphysiol.1973.sp010081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Farrell P. M., Lundgren D. W., Adams A. J. Choline kinase and choline phosphotransferase in developing fetal rat lung. Biochem Biophys Res Commun. 1974 Apr 8;57(3):696–701. doi: 10.1016/0006-291x(74)90602-0. [DOI] [PubMed] [Google Scholar]
  8. Farrell P. M., Zachman R. D. Induction of choline phosphotransferase and lecithin synthesis in the fetal lung by corticosteroids. Science. 1973 Jan 19;179(4070):297–298. doi: 10.1126/science.179.4070.297. [DOI] [PubMed] [Google Scholar]
  9. Halliburton I. W., Thomson R. Y. Chemical aspects of compensatory renal hypertrophy. Cancer Res. 1965 Dec;25(11):1882–1887. [PubMed] [Google Scholar]
  10. Haubrich D. R. Partial purification and properties of choline kinase (EC 2. 7. 1. 32) from rabbit brain: measurement of acetylcholine. J Neurochem. 1973 Aug;21(2):315–328. doi: 10.1111/j.1471-4159.1973.tb04252.x. [DOI] [PubMed] [Google Scholar]
  11. Holley R. W. A unifying hypothesis concerning the nature of malignant growth. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2840–2841. doi: 10.1073/pnas.69.10.2840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johnson H. A., Amendola F. Mitochondrial proliferation in compensatory growth of the kidney. Am J Pathol. 1969 Jan;54(1):35–45. [PMC free article] [PubMed] [Google Scholar]
  13. Johnson H. A., Vera Roman J. M. Compensatory renal enlargement. Hypertrophy versus hyperplasia. Am J Pathol. 1966 Jul;49(1):1–13. [PMC free article] [PubMed] [Google Scholar]
  14. KENNEDY E. P. Metabolism of lipides. Annu Rev Biochem. 1957;26:119–148. doi: 10.1146/annurev.bi.26.070157.001003. [DOI] [PubMed] [Google Scholar]
  15. KENNEDY E. P., WEISS S. B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem. 1956 Sep;222(1):193–214. [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Malt R. A. Compensatory growth of the kidney. N Engl J Med. 1969 Jun 26;280(26):1446–1459. doi: 10.1056/NEJM196906262802606. [DOI] [PubMed] [Google Scholar]
  18. Mann P. J., Quastel J. H. The oxidation of choline by rat liver. Biochem J. 1937 Jun;31(6):869–878. doi: 10.1042/bj0310869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. PARDEE A. B. CELL DIVISION AND A HYPOTHESIS OF CANCER. Natl Cancer Inst Monogr. 1964 May;14:7–20. [PubMed] [Google Scholar]
  20. Sung C. P., Johnstone R. M. Evidence for active transport of choline in rat kidney cortex slices. Can J Biochem. 1965 Jul;43(7):1111–1118. doi: 10.1139/o65-124. [DOI] [PubMed] [Google Scholar]
  21. Toback F. G., Lowenstein L. M. Thymidine metabolism during normal and compensatory renal growth. Growth. 1974 Mar;38(1):35–44. [PubMed] [Google Scholar]
  22. Toback F. G., Lowenstein L. M. Uridine metabolism during normal and compensatory renal growth. Growth. 1974 Mar;38(1):17–34. [PubMed] [Google Scholar]
  23. Toback F. G., Smith P. D., Lowenstein L. M. Phospholipid metabolism in the initiation of renal compensatory growth after acute reduction of renal mass. J Clin Invest. 1974 Jul;54(1):91–97. doi: 10.1172/JCI107754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zachman R. D. The enzymes of lecithin bio-synthesis in human newborn lungs. I. Choline kinase. Biol Neonate. 1971;19(1):211–219. doi: 10.1159/000240415. [DOI] [PubMed] [Google Scholar]
  25. de Ridder J. J., Kleverlaan N. T., Verdouw-Chamalaun C. V., Schippers P. G., van Dam K. Uncoupler-stimulated oxidation of choline by rat-liver mitochondria. Biochim Biophys Acta. 1973 Dec 14;325(3):397–405. doi: 10.1016/0005-2728(73)90200-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES