Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1990 Mar;54(1):66–74. doi: 10.1128/mr.54.1.66-74.1990

Invertrons, a class of structurally and functionally related genetic elements that includes linear DNA plasmids, transposable elements, and genomes of adeno-type viruses.

K Sakaguchi 1
PMCID: PMC372759  PMID: 2157134

Abstract

Invertrons are genetic elements composed of DNA with inverted terminal repeats at both ends, covalently bonded to terminal proteins involved in the initiation of DNA replication at both their 5' termini when they exist in the cytoplasm of their host in free form. They function as viruses, linear DNA plasmids, transposable elements, and sometimes combinations of two of these properties. They differ from retroviruses and related retro-type transposons which have direct repeats on both their genomic ends and exploit RNA intermediates for replication of their DNA. A model for replication and integration of invertrons is presented, as well as a model for transposition of transposable elements.

Full text

PDF
66

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baltimore D. Retroviruses and retrotransposons: the role of reverse transcription in shaping the eukaryotic genome. Cell. 1985 Mar;40(3):481–482. doi: 10.1016/0092-8674(85)90190-4. [DOI] [PubMed] [Google Scholar]
  2. Boeke J. D., Garfinkel D. J., Styles C. A., Fink G. R. Ty elements transpose through an RNA intermediate. Cell. 1985 Mar;40(3):491–500. doi: 10.1016/0092-8674(85)90197-7. [DOI] [PubMed] [Google Scholar]
  3. Bonas U., Sommer H., Saedler H. The 17-kb Tam1 element of Antirrhinum majus induces a 3-bp duplication upon integration into the chalcone synthase gene. EMBO J. 1984 May;3(5):1015–1019. doi: 10.1002/j.1460-2075.1984.tb01921.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Challberg M. D., Kelly T. J. Eukaryotic DNA replication: viral and plasmid model systems. Annu Rev Biochem. 1982;51:901–934. doi: 10.1146/annurev.bi.51.070182.004345. [DOI] [PubMed] [Google Scholar]
  5. Deuring R., Winterhoff U., Tamanoi F., Stabel S., Doerfler W. Site of linkage between adenovirus type 12 and cell DNAs in hamster tumour line CLAC3. Nature. 1981 Sep 3;293(5827):81–84. doi: 10.1038/293081a0. [DOI] [PubMed] [Google Scholar]
  6. Doerfler W. Uptake, fixation, and expression of foreign DNA in mammalian cells: the organization of integrated adenovirus DNA sequences. Curr Top Microbiol Immunol. 1982;101:127–194. doi: 10.1007/978-3-642-68654-2_6. [DOI] [PubMed] [Google Scholar]
  7. Döring H. P., Starlinger P. Barbara McClintock's controlling elements: now at the DNA level. Cell. 1984 Dec;39(2 Pt 1):253–259. doi: 10.1016/0092-8674(84)90002-3. [DOI] [PubMed] [Google Scholar]
  8. Eick D., Doerfler W. Integrated adenovirus type 12 DNA in the transformed hamster cell line T637: sequence arrangements at the termini of viral DNA and mode of amplification. J Virol. 1982 Apr;42(1):317–321. doi: 10.1128/jvi.42.1.317-321.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ellens D. J., Sussenbach J. S., Jansz H. S. Studies on the mechanism of replication of adenovirus DNA. III. Electron microscopy of replicating DNA. Virology. 1974 Oct;61(2):427–442. doi: 10.1016/0042-6822(74)90279-7. [DOI] [PubMed] [Google Scholar]
  10. Escarmís C., Salas M. Nucleotide sequence at the termini of the DNA of Bacillus subtilis phage phi 29. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1446–1450. doi: 10.1073/pnas.78.3.1446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Finnegan D. J., Rubin G. M., Young M. W., Hogness D. S. Repeated gene families in Drosophila melanogaster. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 2):1053–1063. doi: 10.1101/sqb.1978.042.01.106. [DOI] [PubMed] [Google Scholar]
  12. Frolova E. I., Zalmanzon E. S. A study of viral genomes in cells transformed by the nononcogenic human adenovirus type 5 and highly oncogenic bovine adenovirus type 3. Curr Top Microbiol Immunol. 1984;111:65–89. doi: 10.1007/978-3-642-69549-0_3. [DOI] [PubMed] [Google Scholar]
  13. Fujinaga K., Yoshida K., Yamashita T., Shimizu Y. Organization, integration, and transcription of transforming genes of oncogenic human adenovirus types 12 and 7. Curr Top Microbiol Immunol. 1984;110:53–72. doi: 10.1007/978-3-642-46494-2_3. [DOI] [PubMed] [Google Scholar]
  14. Fukuhara H. The RF1 gene of the killer DNA of yeast may encode a DNA polymerase. Nucleic Acids Res. 1987 Dec 10;15(23):10046–10046. doi: 10.1093/nar/15.23.10046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grindley N. D., Reed R. R. Transpositional recombination in prokaryotes. Annu Rev Biochem. 1985;54:863–896. doi: 10.1146/annurev.bi.54.070185.004243. [DOI] [PubMed] [Google Scholar]
  16. Gunge N., Murata K., Sakaguchi K. Transformation of Saccharomyces cerevisiae with linear DNA killer plasmids from Kluyveromyces lactis. J Bacteriol. 1982 Jul;151(1):462–464. doi: 10.1128/jb.151.1.462-464.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gunge N., Tamaru A., Ozawa F., Sakaguchi K. Isolation and characterization of linear deoxyribonucleic acid plasmids from Kluyveromyces lactis and the plasmid-associated killer character. J Bacteriol. 1981 Jan;145(1):382–390. doi: 10.1128/jb.145.1.382-390.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gunge N., Yamane C. Incompatibility of linear DNA killer plasmids pGKL1 and pGKL2 from Kluyveromyces lactis with mitochondrial DNA from Saccharomyces cerevisiae. J Bacteriol. 1984 Aug;159(2):533–539. doi: 10.1128/jb.159.2.533-539.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gunge N. Yeast DNA plasmids. Annu Rev Microbiol. 1983;37:253–276. doi: 10.1146/annurev.mi.37.100183.001345. [DOI] [PubMed] [Google Scholar]
  20. Harris M. P., Hay R. T. DNA sequences required for the initiation of adenovirus type 4 DNA replication in vitro. J Mol Biol. 1988 May 5;201(1):57–67. doi: 10.1016/0022-2836(88)90438-x. [DOI] [PubMed] [Google Scholar]
  21. Hashiba T., Homma Y., Hyakumachi M., Matsuda I. Isolation of a DNA plasmid in the fungus Rhizoctonia solani. J Gen Microbiol. 1984 Aug;130(8):2067–2070. doi: 10.1099/00221287-130-8-2067. [DOI] [PubMed] [Google Scholar]
  22. Hermoso J. M., Salas M. Protein p3 is linked to the DNA of phage phi 29 through a phosphoester bond between serine and 5'-dAMP. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6425–6428. doi: 10.1073/pnas.77.11.6425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hirochika H., Nakamura K., Sakaguchi K. A linear DNA plasmid from Streptomyces rochei with an inverted terminal repetition of 614 base pairs. EMBO J. 1984 Apr;3(4):761–766. doi: 10.1002/j.1460-2075.1984.tb01881.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hirochika H., Sakaguchi K. Analysis of linear plasmids isolated from Streptomyces: association of protein with the ends of the plasmid DNA. Plasmid. 1982 Jan;7(1):59–65. doi: 10.1016/0147-619x(82)90027-0. [DOI] [PubMed] [Google Scholar]
  25. Hirokawa H. Transfecting deoxyribonucleic acid of Bacillus bacteriophage phi 29 that is protease sensitive. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1555–1559. doi: 10.1073/pnas.69.6.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hishinuma F., Nakamura K., Hirai K., Nishizawa R., Gunge N., Maeda T. Cloning and nucleotide sequences of the linear DNA killer plasmids from yeast. Nucleic Acids Res. 1984 Oct 11;12(19):7581–7597. doi: 10.1093/nar/12.19.7581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jung G. H., Leavitt M. C., Hsieh J. C., Ito J. Bacteriophage PRD1 DNA polymerase: evolution of DNA polymerases. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8287–8291. doi: 10.1073/pnas.84.23.8287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jung G. H., Leavitt M. C., Ito J. Yeast killer plasmid pGKL1 encodes a DNA polymerase belonging to the family B DNA polymerases. Nucleic Acids Res. 1987 Nov 11;15(21):9088–9088. doi: 10.1093/nar/15.21.9088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kinashi H., Shimaji M. Detection of giant linear plasmids in antibiotic producing strains of Streptomyces by the OFAGE technique. J Antibiot (Tokyo) 1987 Jun;40(6):913–916. doi: 10.7164/antibiotics.40.913. [DOI] [PubMed] [Google Scholar]
  30. Kinashi H., Shimaji M., Sakai A. Giant linear plasmids in Streptomyces which code for antibiotic biosynthesis genes. 1987 Jul 30-Aug 5Nature. 328(6129):454–456. doi: 10.1038/328454a0. [DOI] [PubMed] [Google Scholar]
  31. Levings C. S., Sederoff R. R. Nucleotide sequence of the S-2 mitochondrial DNA from the S cytoplasm of maize. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4055–4059. doi: 10.1073/pnas.80.13.4055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Liebermann D., Hoffman-Liebermann B., Weinthal J., Childs G., Maxson R., Mauron A., Cohen S. N., Kedes L. An unusual transposon with long terminal inverted repeats in the sea urchin Strongylocentrotus purpuratus. Nature. 1983 Nov 24;306(5941):342–347. doi: 10.1038/306342a0. [DOI] [PubMed] [Google Scholar]
  33. McCLINTOCK B. Chromosome organization and genic expression. Cold Spring Harb Symp Quant Biol. 1951;16:13–47. doi: 10.1101/sqb.1951.016.01.004. [DOI] [PubMed] [Google Scholar]
  34. Miller D. W., Miller L. K. A virus mutant with an insertion of a copia-like transposable element. Nature. 1982 Oct 7;299(5883):562–564. doi: 10.1038/299562a0. [DOI] [PubMed] [Google Scholar]
  35. Neumann R., Doerfler W. Integration of adenovirus type 2 DNA at a limited number of cellular sites in productively infected cells. J Virol. 1981 Mar;37(3):887–892. doi: 10.1128/jvi.37.3.887-892.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. O'Hare K., Rubin G. M. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell. 1983 Aug;34(1):25–35. doi: 10.1016/0092-8674(83)90133-2. [DOI] [PubMed] [Google Scholar]
  37. Ohtsubo E., Zenilman M., Ohtsubo H., McCormick M., Machida C., Machida Y. Mechanism of insertion and cointegration mediated by IS1 and Tn3. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):283–295. doi: 10.1101/sqb.1981.045.01.041. [DOI] [PubMed] [Google Scholar]
  38. Pring D. R., Levings C. S., Hu W. W., Timothy D. H. Unique DNA associated with mitochondria in the "S"-type cytoplasm of male-sterile maize. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2904–2908. doi: 10.1073/pnas.74.7.2904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rio D. C., Laski F. A., Rubin G. M. Identification and immunochemical analysis of biologically active Drosophila P element transposase. Cell. 1986 Jan 17;44(1):21–32. doi: 10.1016/0092-8674(86)90481-2. [DOI] [PubMed] [Google Scholar]
  40. Rosenfeld P. J., O'Neill E. A., Wides R. J., Kelly T. J. Sequence-specific interactions between cellular DNA-binding proteins and the adenovirus origin of DNA replication. Mol Cell Biol. 1987 Feb;7(2):875–886. doi: 10.1128/mcb.7.2.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sakaguchi K., Hirochika H., Gunge N. Linear plasmids with terminal inverted repeats obtained from Streptomyces rochei and Kluyveromyces lactis. Basic Life Sci. 1985;30:433–451. doi: 10.1007/978-1-4613-2447-8_32. [DOI] [PubMed] [Google Scholar]
  42. Schwarz-Sommer Z., Gierl A., Klösgen R. B., Wienand U., Peterson P. A., Saedler H. The Spm (En) transposable element controls the excision of a 2-kb DNA insert at the wx allele of Zea mays. EMBO J. 1984 May;3(5):1021–1028. doi: 10.1002/j.1460-2075.1984.tb01922.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sor F., Wésolowski M., Fukuhara H. Inverted terminal repetitions of the two linear DNA associated with the killer character of the yeast Kluyveromyces lactis. Nucleic Acids Res. 1983 Aug 11;11(15):5037–5044. doi: 10.1093/nar/11.15.5037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Stark M. J., Boyd A. The killer toxin of Kluyveromyces lactis: characterization of the toxin subunits and identification of the genes which encode them. EMBO J. 1986 Aug;5(8):1995–2002. doi: 10.1002/j.1460-2075.1986.tb04455.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sugisaki Y., Gunge N., Sakaguchi K., Yamasaki M., Tamura G. Characterization of a novel killer toxin encoded by a double-stranded linear DNA plasmid of Kluyveromyces lactis. Eur J Biochem. 1984 Jun 1;141(2):241–245. doi: 10.1111/j.1432-1033.1984.tb08183.x. [DOI] [PubMed] [Google Scholar]
  46. Sugisaki Y., Gunge N., Sakaguchi K., Yamasaki M., Tamura G. Kluyveromyces lactis killer toxin inhibits adenylate cyclase of sensitive yeast cells. Nature. 1983 Aug 4;304(5925):464–466. doi: 10.1038/304464a0. [DOI] [PubMed] [Google Scholar]
  47. Sugisaki Y., Gunge N., Sakaguchi K., Yamasaki M., Tamura G. Transfer of DNA killer plasmids from Kluyveromyces lactis to Kluyveromyces fragilis and Candida pseudotropicalis. J Bacteriol. 1985 Dec;164(3):1373–1375. doi: 10.1128/jb.164.3.1373-1375.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tamanoi F., Stillman B. W. Initiation of adenovirus DNA replication in vitro requires a specific DNA sequence. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6446–6450. doi: 10.1073/pnas.80.21.6446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tokunaga M., Wada N., Hishinuma F. Expression and identification of immunity determinants on linear DNA killer plasmids pGKL1 and pGKL2 in Kluyveromyces lactis. Nucleic Acids Res. 1987 Feb 11;15(3):1031–1046. doi: 10.1093/nar/15.3.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tommasino M., Ricci S., Galeotti C. L. Genome organization of the killer plasmid pGK12 from Kluyveromyces lactis. Nucleic Acids Res. 1988 Jul 11;16(13):5863–5878. doi: 10.1093/nar/16.13.5863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Varmus H. E. Form and function of retroviral proviruses. Science. 1982 May 21;216(4548):812–820. doi: 10.1126/science.6177038. [DOI] [PubMed] [Google Scholar]
  52. Vodkin L. O., Rhodes P. R., Goldberg R. B. cA lectin gene insertion has the structural features of a transposable element. Cell. 1983 Oct;34(3):1023–1031. doi: 10.1016/0092-8674(83)90560-3. [DOI] [PubMed] [Google Scholar]
  53. Watabe K., Ito J. A novel DNA polymerase induced by Bacillus subtilis phage phi 29. Nucleic Acids Res. 1983 Dec 10;11(23):8333–8342. doi: 10.1093/nar/11.23.8333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wides R. J., Challberg M. D., Rawlins D. R., Kelly T. J. Adenovirus origin of DNA replication: sequence requirements for replication in vitro. Mol Cell Biol. 1987 Feb;7(2):864–874. doi: 10.1128/mcb.7.2.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Wilson D. W., Meacock P. A. Extranuclear gene expression in yeast: evidence for a plasmid-encoded RNA polymerase of unique structure. Nucleic Acids Res. 1988 Aug 25;16(16):8097–8112. [PMC free article] [PubMed] [Google Scholar]
  56. Wright L. F., Hopwood D. A. Identification of the antibiotic determined by the SCP1 plasmid of Streptomyces coelicolor A3(2). J Gen Microbiol. 1976 Jul;95(1):96–106. doi: 10.1099/00221287-95-1-96. [DOI] [PubMed] [Google Scholar]
  57. Yamada T., Shimaji M. Peculiar feature of the organization of rRNA genes of the Chlorella chloroplast DNA. Nucleic Acids Res. 1986 May 12;14(9):3827–3839. doi: 10.1093/nar/14.9.3827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Yui Y., Katayose Y., Shishido K. Two linear plasmid-like DNA elements simultaneously maintained in Pleurotus ostreatus. Biochim Biophys Acta. 1988 Nov 10;951(1):53–60. doi: 10.1016/0167-4781(88)90024-3. [DOI] [PubMed] [Google Scholar]
  59. de Vries E., van Driel W., van den Heuvel S. J., van der Vliet P. C. Contactpoint analysis of the HeLa nuclear factor I recognition site reveals symmetrical binding at one side of the DNA helix. EMBO J. 1987 Jan;6(1):161–168. doi: 10.1002/j.1460-2075.1987.tb04734.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES