Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1991 Mar;55(1):80–122. doi: 10.1128/mr.55.1.80-122.1991

Poxvirus pathogenesis.

R M Buller 1, G J Palumbo 1
PMCID: PMC372802  PMID: 1851533

Abstract

Poxviruses are a highly successful family of pathogens, with variola virus, the causative agent of smallpox, being the most notable member. Poxviruses are unique among animal viruses in several respects. First, owing to the cytoplasmic site of virus replication, the virus encodes many enzymes required either for macromolecular precursor pool regulation or for biosynthetic processes. Second, these viruses have a very complex morphogenesis, which involves the de novo synthesis of virus-specific membranes and inclusion bodies. Third, and perhaps most surprising of all, the genomes of these viruses encode many proteins which interact with host processes at both the cellular and systemic levels. For example, a viral homolog of epidermal growth factor is active in vaccinia virus infections of cultured cells, rabbits, and mice. At least five virus proteins with homology to the serine protease inhibitor family have been identified and one, a 38-kDa protein encoded by cowpox virus, is thought to block a host pathway for generating a chemotactic substance. Finally, a protein which has homology with complement components interferes with the activation of the classical complement pathway. Poxviruses infect their hosts by all possible routes: through the skin by mechanical means (e.g., molluscum contagiosum infections of humans), via the respiratory tract (e.g., variola virus infections of humans), or by the oral route (e.g., ectromelia virus infection of the mouse). Poxvirus infections, in general, are acute, with no strong evidence for latent, persistent, or chronic infections. They can be localized or systemic. Ectromelia virus infection of the laboratory mouse can be systemic but inapparent with no mortality and little morbidity, or highly lethal with death in 10 days. On the other hand, molluscum contagiosum virus replicates only in the stratum spinosum of the human epidermis, with little or no involvement of the dermis, and does not spread systemically from the site of infection. The host response to infection is progressive and multifactorial. Early in the infection process, interferons, the alternative pathway of complement activation, inflammatory cells, and natural killer cells may contribute to slowing the spread of the infection. The cell-mediated response involving learned cytotoxic T lymphocytes and delayed-type hypersensitivity components appears to be the most important in recovery from infection. A significant role for specific antiviral antibody and antibody-dependent cell-mediated cytotoxicity has yet to be demonstrated in recovery from a primary infection, but these responses are thought to be important in preventing reinfection.

Full text

PDF
80

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APPLEYARD G., WESTWOOD J. C., ZWARTOUW H. T. The toxic effect of rabbitpox virus in tissue culture. Virology. 1962 Oct;18:159–169. doi: 10.1016/0042-6822(62)90001-6. [DOI] [PubMed] [Google Scholar]
  2. APPLEYARD G., ZWARTOUW H. T., WESTWOOD J. C. A PROTECTIVE ANTIGEN FROM THE POX-VIRUSES. I. REACTION WITH NEUTRALIZING ANTIBODY. Br J Exp Pathol. 1964 Apr;45:150–161. [PMC free article] [PubMed] [Google Scholar]
  3. Acton J. D., Myrvik Q. N. Resistance to alveolar monocytes to rabbitpox virus following intratracheal injection of parainfluenza-3 virus. J Reticuloendothel Soc. 1968 Feb;5(1):68–78. [PubMed] [Google Scholar]
  4. Ada G. I., Jackson D. C., Blanden R. V., Hla R. T., Bowern N. A. Changes in the surface of virus-induced cells recognized by cytotoxic T cells. I. Minimal requirements for lysis of ectromelia-infected P-815 cells. Scand J Immunol. 1976;5(1-2):23–30. doi: 10.1111/j.1365-3083.1976.tb02988.x. [DOI] [PubMed] [Google Scholar]
  5. Aksenov O. A., Smorodintsev A. A. Experiences with improvement of the neutralization reaction with vaccinia virus in chick fibroblast cultures. J Hyg Epidemiol Microbiol Immunol. 1966;10(4):488–498. [PubMed] [Google Scholar]
  6. Allen A. M., Clarke G. L., Ganaway J. R., Lock A., Werner R. M. Pathology and diagnosis of mousepox. Lab Anim Sci. 1981 Oct;31(5 Pt 2):599–608. [PubMed] [Google Scholar]
  7. Allison A. C. Cell-mediated immune responses to virus infections and virus-induced tumours. Br Med Bull. 1967 Jan;23(1):60–65. doi: 10.1093/oxfordjournals.bmb.a070518. [DOI] [PubMed] [Google Scholar]
  8. Anderson R., Dales S. Biogenesis of poxviruses: glycolipid metabolism in vaccinia-infected cells. Virology. 1978 Jan;84(1):108–117. doi: 10.1016/0042-6822(78)90222-2. [DOI] [PubMed] [Google Scholar]
  9. Andrew M. E., Coupar B. E., Boyle D. B. Humoral and cell-mediated immune responses to recombinant vaccinia viruses in mice. Immunol Cell Biol. 1989 Oct;67(Pt 5):331–337. doi: 10.1038/icb.1989.48. [DOI] [PubMed] [Google Scholar]
  10. Aoyama A., Yoshioka T., Sato S., Mizushima Y., Ogata M., Ueda S., Kato S., Fujiwara H., Hamaoka T. Role of L3T4 antigen in the activation of various functions of Lyt-1+2- T cells against vaccinia virus. Microbiol Immunol. 1986;30(8):799–810. doi: 10.1111/j.1348-0421.1986.tb03006.x. [DOI] [PubMed] [Google Scholar]
  11. Appleyard G., Hapel A. J., Boulter E. A. An antigenic difference between intracellular and extracellular rabbitpox virus. J Gen Virol. 1971 Oct;13(1):9–17. doi: 10.1099/0022-1317-13-1-9. [DOI] [PubMed] [Google Scholar]
  12. Appleyard G., Hume V. B., Westwood J. C. The effect of thiosemicarbazones on the growth of rabbit pox virus in tissue culture. Ann N Y Acad Sci. 1965 Jul 30;130(1):92–104. doi: 10.1111/j.1749-6632.1965.tb12543.x. [DOI] [PubMed] [Google Scholar]
  13. Archard L. C., Mackett M., Barnes D. E., Dumbell K. R. The genome structure of cowpox virus white pock variants. J Gen Virol. 1984 May;65(Pt 5):875–886. doi: 10.1099/0022-1317-65-5-875. [DOI] [PubMed] [Google Scholar]
  14. Archard L. C., Mackett M. Restriction endonuclease analysis of red cowpox virus and its white pock variant. J Gen Virol. 1979 Oct;45(1):51–63. doi: 10.1099/0022-1317-45-1-51. [DOI] [PubMed] [Google Scholar]
  15. Avila F. R., Schultz R. M., Tompkins W. A. Specific macrophage immunity to vaccinia virus: macrophage-virus interaction. Infect Immun. 1972 Jul;6(1):9–16. doi: 10.1128/iai.6.1.9-16.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. BARON S., ISAACS A. Mechanism of recovery from viral infection in the chick embryo. Nature. 1961 Jul 1;191:97–98. doi: 10.1038/191097a0. [DOI] [PubMed] [Google Scholar]
  17. BEARCROFT W. G., JAMIESON M. F. An outbreak of subcutaneous tumours in rhesus monkeys. Nature. 1958 Jul 19;182(4629):195–196. doi: 10.1038/182195a0. [DOI] [PubMed] [Google Scholar]
  18. BECKER Y., JOKLIK W. K. MESSENGER RNA IN CELLS INFECTED WITH VACCINIA VIRUS. Proc Natl Acad Sci U S A. 1964 Apr;51:577–585. doi: 10.1073/pnas.51.4.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. BEDSON H. S., DUCKWORTH M. J. Rabbit pox: an experimental study of the pathways of infection in rabbits. J Pathol Bacteriol. 1963 Jan;85:1–20. [PubMed] [Google Scholar]
  20. BEDSON H. S., DUMBELL K. R. HYBRIDS DERIVED FROM THE VIRUSES OF VARIOLA MAJOR AND COWPOX. J Hyg (Lond) 1964 Jun;62:147–158. doi: 10.1017/s0022172400039887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. BOULTER E. A., WESTWOOD J. C., MABER H. B. Value of serotherapy in a virus disease (rabbit pox). Lancet. 1961 Nov 4;2(7210):1012–1015. doi: 10.1016/s0140-6736(61)90969-2. [DOI] [PubMed] [Google Scholar]
  22. BRIODY B. A., HAUSCHKA T. S., MIRAND E. A. The role of genotype in resistance to an epizootic of mouse pox (ectromelia). Am J Hyg. 1956 Jan;63(1):59–68. doi: 10.1093/oxfordjournals.aje.a119792. [DOI] [PubMed] [Google Scholar]
  23. BRIODY B. A., LEDINKO N., STANNARD C. Studies on vaccinia virus. II. Neutralization of vaccinia virus by normal guinea pig serum. J Immunol. 1951 Nov;67(5):413–422. [PubMed] [Google Scholar]
  24. BROWN A., MAYYASI S. A., OFFICER J. E. The toxic activity of vaccinia virus in tissue culture. J Infect Dis. 1959 Mar-Apr;104(2):193–202. doi: 10.1093/infdis/104.2.193. [DOI] [PubMed] [Google Scholar]
  25. Bablanian R., Baxt B., Sonnabend J. A., Esteban M. Studies on the mechanisms of vaccinia virus cytopathic effects. II. Early cell rounding is associated with virus polypeptide synthesis. J Gen Virol. 1978 Jun;39(3):403–413. doi: 10.1099/0022-1317-39-3-403. [DOI] [PubMed] [Google Scholar]
  26. Bablanian R., Coppola G., Scribani S., Esteban M. Inhibition of protein synthesis by vaccinia virus. IV. The role of low-molecular-weight viral RNA in the inhibition of protein synthesis. Virology. 1981 Jul 15;112(1):13–24. doi: 10.1016/0042-6822(81)90607-3. [DOI] [PubMed] [Google Scholar]
  27. Bablanian R., Goswami S. K., Esteban M., Banerjee A. K. Selective inhibition of protein synthesis by synthetic and vaccinia virus-core synthesized poly(riboadenylic acids). Virology. 1987 Dec;161(2):366–373. doi: 10.1016/0042-6822(87)90129-2. [DOI] [PubMed] [Google Scholar]
  28. Bablanian R. The prevention of early vaccinia-virus-induced cytopathic effects by inhibition of protein synthesis. J Gen Virol. 1968 Jul;3(1):51–61. doi: 10.1099/0022-1317-3-1-51. [DOI] [PubMed] [Google Scholar]
  29. Baglioni C., Minks M. A., Maroney P. A. Interferon action may be mediated by activation of a nuclease by pppA2'p5'A2'p5'A. Nature. 1978 Jun 22;273(5664):684–687. doi: 10.1038/273684a0. [DOI] [PubMed] [Google Scholar]
  30. Balachandran N., Seth P., Mohapatra L. N. Immune response in rabbits to surface components of extracellular and intracellular forms of vaccinia virus. Infect Immun. 1980 Sep;29(3):846–852. doi: 10.1128/iai.29.3.846-852.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ball L. A. High-frequency homologous recombination in vaccinia virus DNA. J Virol. 1987 Jun;61(6):1788–1795. doi: 10.1128/jvi.61.6.1788-1795.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Baratawidjaja R. K., Morrissey L. P., Labzoffsky N. A. Demonstration of vaccinia, lymphocytic choriomeningitis and rabies viruses in the leucocytes of experimentally infected animals. Arch Gesamte Virusforsch. 1965;17(2):273–279. doi: 10.1007/BF01267911. [DOI] [PubMed] [Google Scholar]
  33. Barban S., Baron S. Differential inhibitory effects of interferon on deoxythymidine kinase induction of vaccinia-infected cell cultures. Proc Soc Exp Biol Med. 1968 Jan;127(1):160–164. doi: 10.3181/00379727-127-32646. [DOI] [PubMed] [Google Scholar]
  34. Baxby D. Is cowpox misnamed? A review of 10 human cases. Br Med J. 1977 May 28;1(6073):1379–1381. doi: 10.1136/bmj.1.6073.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Belding M. E., Klebanoff S. J., Ray C. G. Peroxidase-mediated virucidal systems. Science. 1970 Jan 9;167(3915):195–196. doi: 10.1126/science.167.3915.195. [DOI] [PubMed] [Google Scholar]
  36. Ben-Hamida F., Beaud G. In vitro inhibition of protein synthesis by purified cores from vaccinia virus. Proc Natl Acad Sci U S A. 1978 Jan;75(1):175–179. doi: 10.1073/pnas.75.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Benavente J., Paez E., Esteban M. Indiscriminate degradation of RNAs in interferon-treated, vaccinia virus-infected mouse L cells. J Virol. 1984 Sep;51(3):866–871. doi: 10.1128/jvi.51.3.866-871.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Benda R., Cinátl J., Plaisner V. Reproduction of vaccinia virus (strain neurolapina) in rabbit blood leucocytes in vitro. J Hyg Epidemiol Microbiol Immunol. 1975;19(1):93–104. [PubMed] [Google Scholar]
  39. Bennett M., Gaskell C. J., Gaskell R. M., Baxby D., Gruffydd-Jones T. J. Poxvirus infection in the domestic cat: some clinical and epidemiological observations. Vet Rec. 1986 Apr 5;118(14):387–390. doi: 10.1136/vr.118.14.387. [DOI] [PubMed] [Google Scholar]
  40. Bennett M., Gaskell R. M., Gaskell C. J., Baxby D., Kelly D. F. Studies on poxvirus infection in cats. Arch Virol. 1989;104(1-2):19–33. doi: 10.1007/BF01313805. [DOI] [PubMed] [Google Scholar]
  41. Berger M. L. Immunologic requirements for the adoptive transfer of ectromelia virus meningitis. J Neuropathol Exp Neurol. 1982 Jan;41(1):18–33. doi: 10.1097/00005072-198201000-00003. [DOI] [PubMed] [Google Scholar]
  42. Berger M. L. The role of the major histocompatibility complex in the adoptive transfer of ectromelia virus meningitis. J Neuropathol Exp Neurol. 1982 Jan;41(1):34–44. doi: 10.1097/00005072-198201000-00004. [DOI] [PubMed] [Google Scholar]
  43. Bhatt P. N., Jacoby R. O., Gras L. Mousepox in inbred mice innately resistant or susceptible to lethal infection with ectromelia virus. IV. Studies with the Moscow strain. Arch Virol. 1988;100(3-4):221–230. doi: 10.1007/BF01487685. [DOI] [PubMed] [Google Scholar]
  44. Bhatt P. N., Jacoby R. O. Mousepox in inbred mice innately resistant or susceptible to lethal infection with ectromelia virus. III. Experimental transmission of infection and derivation of virus-free progeny from previously infected dams. Lab Anim Sci. 1987 Feb;37(1):23–27. [PubMed] [Google Scholar]
  45. Blanden R. V., Doherty P. C., Dunlop M. B., Gardner I. D., Zinkernagel R. M., David C. S. Genes required for cytotoxicity against virus-infected target cells in K and D regions of H-2 complex. Nature. 1975 Mar 20;254(5497):269–270. doi: 10.1038/254269a0. [DOI] [PubMed] [Google Scholar]
  46. Blanden R. V., Gardner I. D. The cell-mediated immune response to ectromelia virus infection. I. Kinetics and characteristics of the primary effector T cell response in vivo. Cell Immunol. 1976 Mar 15;22(2):271–282. doi: 10.1016/0008-8749(76)90029-0. [DOI] [PubMed] [Google Scholar]
  47. Blanden R. V. Mechanisms of recovery from a generalized viral infection: mousepox. 3. Regression infectious foci. J Exp Med. 1971 May 1;133(5):1090–1104. doi: 10.1084/jem.133.5.1090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Blanden R. V. Mechanisms of recovery from a generalized viral infection: mousepox. I. The effects of anti-thymocyte serum. J Exp Med. 1970 Nov;132(5):1035–1054. doi: 10.1084/jem.132.5.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Blanden R. V. Mechanisms of recovery from a generalized viral infection: mousepox. II. Passive transfer of recovery mechanisms with immune lymphoid cells. J Exp Med. 1971 May 1;133(5):1074–1089. doi: 10.1084/jem.133.5.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Block W., Upton C., McFadden G. Tumorigenic poxviruses: genomic organization of malignant rabbit virus, a recombinant between Shope fibroma virus and myxoma virus. Virology. 1985 Jan 15;140(1):113–124. doi: 10.1016/0042-6822(85)90450-7. [DOI] [PubMed] [Google Scholar]
  51. Blomquist M. C., Hunt L. T., Barker W. C. Vaccinia virus 19-kilodalton protein: relationship to several mammalian proteins, including two growth factors. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7363–7367. doi: 10.1073/pnas.81.23.7363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Bodo G., Jungwirth C. Effect of interferon on deoxyribonuclease induction in chick fibroblast cultures infected with cowpox virus. J Virol. 1967 Jun;1(3):466–471. doi: 10.1128/jvi.1.3.466-471.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Bodo G., Palese P., Horak I., Hilfenhaus J., Siegert W., Jungwirth C. Interferon action: effect on the formation of poxvirus specific polysomes and viral RNA. Z Naturforsch B. 1970 Oct;25(10):1164–1170. doi: 10.1515/znb-1970-1020. [DOI] [PubMed] [Google Scholar]
  54. Boulter E. A. Protection against poxviruses. Proc R Soc Med. 1969 Mar 3;62(3):295–297. [PMC free article] [PubMed] [Google Scholar]
  55. Boursnell M. E., Foulds I. J., Campbell J. I., Binns M. M. Non-essential genes in the vaccinia virus HindIII K fragment: a gene related to serine protease inhibitors and a gene related to the 37K vaccinia virus major envelope antigen. J Gen Virol. 1988 Dec;69(Pt 12):2995–3003. doi: 10.1099/0022-1317-69-12-2995. [DOI] [PubMed] [Google Scholar]
  56. Brier A. M., Wohlenberg C., Rosenthal J., Mage M., Notkins A. L. Inhibition or enhancement of immunological injury of virus-infected cells. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3073–3077. doi: 10.1073/pnas.68.12.3073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Brown G. D., Moyer R. W. The white pock mutants of rabbit poxvirus: V. In vitro translation of early host range mutant mRNA. Virology. 1983 Apr 15;126(1):381–390. doi: 10.1016/0042-6822(83)90488-9. [DOI] [PubMed] [Google Scholar]
  58. Brown G. E., Lebleu B., Kawakita M., Shaila S., Sen G. C., Lengyel P. Increased endonuclease activity in an extract from mouse Ehrlich ascites tumor cells which had been treated with a partially purified interferon preparation: dependence of double-stranded RNA;. Biochem Biophys Res Commun. 1976 Mar 8;69(1):114–122. doi: 10.1016/s0006-291x(76)80280-x. [DOI] [PubMed] [Google Scholar]
  59. Brown J. P., Twardzik D. R., Marquardt H., Todaro G. J. Vaccinia virus encodes a polypeptide homologous to epidermal growth factor and transforming growth factor. Nature. 1985 Feb 7;313(6002):491–492. doi: 10.1038/313491a0. [DOI] [PubMed] [Google Scholar]
  60. Brownstein D., Bhatt P. N., Jacoby R. O. Mousepox in inbred mice innately resistant or susceptible to lethal infection with ectromelia virus. V. Genetics of resistance to the Moscow strain. Arch Virol. 1989;107(1-2):35–41. doi: 10.1007/BF01313876. [DOI] [PubMed] [Google Scholar]
  61. Broyles S. S., Moss B. DNA-dependent ATPase activity associated with vaccinia virus early transcription factor. J Biol Chem. 1988 Aug 5;263(22):10761–10765. [PubMed] [Google Scholar]
  62. Broyles S. S., Yuen L., Shuman S., Moss B. Purification of a factor required for transcription of vaccinia virus early genes. J Biol Chem. 1988 Aug 5;263(22):10754–10760. [PubMed] [Google Scholar]
  63. Buchmeier N. A., Gee S. R., Murphy F. A., Rawls W. E. Abortive replication of vaccinia virus in activated rabbit macrophages. Infect Immun. 1979 Oct;26(1):328–338. doi: 10.1128/iai.26.1.328-338.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Bukowski J. F., Woda B. A., Habu S., Okumura K., Welsh R. M. Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J Immunol. 1983 Sep;131(3):1531–1538. [PubMed] [Google Scholar]
  65. Buller R. M., Bhatt P. N., Wallace G. D. Evaluation of an enzyme-linked immunosorbent assay for the detection of ectromelia (mousepox) antibody. J Clin Microbiol. 1983 Nov;18(5):1220–1225. doi: 10.1128/jcm.18.5.1220-1225.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Buller R. M., Chakrabarti S., Cooper J. A., Twardzik D. R., Moss B. Deletion of the vaccinia virus growth factor gene reduces virus virulence. J Virol. 1988 Mar;62(3):866–874. doi: 10.1128/jvi.62.3.866-874.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Buller R. M., Chakrabarti S., Moss B., Fredrickson T. Cell proliferative response to vaccinia virus is mediated by VGF. Virology. 1988 May;164(1):182–192. doi: 10.1016/0042-6822(88)90635-6. [DOI] [PubMed] [Google Scholar]
  68. Buller R. M., Potter M., Wallace G. D. Variable resistance to ectromelia (mousepox) virus among genera of Mus. Curr Top Microbiol Immunol. 1986;127:319–322. doi: 10.1007/978-3-642-71304-0_38. [DOI] [PubMed] [Google Scholar]
  69. Buller R. M., Smith G. L., Cremer K., Notkins A. L., Moss B. Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. 1985 Oct 31-Nov 6Nature. 317(6040):813–815. doi: 10.1038/317813a0. [DOI] [PubMed] [Google Scholar]
  70. Buller R. M., Weinblatt A. C., Hamburger A. W., Wallace G. D. Observations on the replication of ectromelia virus in mouse-derived cell lines: implications for epidemiology of mousepox. Lab Anim Sci. 1987 Feb;37(1):28–32. [PubMed] [Google Scholar]
  71. Burgoyne R. D., Stephen J. Further studies on a vaccinia virus cytotoxin present in infected cell extracts: identification as surface tubule monomer and possible mode of action. Arch Virol. 1979;59(1-2):107–119. doi: 10.1007/BF01317900. [DOI] [PubMed] [Google Scholar]
  72. CAIRNS J. The initiation of vaccinia infection. Virology. 1960 Jul;11:603–623. doi: 10.1016/0042-6822(60)90103-3. [DOI] [PubMed] [Google Scholar]
  73. CUTCHINS E., WARREN J., JONES W. P. The antibody response to smallpox vaccination as measured by a tissue culture plaque method. J Immunol. 1960 Sep;85:275–283. [PubMed] [Google Scholar]
  74. Carrasco L., Esteban M. Modification of membrane permeability in vaccinia virus-infected cells. Virology. 1982 Feb;117(1):62–69. doi: 10.1016/0042-6822(82)90507-4. [DOI] [PubMed] [Google Scholar]
  75. Chang A., Metz D. H. Further investigations on the mode of entry of vaccinia virus into cells. J Gen Virol. 1976 Aug;32(2):275–282. doi: 10.1099/0022-1317-32-2-275. [DOI] [PubMed] [Google Scholar]
  76. Chang W., Upton C., Hu S. L., Purchio A. F., McFadden G. The genome of Shope fibroma virus, a tumorigenic poxvirus, contains a growth factor gene with sequence similarity to those encoding epidermal growth factor and transforming growth factor alpha. Mol Cell Biol. 1987 Jan;7(1):535–540. doi: 10.1128/mcb.7.1.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Chapes S. K., Tompkins W. A. Cytotoxic macrophages induced in hamsters by vaccinia virus: selective cytotoxicity for virus-infected targets by macrophages collected late after immunization. J Immunol. 1979 Jul;123(1):303–310. [PubMed] [Google Scholar]
  78. Chen H. R., Barker W. C. Similarity of vaccinia 28K, v-erb-B and EGF receptors. Nature. 1985 Jul 18;316(6025):219–220. doi: 10.1038/316219b0. [DOI] [PubMed] [Google Scholar]
  79. Child S. J., Palumbo G. J., Buller R. M., Hruby D. E. Insertional inactivation of the large subunit of ribonucleotide reductase encoded by vaccinia virus is associated with reduced virulence in vivo. Virology. 1990 Feb;174(2):625–629. doi: 10.1016/0042-6822(90)90119-c. [DOI] [PubMed] [Google Scholar]
  80. Chua T. P., Smith C. E., Reith R. W., Williamson J. D. Inflammatory responses and the generation of chemoattractant activity in cowpox virus-infected tissues. Immunology. 1990 Feb;69(2):202–208. [PMC free article] [PubMed] [Google Scholar]
  81. Cohen D. A., Bubel H. C. Induction of resistance to ectromelia virus infection by corynebacterium parvum in murine peritoneal macrophages. J Reticuloendothel Soc. 1983 Jan;33(1):35–46. [PubMed] [Google Scholar]
  82. Cohen D. A., Morris R. E., Bubel H. C. Abortive ectromelia virus infection in peritoneal macrophages activated by Corynebacterium parvum. J Leukoc Biol. 1984 Feb;35(2):179–192. doi: 10.1002/jlb.35.2.179. [DOI] [PubMed] [Google Scholar]
  83. Colby C., Duesberg P. H. Double-stranded RNA in vaccinia virus infected cells. Nature. 1969 Jun 7;222(5197):940–944. doi: 10.1038/222940a0. [DOI] [PubMed] [Google Scholar]
  84. Condit R. C., Motyczka A., Spizz G. Isolation, characterization, and physical mapping of temperature-sensitive mutants of vaccinia virus. Virology. 1983 Jul 30;128(2):429–443. doi: 10.1016/0042-6822(83)90268-4. [DOI] [PubMed] [Google Scholar]
  85. Coppola G., Bablanian R. Discriminatory inhibition of protein synthesis in cell-free systems by vaccinia virus transcripts. Proc Natl Acad Sci U S A. 1983 Jan;80(1):75–79. doi: 10.1073/pnas.80.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Coupar B. E., Andrew M. E., Both G. W., Boyle D. B. Temporal regulation of influenza hemagglutinin expression in vaccinia virus recombinants and effects on the immune response. Eur J Immunol. 1986 Dec;16(12):1479–1487. doi: 10.1002/eji.1830161203. [DOI] [PubMed] [Google Scholar]
  87. DALES S., KAJIOKA R. THE CYCLE OF MULTIPLICATION OF VACCINIA VIRUS IN EARLE'S STRAIN L CELLS. I. UPTAKE AND PENETRATION. Virology. 1964 Nov;24:278–294. doi: 10.1016/0042-6822(64)90167-9. [DOI] [PubMed] [Google Scholar]
  88. DALES S. The uptake and development of vaccinia virus in strain L cells followed with labeled viral deoxyribonucleic acid. J Cell Biol. 1963 Jul;18:51–72. doi: 10.1083/jcb.18.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. DALMAT H. T. Arthropod transmission of rabbit fibromatosis (Shope). J Hyg (Lond) 1959 Mar;57(1):1–30. doi: 10.1017/s0022172400019860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. DOURMASHKIN R., BERNHARD W. A study with the electron microscope of the skin tumour of molluscum contagiosum. J Ultrastruct Res. 1959 Oct;3:11–38. doi: 10.1016/s0022-5320(59)80011-3. [DOI] [PubMed] [Google Scholar]
  91. DOURMASHKIN R., DUPERRAT B. Observation au microscope électronique du virus du moiluscum contagiosum. C R Hebd Seances Acad Sci. 1958 May 28;246(21):3133–3136. [PubMed] [Google Scholar]
  92. DOWNIE A. W., HADDOCK D. W. A variant of cowpox virus. Lancet. 1952 May 24;1(6717):1049–1050. doi: 10.1016/s0140-6736(52)90698-3. [DOI] [PubMed] [Google Scholar]
  93. Dales S. Effects of streptovitacin A on the initial events in the replication of vaccinia and reovirus. Proc Natl Acad Sci U S A. 1965 Aug;54(2):462–468. doi: 10.1073/pnas.54.2.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Dales S., Mosbach E. H. Vaccinia as a model for membrane biogenesis. Virology. 1968 Aug;35(4):564–583. doi: 10.1016/0042-6822(68)90286-9. [DOI] [PubMed] [Google Scholar]
  95. De Harven E., Yohn D. S. The fine structure of the Yaba monkey tumor poxvirus. Cancer Res. 1966 May;26(5):995–1008. [PubMed] [Google Scholar]
  96. Doherty P. C., Korngold R. Characteristics of poxvirus-induced meningitis: virus-specific and non-specific cytotoxic effectors in the inflammatory exudate. Scand J Immunol. 1983 Jul;18(1):1–7. doi: 10.1111/j.1365-3083.1983.tb00828.x. [DOI] [PubMed] [Google Scholar]
  97. Doherty P. C., Korngold R. Hierarchies of T cell responsiveness are reflected in the distribution of effector T cells in viral meningitis. Aust J Exp Biol Med Sci. 1983 Aug;61(Pt 4):471–475. doi: 10.1038/icb.1983.44. [DOI] [PubMed] [Google Scholar]
  98. Domber E., Holowczak J. A. Vaccinia virus proteins on the plasma membranes of infected cells. IV. Studies employing L cells infected with ultraviolet-irradiated vaccinia virions. Virology. 1986 Jul 30;152(2):331–342. doi: 10.1016/0042-6822(86)90136-4. [DOI] [PubMed] [Google Scholar]
  99. Doms R. W., Blumenthal R., Moss B. Fusion of intra- and extracellular forms of vaccinia virus with the cell membrane. J Virol. 1990 Oct;64(10):4884–4892. doi: 10.1128/jvi.64.10.4884-4892.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Douglas J. D., Tanner K. N., Prine J. R., Van Riper D. C., Derwelis S. K. Molluscum contagiosum in chimpanzees. J Am Vet Med Assoc. 1967 Oct 1;151(7):901–904. [PubMed] [Google Scholar]
  101. Drillien R., Koehren F., Kirn A. Host range deletion mutant of vaccinia virus defective in human cells. Virology. 1981 Jun;111(2):488–499. doi: 10.1016/0042-6822(81)90351-2. [DOI] [PubMed] [Google Scholar]
  102. Drillien R., Spehner D., Kirn A. Host range restriction of vaccinia virus in Chinese hamster ovary cells: relationship to shutoff of protein synthesis. J Virol. 1978 Dec;28(3):843–850. doi: 10.1128/jvi.28.3.843-850.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Drillien R., Spehner D. Physical mapping of vaccinia virus temperature-sensitive mutations. Virology. 1983 Dec;131(2):385–393. doi: 10.1016/0042-6822(83)90506-8. [DOI] [PubMed] [Google Scholar]
  104. Dumbell K. R., Archard L. C. Comparison of white pock (h) mutants of monkeypox virus with parental monkeypox and with variola-like viruses isolated from animals. Nature. 1980 Jul 3;286(5768):29–32. doi: 10.1038/286029a0. [DOI] [PubMed] [Google Scholar]
  105. Dvorak H. F., Hirsch M. S. Role of basophilic leukocytes in cellular immunity to vaccinia virus infection. J Immunol. 1971 Dec;107(6):1576–1582. [PubMed] [Google Scholar]
  106. EASTERBROOK K. B. Analysis of the early stages of vaccinia virus infection in KB cells using sodium azide. Virology. 1961 Dec;15:417–427. doi: 10.1016/0042-6822(61)90109-x. [DOI] [PubMed] [Google Scholar]
  107. Easterbrook K. B. Controlled degradation of vaccinia virions in vitro: an electron microscopic study. J Ultrastruct Res. 1966 Mar;14(5):484–496. doi: 10.1016/s0022-5320(66)80077-1. [DOI] [PubMed] [Google Scholar]
  108. Edwards K. M., Andrews T. C., Van Savage J., Palmer P. S., Moyer R. W. Poxvirus deletion mutants: virulence and immunogenicity. Microb Pathog. 1988 May;4(5):325–333. doi: 10.1016/0882-4010(88)90060-5. [DOI] [PubMed] [Google Scholar]
  109. Ensinger M. J., Rovinsky M. Marker rescue of temperature-sensitive mutations of vaccinia virus WR: correlation of genetic and physical maps. J Virol. 1983 Nov;48(2):419–428. doi: 10.1128/jvi.48.2.419-428.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Epstein L. B., Stevens D. A., Merigan T. C. Selective increase in lymphocyte interferon response to vaccinia antigen after revaccination. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2632–2636. doi: 10.1073/pnas.69.9.2632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Epstein W. L., Conant M. A., Krasnobrod H. Molluscum contagiosum: normal and virus infected epidermal cell kinetics. J Invest Dermatol. 1966 Jan;46(1):91–103. doi: 10.1038/jid.1966.14. [DOI] [PubMed] [Google Scholar]
  112. Esposito J. J., Cabradilla C. D., Nakano J. H., Obijeski J. F. Intragenomic sequence transposition in monkeypox virus. Virology. 1981 Mar;109(2):231–243. doi: 10.1016/0042-6822(81)90495-5. [DOI] [PubMed] [Google Scholar]
  113. Esposito J. J., Knight J. C. Orthopoxvirus DNA: a comparison of restriction profiles and maps. Virology. 1985 May;143(1):230–251. doi: 10.1016/0042-6822(85)90111-4. [DOI] [PubMed] [Google Scholar]
  114. Essani K., Dales S. Biogenesis of vaccinia: evidence for more than 100 polypeptides in the virion. Virology. 1979 Jun;95(2):385–394. doi: 10.1016/0042-6822(79)90493-8. [DOI] [PubMed] [Google Scholar]
  115. Essani K., Dugre R., Dales S. Biogenesis of vaccinia: involvement of spicules of the envelope during virion assembly examined by means of conditional lethal mutants and serology. Virology. 1982 Apr 30;118(2):279–292. doi: 10.1016/0042-6822(82)90347-6. [DOI] [PubMed] [Google Scholar]
  116. Esteban M., Benavente J., Paez E. Mode of sensitivity and resistance of vaccinia virus replication to interferon. J Gen Virol. 1986 Apr;67(Pt 4):801–808. doi: 10.1099/0022-1317-67-4-801. [DOI] [PubMed] [Google Scholar]
  117. Evans D. H., Stuart D., McFadden G. High levels of genetic recombination among cotransfected plasmid DNAs in poxvirus-infected mammalian cells. J Virol. 1988 Feb;62(2):367–375. doi: 10.1128/jvi.62.2.367-375.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. FENNER F., BURNET F. M. A short description of the poxvirus group (vaccinia and related viruses). Virology. 1957 Oct;4(2):305–314. doi: 10.1016/0042-6822(57)90065-x. [DOI] [PubMed] [Google Scholar]
  119. FENNER F. The biological characters of several strains of vaccinia, cowpox and rabbitpox viruses. Virology. 1958 Jun;5(3):502–529. doi: 10.1016/0042-6822(58)90042-4. [DOI] [PubMed] [Google Scholar]
  120. FENNER F. The reactivation of animal viruses. Br Med J. 1962 Jul 21;2(5298):135–142. doi: 10.1136/bmj.2.5298.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. FENNER F., WOODROOFE G. M. The pathogenesis of infectious myxomatosis; the mechanism of infection and the immunological response in the European rabbit (Oryctolagus cuniculus). Br J Exp Pathol. 1953 Aug;34(4):400–411. [PMC free article] [PubMed] [Google Scholar]
  122. FENNER F., WOODROOFE G. M. The reactivation of poxviruses. II. The range of reactivating viruses. Virology. 1960 May;11:185–201. doi: 10.1016/0042-6822(60)90061-1. [DOI] [PubMed] [Google Scholar]
  123. FRIEDMAN R. M., BARON S. The role of antibody in recovery from infection with vaccinia virus. J Immunol. 1961 Oct;87:379–382. [PubMed] [Google Scholar]
  124. FRIEDMAN R. M., BARONS, BUCKLER C. E., STEINMULLER R. I. The role of antibody, delayed hypersensitivity, and interferon production in recovery of guinea pigs from primary infection with vaccinia virus. J Exp Med. 1962 Sep 1;116:347–356. doi: 10.1084/jem.116.3.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Farrell P. J., Balkow K., Hunt T., Jackson R. J., Trachsel H. Phosphorylation of initiation factor elF-2 and the control of reticulocyte protein synthesis. Cell. 1977 May;11(1):187–200. doi: 10.1016/0092-8674(77)90330-0. [DOI] [PubMed] [Google Scholar]
  126. Fearon D. T., Wong W. W. Complement ligand-receptor interactions that mediate biological responses. Annu Rev Immunol. 1983;1:243–271. doi: 10.1146/annurev.iy.01.040183.001331. [DOI] [PubMed] [Google Scholar]
  127. Fenner F., Sambrook J. F. Conditional lethal mutants of rabbitpox virus. II. Mutants (p) that fail to multiply in PK-2a cells. Virology. 1966 Apr;28(4):600–609. doi: 10.1016/0042-6822(66)90245-5. [DOI] [PubMed] [Google Scholar]
  128. Fireman P., Friday G., Kumate J. Effect of measles vaccine on immunologic responsiveness. Pediatrics. 1969 Feb;43(2):264–272. [PubMed] [Google Scholar]
  129. Flexner C., Hügin A., Moss B. Prevention of vaccinia virus infection in immunodeficient mice by vector-directed IL-2 expression. Nature. 1987 Nov 19;330(6145):259–262. doi: 10.1038/330259a0. [DOI] [PubMed] [Google Scholar]
  130. Franke C. A., Reynolds P. L., Hruby D. E. Fatty acid acylation of vaccinia virus proteins. J Virol. 1989 Oct;63(10):4285–4291. doi: 10.1128/jvi.63.10.4285-4291.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Friedman H. M., Cohen G. H., Eisenberg R. J., Seidel C. A., Cines D. B. Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on infected cells. Nature. 1984 Jun 14;309(5969):633–635. doi: 10.1038/309633a0. [DOI] [PubMed] [Google Scholar]
  132. Friedman R. M., Metz D. H., Esteban R. M., Tovell D. R., Ball L. A., Kerr I. M. Mechanism of interferon action: inhibition of viral messenger ribonucleic acid translation in L-cell extracts. J Virol. 1972 Dec;10(6):1184–1198. doi: 10.1128/jvi.10.6.1184-1198.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. GINDER D. R. Resistance to fibroma virus infection; the role of immune leukocytes and immune macrophages. J Exp Med. 1955 Jan 1;101(1):43–58. doi: 10.1084/jem.101.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. GISPEN R. De herbesmetting van Indonesië met pokken. Ned Tijdschr Geneeskd. 1949 Oct 29;93(44):3686–3695. [PubMed] [Google Scholar]
  135. GLASGOW L. A., HABEL K. Interferon production by mouse leukocytes in vitro and in vivo. J Exp Med. 1963 Jan 1;117:149–160. doi: 10.1084/jem.117.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. GLASGOW L. A., HABEL K. The role of interferon in vaccinia virus infection of mouse embryo tissue culture. J Exp Med. 1962 Mar 1;115:503–512. doi: 10.1084/jem.115.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. GLASGOW L. A. LEUKOCYTES AND INTERFERON IN THE HOST RESPONSE TO VIRAL INFECTIONS. I. MOUSE LEUKOCYTES AND LEUKOCYTE-PRODUCED INTERFERON IN VACCINIA VIRUS INFECTION IN VITRO. J Exp Med. 1965 Jun 1;121:1001–1018. doi: 10.1084/jem.121.6.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. GLEDHILL A. W., REES R. J. Effect of a primary tuberculous infection on the resistance of male and female mice to Ectromelia. Nature. 1960 Aug 20;187:703–704. doi: 10.1038/187703b0. [DOI] [PubMed] [Google Scholar]
  139. GRACE J. T., Jr, MIRAND E. A. HUMAN SUSCEPTIBILITY TO A SIMIAN TUMOR VIRUS. Ann N Y Acad Sci. 1963 Nov 4;108:1123–1128. doi: 10.1111/j.1749-6632.1963.tb13439.x. [DOI] [PubMed] [Google Scholar]
  140. Gardner I. D., Blanden R. V. The cell-mediated immune response to ectromelia virus infection. II. Secondary response in vitro and kinetics of memory T cell production in vivo. Cell Immunol. 1976 Mar 15;22(2):283–296. doi: 10.1016/0008-8749(76)90030-7. [DOI] [PubMed] [Google Scholar]
  141. Gardner I. D., Bowern N. A., Blanden R. V. Cell-medicated cytotoxicity against ectromelia virus-infected target cells. III. Role of the H-2 gene complex. Eur J Immunol. 1975 Feb;5(2):122–127. doi: 10.1002/eji.1830050210. [DOI] [PubMed] [Google Scholar]
  142. Gardner I., Bowern N. A., Blanden R. V. Cell-mediated cytotoxicity against ectromelia virus-infected target cells. I. Specificity and kinetics. Eur J Immunol. 1974 Feb;4(2):63–67. doi: 10.1002/eji.1830040202. [DOI] [PubMed] [Google Scholar]
  143. Gardner I., Bowern N. A., Blanden R. V. Cell-mediated cytotoxicity against ectromelia virus-infected target cells. II. Identification of effector cells and analysis of mechanisms. Eur J Immunol. 1974 Feb;4(2):68–72. doi: 10.1002/eji.1830040203. [DOI] [PubMed] [Google Scholar]
  144. Ghosh S. N., Gifford G. E. Effect of interferon on the dynamics of H3-thymidine incorporation and thymidine kinase induction in chick fibroblast cultures infected with vaccinia virus. Virology. 1965 Oct;27(2):186–192. doi: 10.1016/0042-6822(65)90158-3. [DOI] [PubMed] [Google Scholar]
  145. Gibbs E. P., Johnson R. H., Collings D. F. Cowpox in a dairy herd in the United Kingdom. Vet Rec. 1973 Jan 20;92(3):56–64. doi: 10.1136/vr.92.3.56. [DOI] [PubMed] [Google Scholar]
  146. Gillard S., Spehner D., Drillien R., Kirn A. Antibodies directed against a synthetic peptide enable detection of a protein encoded by a vaccinia virus host range gene that is conserved within the Orthopoxvirus genus. J Virol. 1989 Apr;63(4):1814–1817. doi: 10.1128/jvi.63.4.1814-1817.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Gillard S., Spehner D., Drillien R., Kirn A. Localization and sequence of a vaccinia virus gene required for multiplication in human cells. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5573–5577. doi: 10.1073/pnas.83.15.5573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Gillard S., Spehner D., Drillien R. Mapping of a vaccinia host range sequence by insertion into the viral thymidine kinase gene. J Virol. 1985 Jan;53(1):316–318. doi: 10.1128/jvi.53.1.316-318.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. The complete DNA sequence of vaccinia virus. Virology. 1990 Nov;179(1):247-66, 517-63. doi: 10.1016/0042-6822(90)90294-2. [DOI] [PubMed] [Google Scholar]
  150. Gold P. H., Dales S. Localization of nucleotide phosphohydrolase activity within vaccinia. Proc Natl Acad Sci U S A. 1968 Jul;60(3):845–852. doi: 10.1073/pnas.60.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Goldstein D. J., Weller S. K. Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: isolation and characterization of an ICP6 lacZ insertion mutant. J Virol. 1988 Jan;62(1):196–205. doi: 10.1128/jvi.62.1.196-205.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Gordon J., Kovala T., Dales S. Molecular characterization of a prominent antigen of the vaccinia virus envelope. Virology. 1988 Dec;167(2):361–369. [PubMed] [Google Scholar]
  153. Grimley P. M., Rosenblum E. N., Mims S. J., Moss B. Interruption by Rifampin of an early stage in vaccinia virus morphogenesis: accumulation of membranes which are precursors of virus envelopes. J Virol. 1970 Oct;6(4):519–533. doi: 10.1128/jvi.6.4.519-533.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Handa K., Suzuki R., Matsui H., Shimizu Y., Kumagai K. Natural killer (NK) cells as a responder to interleukin 2 (IL 2). II. IL 2-induced interferon gamma production. J Immunol. 1983 Feb;130(2):988–992. [PubMed] [Google Scholar]
  155. Hansson O., Johansson S. G., Vahlquist B. Vaccinia Gangrenosa with normal humoral antibodies. A case possibly due to deficient cellular immunity treated with N-methylisatin beta-thiosemicarbazone (Compound 33T57, Marboran). Acta Paediatr Scand. 1966 May;55(3):264–272. doi: 10.1111/j.1651-2227.1966.tb17653.x. [DOI] [PubMed] [Google Scholar]
  156. Hapel A. J., Bablanian R., Cole G. A. Inductive requirements for the generation of virus-specific T lymphocytes. II. Poxvirus and H-2 antigens associate without cellular or virus-directed protein synthesis, and remain immunogenic in cell membrane fragments. J Immunol. 1980 Apr;124(4):1990–1996. [PubMed] [Google Scholar]
  157. Hapel A., Gardner I. Appearance of cytotoxic T cells in cerebrospinal fluid of mice with ectromelia virus-induced meningitis. Scand J Immunol. 1974;3(3):311–319. doi: 10.1111/j.1365-3083.1974.tb01262.x. [DOI] [PubMed] [Google Scholar]
  158. Heard H. K., O'Connor K., Strayer D. S. Molecular analysis of immunosuppression induced by virus replication in lymphocytes. J Immunol. 1990 May 15;144(10):3992–3999. [PubMed] [Google Scholar]
  159. Herberman R. B., Reynolds C. W., Ortaldo J. R. Mechanism of cytotoxicity by natural killer (NK) cells. Annu Rev Immunol. 1986;4:651–680. doi: 10.1146/annurev.iy.04.040186.003251. [DOI] [PubMed] [Google Scholar]
  160. Hiller G., Eibl H., Weber K. Characterization of intracellular and extracellular vaccinia virus variants: N1-isonicotinoyl-N2-3-methyl-4-chlorobenzoylhydrazine interferes with cytoplasmic virus dissemination and release. J Virol. 1981 Sep;39(3):903–913. doi: 10.1128/jvi.39.3.903-913.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Hiller G., Weber K. Golgi-derived membranes that contain an acylated viral polypeptide are used for vaccinia virus envelopment. J Virol. 1985 Sep;55(3):651–659. doi: 10.1128/jvi.55.3.651-659.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Hirsch M. S., Nahmias A. J., Murphy F. A., Kramer J. H. Cellular immunity in vaccinia infection of mice. Anti-thymocyte serum effects on primary and secondary responsiveness. J Exp Med. 1968 Jul 1;128(1):121–132. doi: 10.1084/jem.128.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Hirsch R. L. The complement system: its importance in the host response to viral infection. Microbiol Rev. 1982 Mar;46(1):71–85. doi: 10.1128/mr.46.1.71-85.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Hirt P., Hiller G., Wittek R. Localization and fine structure of a vaccinia virus gene encoding an envelope antigen. J Virol. 1986 Jun;58(3):757–764. doi: 10.1128/jvi.58.3.757-764.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Holowczak J. A. Uncoating of poxviruses. I. Detection and characterization of subviral particles in the uncoating process. Virology. 1972 Oct;50(1):216–232. doi: 10.1016/0042-6822(72)90362-5. [DOI] [PubMed] [Google Scholar]
  166. Horak I., Jungwirth C., Bodo G. Poxvirus specific cytopathic effect in interferon-treated L cells. Virology. 1971 Aug;45(2):456–462. doi: 10.1016/0042-6822(71)90345-x. [DOI] [PubMed] [Google Scholar]
  167. Hovanessian A. G., Galabru J., Meurs E., Buffet-Janvresse C., Svab J., Robert N. Rapid decrease in the levels of the double-stranded RNA-dependent protein kinase during virus infections. Virology. 1987 Jul;159(1):126–136. doi: 10.1016/0042-6822(87)90355-2. [DOI] [PubMed] [Google Scholar]
  168. Hruby D. E., Lynn D. L., Condit R. C., Kates J. R. Cellular differences in the molecular mechanisms of vaccinia virus host range restriction. J Gen Virol. 1980 Apr;47(2):485–488. doi: 10.1099/0022-1317-47-2-485. [DOI] [PubMed] [Google Scholar]
  169. Huegin A. W., Cerny A., Hengartner H., Zinkernagel R. M. Suppression by cyclosporin A of murine T-cell-mediated immunity against viruses in vivo and in vitro. Cell Immunol. 1985 Feb;90(2):464–473. doi: 10.1016/0008-8749(85)90211-4. [DOI] [PubMed] [Google Scholar]
  170. Huegin A. W., Cerny A., Zinkernagel R. M., Neftel K. A. Suppressive effects of B-lactam-antibiotics on in vitro generation of cytotoxic T-cells. Int J Immunopharmacol. 1986;8(7):723–729. doi: 10.1016/0192-0561(86)90008-1. [DOI] [PubMed] [Google Scholar]
  171. Ichihashi Y., Dales S. Biogenesis of poxviruses: interrelationship between hemagglutinin production and polykaryocytosis. Virology. 1971 Dec;46(3):533–543. doi: 10.1016/0042-6822(71)90057-2. [DOI] [PubMed] [Google Scholar]
  172. Ichihashi Y., Matsumoto S., Dales S. Biogenesis of poxviruses: role of A-type inclusions and host cell membranes in virus dissemination. Virology. 1971 Dec;46(3):507–532. doi: 10.1016/0042-6822(71)90056-0. [DOI] [PubMed] [Google Scholar]
  173. Ichihashi Y., Matsumoto S. Studies on the nature of Marchal bodies (A-type inclusion) during ectromelia virus infection. Virology. 1966 Jun;29(2):264–275. doi: 10.1016/0042-6822(66)90033-x. [DOI] [PubMed] [Google Scholar]
  174. Ichihashi Y., Oie M. Adsorption and penetration of the trypsinized vaccinia virion. Virology. 1980 Feb;101(1):50–60. doi: 10.1016/0042-6822(80)90482-1. [DOI] [PubMed] [Google Scholar]
  175. Ichihashi Y. Unit Complex of vaccinia polypeptides linked by disulfide bridges. Virology. 1981 Aug;113(1):277–284. doi: 10.1016/0042-6822(81)90154-9. [DOI] [PubMed] [Google Scholar]
  176. Imanishi J., Matsubara M., Won C. J., Nomura H., Kishida T. Combined protective effects on interferon and interferon induction on herpes simplex and ectromelia virus infections in mice. Antimicrob Agents Chemother. 1981 May;19(5):922–924. doi: 10.1128/aac.19.5.922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Imanishi J., Won S. J., Matsubara M., Nomura H., Kishida T. Synergic effects of interferon and interferon inducer against ectromelia virus infection in mice. Biken J. 1980 Jun;23(2):77–81. [PubMed] [Google Scholar]
  178. Issekutz T. B. Characteristics of lymphoblasts appearing in efferent lymph in response to immunization with vaccinia virus. Immunology. 1985 Sep;56(1):23–31. [PMC free article] [PubMed] [Google Scholar]
  179. Issekutz T. B. Kinetics of cytotoxic lymphocytes in efferent lymph from single lymph nodes following immunization with vaccinia virus. Clin Exp Immunol. 1984 Jun;56(3):515–523. [PMC free article] [PubMed] [Google Scholar]
  180. Issekutz T. B., Stoltz J. M., Webster D. M. Role of interferon in lymphocyte recruitment into the skin. Cell Immunol. 1986 May;99(2):322–333. doi: 10.1016/0008-8749(86)90241-8. [DOI] [PubMed] [Google Scholar]
  181. Issekutz T. B. The response of gut-associated T lymphocytes to intestinal viral immunization. J Immunol. 1984 Dec;133(6):2955–2960. [PubMed] [Google Scholar]
  182. Issekutz T. B., Webster D. M., Stoltz J. M. Lymphocyte recruitment in vaccinia virus-induced cutaneous delayed-type hypersensitivity. Immunology. 1986 May;58(1):87–94. [PMC free article] [PubMed] [Google Scholar]
  183. JOKLIK W. K. THE INTRACELLULAR FATE OF RABBITPOX VIRUS RENDERED NONINFECTIOUS BY VARIOUS REAGENTS. Virology. 1964 Apr;22:620–633. doi: 10.1016/0042-6822(64)90084-4. [DOI] [PubMed] [Google Scholar]
  184. Jackson D. C., Ada G. L., Tha Hla R. Cytotoxic T cells recognize very early, minor changes in ectromelia virus-infected target cells. Aust J Exp Biol Med Sci. 1976 Aug;54(4):349–363. doi: 10.1038/icb.1976.35. [DOI] [PubMed] [Google Scholar]
  185. Jacoby R. O., Bhatt P. N., Brownstein D. G. Evidence that NK cells and interferon are required for genetic resistance to lethal infection with ectromelia virus. Arch Virol. 1989;108(1-2):49–58. doi: 10.1007/BF01313742. [DOI] [PubMed] [Google Scholar]
  186. Jacoby R. O., Bhatt P. N. Mousepox in inbred mice innately resistant or susceptible to lethal infection with ectromelia virus. II. Pathogenesis. Lab Anim Sci. 1987 Feb;37(1):16–22. [PubMed] [Google Scholar]
  187. Jamieson A. T., Gentry G. A., Subak-Sharpe J. H. Induction of both thymidine and deoxycytidine kinase activity by herpes viruses. J Gen Virol. 1974 Sep;24(3):465–480. doi: 10.1099/0022-1317-24-3-465. [DOI] [PubMed] [Google Scholar]
  188. Janeczko R. A., Rodriguez J. F., Esteban M. Studies on the mechanism of entry of vaccinia virus in animal cells. Arch Virol. 1987;92(1-2):135–150. doi: 10.1007/BF01310068. [DOI] [PubMed] [Google Scholar]
  189. Jefferts E. R., Holowczak J. A. RNA synthesis in vaccinia-infected L cells: inhibition of ribosome formation and maturation. Virology. 1971 Dec;46(3):730–744. doi: 10.1016/0042-6822(71)90075-4. [DOI] [PubMed] [Google Scholar]
  190. Joklik W. K., Merigan T. C. Concerning the mechanism of action of interferon. Proc Natl Acad Sci U S A. 1966 Aug;56(2):558–565. doi: 10.1073/pnas.56.2.558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Jones J. F. Interactions between human neutrophils and vaccinia virus: induction of oxidative metabolism and virus inactivation. Pediatr Res. 1982 Jul;16(7):525–529. doi: 10.1203/00006450-198207000-00005. [DOI] [PubMed] [Google Scholar]
  192. Jungwirth C., Horak I., Bodo G., Lindner J., Schultze B. The synthesis of poxvirus-specific RNA in interferon-treated cells. Virology. 1972 Apr;48(1):59–70. doi: 10.1016/0042-6822(72)90114-6. [DOI] [PubMed] [Google Scholar]
  193. Jungwirth C., Launer J. Effect of poxvirus infection on host cell deoxyribonucleic acid synthesis. J Virol. 1968 May;2(5):401–408. doi: 10.1128/jvi.2.5.401-408.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. KATO S., MIYAMOTO H., TAKAHASHI M., KAMAHORA J. SHOPE FIBROMA AND RABBIT MYXOMA VIRUSES. II. PATHOGENESIS OF FIBROMAS IN DOMESTIC RABBITS. Biken J. 1963 Jul;6:135–143. [PubMed] [Google Scholar]
  195. KEMPE C. H. Studies smallpox and complications of smallpox vaccination. Pediatrics. 1960 Aug;26:176–189. [PubMed] [Google Scholar]
  196. KIT S., DUBBS D. R. Biochemistry of vaccinia-infected mouse fibroblasts (strain L-M). I. Effects on nucleic acid and protein synthesis. Virology. 1962 Oct;18:274–285. doi: 10.1016/0042-6822(62)90014-4. [DOI] [PubMed] [Google Scholar]
  197. Kapil S., Das S. K., Kumar A. Total haemolytic complement profile in chicks following fowl pox vaccination or infection. Acta Virol. 1989 Jan;33(1):87–90. [PubMed] [Google Scholar]
  198. Karupiah G., Blanden R. V., Ramshaw I. A. Interferon gamma is involved in the recovery of athymic nude mice from recombinant vaccinia virus/interleukin 2 infection. J Exp Med. 1990 Nov 1;172(5):1495–1503. doi: 10.1084/jem.172.5.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Karupiah G., Coupar B. E., Andrew M. E., Boyle D. B., Phillips S. M., Müllbacher A., Blanden R. V., Ramshaw I. A. Elevated natural killer cell responses in mice infected with recombinant vaccinia virus encoding murine IL-2. J Immunol. 1990 Jan 1;144(1):290–298. [PubMed] [Google Scholar]
  200. Kates J. R., McAuslan B. R. Messenger RNA synthesis by a "coated" viral genome. Proc Natl Acad Sci U S A. 1967 Feb;57(2):314–320. doi: 10.1073/pnas.57.2.314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Keck J. G., Baldick C. J., Jr, Moss B. Role of DNA replication in vaccinia virus gene expression: a naked template is required for transcription of three late trans-activator genes. Cell. 1990 Jun 1;61(5):801–809. doi: 10.1016/0092-8674(90)90190-p. [DOI] [PubMed] [Google Scholar]
  202. Kerr I. M., Brown R. E. pppA2'p5'A2'p5'A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc Natl Acad Sci U S A. 1978 Jan;75(1):256–260. doi: 10.1073/pnas.75.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. King C. S., Cooper J. A., Moss B., Twardzik D. R. Vaccinia virus growth factor stimulates tyrosine protein kinase activity of A431 cell epidermal growth factor receptors. Mol Cell Biol. 1986 Jan;6(1):332–336. doi: 10.1128/mcb.6.1.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Korngold R., Doherty P. C. Treatment of mice with polyinosinic-polycytidilic polyribonucleotide reduces T-cell involvement in a localized inflammatory response to vaccinia virus challenge. J Virol. 1985 Feb;53(2):489–494. doi: 10.1128/jvi.53.2.489-494.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Kosugi A., Takai Y., Ogata M., Fujiwara H., Hamaoka T. T-T cell interaction in the in vitro induction of delayed-type hypersensitivity (DTH) responses: demonstration of vaccinia virus-reactive helper T cell activity involved in enhanced induction of DTH responses. J Leukoc Biol. 1985 May;37(5):629–639. doi: 10.1002/jlb.37.5.629. [DOI] [PubMed] [Google Scholar]
  206. Koszinowski U., Ertl H. Lysis mediated by T cells and restricted by H-2 antigen of target cells infected with vaccinia virus. Nature. 1975 Jun 12;255(5509):552–554. doi: 10.1038/255552a0. [DOI] [PubMed] [Google Scholar]
  207. Koszinowski U., Ertl H. Lysis mediated by T cells and restricted by H-2 antigen of target cells infected with vaccinia virus. Nature. 1975 Jun 12;255(5509):552–554. doi: 10.1038/255552a0. [DOI] [PubMed] [Google Scholar]
  208. Koszinowski U., Thomssen R. Target cell-dependent T cell-mediated lysis of vaccinia virus-infected cells. Eur J Immunol. 1975 Apr;5(4):245–251. doi: 10.1002/eji.1830050405. [DOI] [PubMed] [Google Scholar]
  209. Kotwal G. J., Hügin A. W., Moss B. Mapping and insertional mutagenesis of a vaccinia virus gene encoding a 13,800-Da secreted protein. Virology. 1989 Aug;171(2):579–587. doi: 10.1016/0042-6822(89)90627-2. [DOI] [PubMed] [Google Scholar]
  210. Kotwal G. J., Isaacs S. N., McKenzie R., Frank M. M., Moss B. Inhibition of the complement cascade by the major secretory protein of vaccinia virus. Science. 1990 Nov 9;250(4982):827–830. doi: 10.1126/science.2237434. [DOI] [PubMed] [Google Scholar]
  211. Kotwal G. J., Moss B. Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant. Virology. 1988 Dec;167(2):524–537. [PubMed] [Google Scholar]
  212. Kotwal G. J., Moss B. Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. Nature. 1988 Sep 8;335(6186):176–178. doi: 10.1038/335176a0. [DOI] [PubMed] [Google Scholar]
  213. Kotwal G. J., Moss B. Vaccinia virus encodes two proteins that are structurally related to members of the plasma serine protease inhibitor superfamily. J Virol. 1989 Feb;63(2):600–606. doi: 10.1128/jvi.63.2.600-606.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Kreeb G., Zinkernagel R. M. Role of the H-2I region in the generation of an antiviral cytotoxic T-cell response in vitro. Cell Immunol. 1980 Aug 1;53(2):285–297. doi: 10.1016/0008-8749(80)90329-9. [DOI] [PubMed] [Google Scholar]
  215. Kreeb G., Zinkernagel R. M. Virus-specific proliferative T-cell responses: parameters and specificity. Cell Immunol. 1980 Aug 1;53(2):267–284. doi: 10.1016/0008-8749(80)90328-7. [DOI] [PubMed] [Google Scholar]
  216. Kruithof E. K. Plasminogen activator inhibitors--a review. Enzyme. 1988;40(2-3):113–121. doi: 10.1159/000469153. [DOI] [PubMed] [Google Scholar]
  217. Kuchino Y., Mori F., Kasai H., Inoue H., Iwai S., Miura K., Ohtsuka E., Nishimura S. Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues. Nature. 1987 May 7;327(6117):77–79. doi: 10.1038/327077a0. [DOI] [PubMed] [Google Scholar]
  218. Lake J. R., Cooper P. D. Deletions of the terminal sequences in the genomes of the white pock (u) and host-restricted (p) mutants of rabbitpox virus. J Gen Virol. 1980 May;48(1):135–147. doi: 10.1099/0022-1317-48-1-135. [DOI] [PubMed] [Google Scholar]
  219. Leddy J. P., Simons R. L., Douglas R. G. Effect of selective complement deficiency on the rate of neutralization of enveloped viruses by human sera. J Immunol. 1977 Jan;118(1):28–34. [PubMed] [Google Scholar]
  220. Lees D. N., Stephen J. Ectromelia virus-induced changes in primary cultures of mouse hepatocytes. J Gen Virol. 1985 Oct;66(Pt 10):2171–2181. doi: 10.1099/0022-1317-66-10-2171. [DOI] [PubMed] [Google Scholar]
  221. Leist T. P., Kohler M., Eppler M., Zinkernagel R. M. Effects of treatment with IL-2 receptor specific monoclonal antibody in mice. Inhibition of cytotoxic T cell responses but not of T help. J Immunol. 1989 Jul 15;143(2):628–632. [PubMed] [Google Scholar]
  222. Levine S., Magee W. E., Hamilton R. D., Miller O. V. Effect of interferon on early enzyme and viral DNA synthesis in vaccinia virus infections. Virology. 1967 May;32(1):33–40. doi: 10.1016/0042-6822(67)90249-8. [DOI] [PubMed] [Google Scholar]
  223. Lin Y. Z., Caporaso G., Chang P. Y., Ke X. H., Tam J. P. Synthesis of a biological active tumor growth factor from the predicted DNA sequence of Shope fibroma virus. Biochemistry. 1988 Jul 26;27(15):5640–5645. doi: 10.1021/bi00415a037. [DOI] [PubMed] [Google Scholar]
  224. Liu Y., Müllbacher A. Activated B cells can deliver help for the in vitro generation of antiviral cytotoxic T cells. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4629–4633. doi: 10.1073/pnas.86.12.4629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Lux S. E., John K. M., Bennett V. Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature. 1990 Mar 1;344(6261):36–42. doi: 10.1038/344036a0. [DOI] [PubMed] [Google Scholar]
  226. MCCARTHY K., GERMER W. D. Two heat-labile factors in normal sera which neutralize variola virus. Br J Exp Pathol. 1952 Dec;33(6):529–536. [PMC free article] [PubMed] [Google Scholar]
  227. MIMS C. A. ASPECTS OF THE PATHOGENESIS OF VIRUS DISEASES. Bacteriol Rev. 1964 Mar;28:30–71. doi: 10.1128/br.28.1.30-71.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. MIMS C. A. The response of mice to large intravenous injections of ectromelia virus. I. The fate of injected virus. Br J Exp Pathol. 1959 Dec;40:533–542. [PMC free article] [PubMed] [Google Scholar]
  229. MIMS C. A. The response of mice to large intravenous injections of ectromelia virus. II. The growth of virus in the liver. Br J Exp Pathol. 1959 Dec;40:543–550. [PMC free article] [PubMed] [Google Scholar]
  230. MYERS K. Studies in the epidemiology of infectious myxomatosis of rabbits. II. Field experiments, August-November 1950, and the first epizootic of myxomatosis in the Riverine Plain of south-eastern Australia. J Hyg (Lond) 1954 Mar;52(1):47–59. doi: 10.1017/s0022172400027248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Mackett M., Archard L. C. Conservation and variation in Orthopoxvirus genome structure. J Gen Virol. 1979 Dec;45(3):683–701. doi: 10.1099/0022-1317-45-3-683. [DOI] [PubMed] [Google Scholar]
  232. Magee W. E., Levine S., Miller O. V., Hamilton R. D. Inhibition by interferon of the uncoating of vaccinia virus. Virology. 1968 Aug;35(4):505–511. doi: 10.1016/0042-6822(68)90280-8. [DOI] [PubMed] [Google Scholar]
  233. Mallon V., Holowczak J. A. Vaccinia virus antigens on the plasma membrane of infected cells. I. Viral antigens transferred from infecting virus particles and synthesized after infection. Virology. 1985 Mar;141(2):201–220. doi: 10.1016/0042-6822(85)90252-1. [DOI] [PubMed] [Google Scholar]
  234. Marennikova S. S., Ladnyj I. D., Ogorodinikova Z. I., Shelukhina E. M., Maltseva N. N. Identification and study of a poxvirus isolated from wild rodents in Turkmenia. Arch Virol. 1978;56(1-2):7–14. doi: 10.1007/BF01317279. [DOI] [PubMed] [Google Scholar]
  235. Marennikova S. S., Maltseva N. N., Korneeva V. I., Garanina N. Outbreak of pox disease among carnivora (felidae) and edentata. J Infect Dis. 1977 Mar;135(3):358–366. doi: 10.1093/infdis/135.3.358. [DOI] [PubMed] [Google Scholar]
  236. Mbuy G. N., Morris R. E., Bubel H. C. Inhibition of cellular protein synthesis by vaccinia virus surface tubules. Virology. 1982 Jan 15;116(1):137–147. doi: 10.1016/0042-6822(82)90409-3. [DOI] [PubMed] [Google Scholar]
  237. McCARTHY K., DOWNIE A. W. The antibody response in man following infection with viruses of the pox group. I. An evaluation of the pock counting method for measuring neutralizing antibody. J Hyg (Lond) 1958 Mar;56(1):84–100. doi: 10.1017/s002217240003758x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. McFadden G., Pace W. E., Purres J., Dales S. Biogenesis of poxviruses: transitory expression of Molluscum contagiosum early functions. Virology. 1979 Apr 30;94(2):297–313. doi: 10.1016/0042-6822(79)90463-x. [DOI] [PubMed] [Google Scholar]
  239. McFarland H. F., Pedone C. A., Mingioli E. S., McFarlin D. E. The response of human lymphocyte subpopulations to measles, mumps, and vaccinia viral antigens. J Immunol. 1980 Jul;125(1):221–225. [PubMed] [Google Scholar]
  240. McLaren C., Cheng H., Spicer D. L., Tompkins W. A. Lymphocyte and macrophage responses after vaccinia virus infections. Infect Immun. 1976 Oct;14(4):1014–1021. doi: 10.1128/iai.14.4.1014-1021.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. McNeill T. A. The antibody response of rabbits to inactivated vaccinia virus. J Hyg (Lond) 1965 Dec;63(4):525–535. doi: 10.1017/s0022172400045411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  242. Merchlinsky M. Intramolecular homologous recombination in cells infected with temperature-sensitive mutants of vaccinia virus. J Virol. 1989 May;63(5):2030–2035. doi: 10.1128/jvi.63.5.2030-2035.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  243. Meshkova E. N., Mentkevich L. M. Potentsirovanie antivirusnoi aktivnosti chelovecheskikh interferonov virazolom v opytakh in vitro. Vopr Virusol. 1987 Sep-Oct;32(5):570–573. [PubMed] [Google Scholar]
  244. Metz D. H., Esteban M. Interferon inhibits viral protein synthesis in L cells infected with vaccinia virus. Nature. 1972 Aug 18;238(5364):385–388. doi: 10.1038/238385a0. [DOI] [PubMed] [Google Scholar]
  245. Miller G., Enders J. F. Vaccinia virus replication and cytopathic effect in cultures in phytohemagglutinin-treated human peripheral blood leukocytes. J Virol. 1968 Aug;2(8):787–792. doi: 10.1128/jvi.2.8.787-792.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. Mims C. A., Wainwright S. The immunodepressive action of lymphocytic choriomeningitis virus in mice. J Immunol. 1968 Oct;101(4):717–724. [PubMed] [Google Scholar]
  247. Minbay A., Kreier J. P. An experimental study of the pathogenesis of fowlpox infection in chickens. Avian Dis. 1973 Jul-Sep;17(3):532–539. [PubMed] [Google Scholar]
  248. Mizuochi T., Hügin A. W., Morse H. C., 3rd, Singer A., Buller R. M. Role of lymphokine-secreting CD8+ T cells in cytotoxic T lymphocyte responses against vaccinia virus. J Immunol. 1989 Jan 1;142(1):270–273. [PubMed] [Google Scholar]
  249. Morishima T., Hayashi K. Meningeal exudate cells in vaccinia meningitis of mice: role of local T cells. Infect Immun. 1978 Jun;20(3):752–759. doi: 10.1128/iai.20.3.752-759.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  250. Morita C. Role of humoral and cell-mediated immunity on the recovery of chickens from fowlpox virus infection. J Immunol. 1973 Nov;111(5):1495–1501. [PubMed] [Google Scholar]
  251. Morrison D. K., Moyer R. W. Detection of a subunit of cellular Pol II within highly purified preparations of RNA polymerase isolated from rabbit poxvirus virions. Cell. 1986 Feb 28;44(4):587–596. doi: 10.1016/0092-8674(86)90268-0. [DOI] [PubMed] [Google Scholar]
  252. Moss B. Inhibition of HeLa cell protein synthesis by the vaccinia virion. J Virol. 1968 Oct;2(10):1028–1037. doi: 10.1128/jvi.2.10.1028-1037.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  253. Moss B. Regulation of vaccinia virus transcription. Annu Rev Biochem. 1990;59:661–688. doi: 10.1146/annurev.bi.59.070190.003305. [DOI] [PubMed] [Google Scholar]
  254. Moss B., Rosenblum E. N. Letter: Protein cleavage and poxvirus morphogenesis: tryptic peptide analysis of core precursors accumulated by blocking assembly with rifampicin. J Mol Biol. 1973 Dec 5;81(2):267–269. doi: 10.1016/0022-2836(73)90195-2. [DOI] [PubMed] [Google Scholar]
  255. Moyer R. W., Brown G. D., Graves R. L. The white pock mutants of rabbit poxvirus. II. The early white pock (mu) host range (hr) mutants of rabbit poxvirus uncouple transcription and translation in nonpermissive cells. Virology. 1980 Oct 30;106(2):234–249. doi: 10.1016/0042-6822(80)90247-0. [DOI] [PubMed] [Google Scholar]
  256. Moyer R. W., Graves R. L., Rothe C. T. The white pock (mu) mutants of rabbit poxvirus. III. Terminal DNA sequence duplication and transposition in rabbit poxvirus. Cell. 1980 Nov;22(2 Pt 2):545–553. doi: 10.1016/0092-8674(80)90364-5. [DOI] [PubMed] [Google Scholar]
  257. Moyer R. W., Rothe C. T. The white pock mutants of rabbit poxvirus. I. Spontaneous host range mutants contain deletions. Virology. 1980 Apr 15;102(1):119–132. doi: 10.1016/0042-6822(80)90075-6. [DOI] [PubMed] [Google Scholar]
  258. Moyer R. W. The role of the host cell nucleus in vaccinia virus morphogenesis. Virus Res. 1987 Sep;8(3):173–191. doi: 10.1016/0168-1702(87)90014-1. [DOI] [PubMed] [Google Scholar]
  259. Mss B., Filler R. Irreversible effects of cycloheximide during the early period of vaccinia virus replicaon. J Virol. 1970 Feb;5(2):99–108. doi: 10.1128/jvi.5.2.99-108.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  260. Møller-Larsen A. Cell-mediated cytotoxicity during vaccinia virus revaccination in man: influence of antibodies and interferon. Scand J Immunol. 1979;10(6):543–548. doi: 10.1111/j.1365-3083.1979.tb01388.x. [DOI] [PubMed] [Google Scholar]
  261. Møller-Larsen A., Haahr S. Humoral and cell-mediated immune responses in humans before and after revaccination with vaccinia virus. Infect Immun. 1978 Jan;19(1):34–39. doi: 10.1128/iai.19.1.34-39.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  262. Müller H. K., Wittek R., Schaffner W., Schümperli D., Menna A., Wyler R. Comparison of five poxvirus genomes by analysis with restriction endonucleases HindIII, BamI and EcoRI. J Gen Virol. 1978 Jan;38(1):135–147. doi: 10.1099/0022-1317-38-1-135. [DOI] [PubMed] [Google Scholar]
  263. NAGINGTON J., HORNE R. W. Morphological studies of orf and vaccinia viruses. Virology. 1962 Mar;16:248–260. doi: 10.1016/0042-6822(62)90245-3. [DOI] [PubMed] [Google Scholar]
  264. NISHMI M., BERNKOPF H. The toxic effect of vaccinia virus on leucocytes in vitro. J Immunol. 1958 Dec;81(6):460–466. [PubMed] [Google Scholar]
  265. NIVEN J. S., ARMSTRONG J. A., ANDREWES C. H., PEREIRA H. G., VALENTINE R. C. Subcutaneous "growths" in monkeys produced by a poxvirus. J Pathol Bacteriol. 1961 Jan;81:1–14. [PubMed] [Google Scholar]
  266. Nagaya A., Pogo B. G., Dales S. Biogenesis of vaccinia: separation of early stages from maturation by means of rifampicin. Virology. 1970 Apr;40(4):1039–1051. doi: 10.1016/0042-6822(70)90150-9. [DOI] [PubMed] [Google Scholar]
  267. Natuk R. J., Holowczak J. A. Vaccinia virus proteins on the plasma membrane of infected cells. III. Infection of peritoneal macrophages. Virology. 1985 Dec;147(2):354–372. doi: 10.1016/0042-6822(85)90138-2. [DOI] [PubMed] [Google Scholar]
  268. Nelles M. J., Duncan W. R., Streilein J. W. Immune response to acute virus infection in the Syrian hamster. II. Studies on the identity of virus-induced cytotoxic effector cells. J Immunol. 1981 Jan;126(1):214–218. [PubMed] [Google Scholar]
  269. Nelles M. J., Streilein J. W. Hamster T cells participate in MHC alloimmune reactions but do not effect virus-induced cytotoxic activity. Immunogenetics. 1980 Jul;11(1):75–86. doi: 10.1007/BF01567771. [DOI] [PubMed] [Google Scholar]
  270. Nelles M. J., Streilein J. W. Immune response to acute virus infection in the Syrian hamster. I. Studies on genetic restriction of cell-mediated cytotoxicity. Immunogenetics. 1980;10(2):185–199. doi: 10.1007/BF01561567. [DOI] [PubMed] [Google Scholar]
  271. Nickell S. P., Freeman R. R., Cole G. A. Depression of virus-specific cytotoxic T-cell responses during murine malaria. Parasite Immunol. 1987 Mar;9(2):161–174. doi: 10.1111/j.1365-3024.1987.tb00497.x. [DOI] [PubMed] [Google Scholar]
  272. Niles E. G., Seto J. Vaccinia virus gene D8 encodes a virion transmembrane protein. J Virol. 1988 Oct;62(10):3772–3778. doi: 10.1128/jvi.62.10.3772-3778.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  273. Nishimura C., Nomura M., Kitaoka M., Takeuchi Y., Kimura M. Complement requirement of the neutralizing antibody appearing after immunization with smallpox vaccine. Jpn J Microbiol. 1968 Jun;12(2):256–259. doi: 10.1111/j.1348-0421.1968.tb00393.x. [DOI] [PubMed] [Google Scholar]
  274. Norrie D. H., Wolstenholme J., Howcroft H., Stephen J. Vaccinia virus-induced changes in [Na+] and [K+] in HeLa cells. J Gen Virol. 1982 Sep;62(Pt 1):127–136. doi: 10.1099/0022-1317-62-1-127. [DOI] [PubMed] [Google Scholar]
  275. Nye R. N., Parker F. Studies on Filterable Viruses: III. Further Observations on Vaccine Virus. Am J Pathol. 1929 Mar;5(2):147–155. [PMC free article] [PubMed] [Google Scholar]
  276. O'CONNELL C. J., KARZON D. T., BARRON A. L., PLAUT M. E., ALI V. M. PROGRESSIVE VACCINIA WITH NORMAL ANTIBODIES. A CASE POSSIBLY DUE TO DEFICIENT CELLULAR IMMUNITY. Ann Intern Med. 1964 Feb;60:282–289. doi: 10.7326/0003-4819-60-2-282. [DOI] [PubMed] [Google Scholar]
  277. O'Neill H. C., Blanden R. V. Mechanisms determining innate resistance to ectromelia virus infection in C57BL mice. Infect Immun. 1983 Sep;41(3):1391–1394. doi: 10.1128/iai.41.3.1391-1394.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  278. O'Neill H. C., Blanden R. V., O'Neill T. J. H-2-linked control of resistance to ectromelia virus infection in B10 congenic mice. Immunogenetics. 1983;18(3):255–265. doi: 10.1007/BF00952964. [DOI] [PubMed] [Google Scholar]
  279. O'Neill H. C., Brenan M. A role for early cytotoxic T cells in resistance to ectromelia virus infection in mice. J Gen Virol. 1987 Oct;68(Pt 10):2669–2673. doi: 10.1099/0022-1317-68-10-2669. [DOI] [PubMed] [Google Scholar]
  280. OHNO S., NOZIMA T. INHIBITORY EFFECT OF INTERFERON ON THE INDUCTION OF THYMIDINE KINASE IN VACCINIA VIRUS-INFECTED CHICK EMBRYO FIBROBLASTS. Acta Virol. 1964 Sep;8:479–479. [PubMed] [Google Scholar]
  281. Obom K. M., Pogo B. G. Characterization of the transformation properties of Shope fibroma virus. Virus Res. 1988 Jan;9(1):33–48. doi: 10.1016/0168-1702(88)90048-2. [DOI] [PubMed] [Google Scholar]
  282. Oda K. I., Joklik W. K. Hybridization and sedimentation studies on "early" and "late" vaccinia messenger RNA. J Mol Biol. 1967 Aug 14;27(3):395–419. doi: 10.1016/0022-2836(67)90047-2. [DOI] [PubMed] [Google Scholar]
  283. Ogier G., Chardonnet Y., Gazzolo L. Role of lysosomes during infection with Shope fibroma virus of primary rabbit kidney tissue culture cells. J Gen Virol. 1974 Feb;22(2):249–253. doi: 10.1099/0022-1317-22-2-249. [DOI] [PubMed] [Google Scholar]
  284. Ohta H., Kai C., Yoshikawa Y., Yamanouchi K. Activation of chicken alternative complement pathway by fowlpox virus-infected cells. Infect Immun. 1983 Nov;42(2):721–727. doi: 10.1128/iai.42.2.721-727.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  285. Ohta H., Yoshikawa Y., Kai C., Yamanouchi K., Taniguchi H., Komine K., Ishijima Y., Okada H. Effect of complement depletion by cobra venom factor on fowlpox virus infection in chickens and chicken embryos. J Virol. 1986 Feb;57(2):670–673. doi: 10.1128/jvi.57.2.670-673.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  286. Oie M., Ichihashi Y. Characterization of vaccinia polypeptides. Virology. 1981 Aug;113(1):263–276. doi: 10.1016/0042-6822(81)90153-7. [DOI] [PubMed] [Google Scholar]
  287. Oie M., Ichihashi Y. Modification of vaccinia virus penetration proteins analyzed by monoclonal antibodies. Virology. 1987 Apr;157(2):449–459. doi: 10.1016/0042-6822(87)90287-x. [DOI] [PubMed] [Google Scholar]
  288. Okada H., Wakamiya N., Okada N., Kato S. Sensitization of human tumor cells to homologous complement by vaccinia virus treatment. Cancer Immunol Immunother. 1987;25(1):7–9. doi: 10.1007/BF00199294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  289. Ortaldo J. R., Herberman R. B. Heterogeneity of natural killer cells. Annu Rev Immunol. 1984;2:359–394. doi: 10.1146/annurev.iy.02.040184.002043. [DOI] [PubMed] [Google Scholar]
  290. Owen M. C., Brennan S. O., Lewis J. H., Carrell R. W. Mutation of antitrypsin to antithrombin. alpha 1-antitrypsin Pittsburgh (358 Met leads to Arg), a fatal bleeding disorder. N Engl J Med. 1983 Sep 22;309(12):694–698. doi: 10.1056/NEJM198309223091203. [DOI] [PubMed] [Google Scholar]
  291. PETERS D. Morphology of resting vaccinia virus. Nature. 1956 Dec 29;178(4548):1453–1455. doi: 10.1038/1781453a0. [DOI] [PubMed] [Google Scholar]
  292. PINCUS W. B., FLICK J. A., INGALLS T. H. THE RESPONSE OF INBRED RABBITS TO VACCINIA VIRUS INFECTION. J Immunol. 1963 Jul;91:58–64. [PubMed] [Google Scholar]
  293. PINCUS W. B., FLICK J. A. The role of hypersensitivity in the pathogenesis of vaccinia virus infection in humans. J Pediatr. 1963 Jan;62:57–62. doi: 10.1016/s0022-3476(63)80071-2. [DOI] [PubMed] [Google Scholar]
  294. Paez E., Dallo S., Esteban M. Generation of a dominant 8-MDa deletion at the left terminus of vaccinia virus DNA. Proc Natl Acad Sci U S A. 1985 May;82(10):3365–3369. doi: 10.1073/pnas.82.10.3365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  295. Paez E., Esteban M. Nature and mode of action of vaccinia virus products that block activation of the interferon-mediated ppp(A2'p)nA-synthetase. Virology. 1984 Apr 15;134(1):29–39. doi: 10.1016/0042-6822(84)90269-1. [DOI] [PubMed] [Google Scholar]
  296. Paez E., Esteban M. Resistance of vaccinia virus to interferon is related to an interference phenomenon between the virus and the interferon system. Virology. 1984 Apr 15;134(1):12–28. doi: 10.1016/0042-6822(84)90268-x. [DOI] [PubMed] [Google Scholar]
  297. Palumbo G. J., Pickup D. J., Fredrickson T. N., McIntyre L. J., Buller R. M. Inhibition of an inflammatory response is mediated by a 38-kDa protein of cowpox virus. Virology. 1989 Sep;172(1):262–273. doi: 10.1016/0042-6822(89)90128-1. [DOI] [PubMed] [Google Scholar]
  298. Pang T., Gardner I. D., Blanden R. V. Cytotoxic T cells in the peritoneal cavity of mice infected with ectromelia virus. Aust J Exp Biol Med Sci. 1976 Aug;54(4):365–370. doi: 10.1038/icb.1976.36. [DOI] [PubMed] [Google Scholar]
  299. Pang T., McKenzie I. F., Blanden R. V. Cooperation between mouse T-cell subpopulations in the cell-mediated response to a natural poxvirus pathogen. Cell Immunol. 1976 Oct;26(2):153–159. doi: 10.1016/0008-8749(76)90359-2. [DOI] [PubMed] [Google Scholar]
  300. Parr R. P., Burnett J. W., Garon C. F. Ultrastructural characterization of the Molluscum contagiosum virus genome. Virology. 1977 Sep;81(2):247–256. doi: 10.1016/0042-6822(77)90141-6. [DOI] [PubMed] [Google Scholar]
  301. Patel D. D., Pickup D. J., Joklik W. K. Isolation of cowpox virus A-type inclusions and characterization of their major protein component. Virology. 1986 Mar;149(2):174–189. doi: 10.1016/0042-6822(86)90119-4. [DOI] [PubMed] [Google Scholar]
  302. Pathak P. N., Rao G. V., Tompkins W. A. In vitro cellular immunity to unrelated pathogens in chickens infected with fowlpox virus. Infect Immun. 1974 Jul;10(1):34–41. doi: 10.1128/iai.10.1.34-41.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  303. Pathak P. N., Tompkins W. A. Interferon production by macrophages from adult and newborn rabbits bearing fibroma virus-induced tumors. Infect Immun. 1974 Apr;9(4):669–673. doi: 10.1128/iai.9.4.669-673.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  304. Payne L. G. Identification of the vaccinia hemagglutinin polypeptide from a cell system yielding large amounts of extracellular enveloped virus. J Virol. 1979 Jul;31(1):147–155. doi: 10.1128/jvi.31.1.147-155.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  305. Payne L. G., Kristensson K. Extracellular release of enveloped vaccinia virus from mouse nasal epithelial cells in vivo. J Gen Virol. 1985 Mar;66(Pt 3):643–646. doi: 10.1099/0022-1317-66-3-643. [DOI] [PubMed] [Google Scholar]
  306. Payne L. G., Norrby E. Adsorption and penetration of enveloped and naked vaccinia virus particles. J Virol. 1978 Jul;27(1):19–27. doi: 10.1128/jvi.27.1.19-27.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  307. Payne L. G. Significance of extracellular enveloped virus in the in vitro and in vivo dissemination of vaccinia. J Gen Virol. 1980 Sep;50(1):89–100. doi: 10.1099/0022-1317-50-1-89. [DOI] [PubMed] [Google Scholar]
  308. Payne L. Polypeptide composition of extracellular enveloped vaccinia virus. J Virol. 1978 Jul;27(1):28–37. doi: 10.1128/jvi.27.1.28-37.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  309. Pedley C. B., Cooper R. J. The assay, purification and properties of vaccinia virus-induced uncoating protein. J Gen Virol. 1987 Apr;68(Pt 4):1021–1028. doi: 10.1099/0022-1317-68-4-1021. [DOI] [PubMed] [Google Scholar]
  310. Pedley S., Cooper R. J. The inhibition of HeLa cell RNA synthesis following infection with vaccinia virus. J Gen Virol. 1984 Oct;65(Pt 10):1687–1697. doi: 10.1099/0022-1317-65-10-1687. [DOI] [PubMed] [Google Scholar]
  311. Perkus M. E., Goebel S. J., Davis S. W., Johnson G. P., Limbach K., Norton E. K., Paoletti E. Vaccinia virus host range genes. Virology. 1990 Nov;179(1):276–286. doi: 10.1016/0042-6822(90)90296-4. [DOI] [PubMed] [Google Scholar]
  312. Perkus M. E., Goebel S. J., Davis S. W., Johnson G. P., Norton E. K., Paoletti E. Deletion of 55 open reading frames from the termini of vaccinia virus. Virology. 1991 Jan;180(1):406–410. doi: 10.1016/0042-6822(91)90047-f. [DOI] [PubMed] [Google Scholar]
  313. Perkus M. E., Panicali D., Mercer S., Paoletti E. Insertion and deletion mutants of vaccinia virus. Virology. 1986 Jul 30;152(2):285–297. doi: 10.1016/0042-6822(86)90132-7. [DOI] [PubMed] [Google Scholar]
  314. Perrin L. H., Zinkernagel R. M., Oldstone M. B. Immune response in humans after vaccination with vaccinia virus: generation of a virus-specific cytotoxic activity by human peripheral lymphocytes. J Exp Med. 1977 Oct 1;146(4):949–969. doi: 10.1084/jem.146.4.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  315. Person-Fernandez A., Beaud G. Purification and characterization of a protein synthesis inhibitor associated with vaccinia virus. J Biol Chem. 1986 Jun 25;261(18):8283–8289. [PubMed] [Google Scholar]
  316. Person A., Beaud G. Inhibition of host protein synthesis in vaccinia virus-infected cells in the presence of cordycepin (3'-deoxyadenosine). J Virol. 1978 Jan;25(1):11–18. doi: 10.1128/jvi.25.1.11-18.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  317. Person A., Beaud G. Shut-off of host protein synthesis in vaccinia-virus-infected cells exposed to cordycepin. A study in vitro. Eur J Biochem. 1980 Jan;103(1):85–93. doi: 10.1111/j.1432-1033.1980.tb04291.x. [DOI] [PubMed] [Google Scholar]
  318. Person A., Ben-Hamida F., Beaud G. Inhibition of 40S--Met--tRNAfMet ribosomal initiation complex formation by vaccinia virus. Nature. 1980 Sep 25;287(5780):355–357. doi: 10.1038/287355a0. [DOI] [PubMed] [Google Scholar]
  319. Pestalozzi B. C., Zinkernagel R. M. Graft-versus-host reactions in F1 hybrid mice: MHC-restriction-independent generalized depression of virus-specific cytotoxic T cell response. Immunobiology. 1984 May;166(3):308–317. doi: 10.1016/S0171-2985(84)80048-0. [DOI] [PubMed] [Google Scholar]
  320. Pickup D. J., Ink B. S., Hu W., Ray C. A., Joklik W. K. Hemorrhage in lesions caused by cowpox virus is induced by a viral protein that is related to plasma protein inhibitors of serine proteases. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7698–7702. doi: 10.1073/pnas.83.20.7698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  321. Pickup D. J., Ink B. S., Parsons B. L., Hu W., Joklik W. K. Spontaneous deletions and duplications of sequences in the genome of cowpox virus. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6817–6821. doi: 10.1073/pnas.81.21.6817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  322. Pilchard E. I., Gold E. E., Gray H. K. A study of delayed hypersensitivity of guinea pigs to vaccinia virus. Comparison of inhibition of cell migration to a local passive transfer reaction for the quantification of delayed hypersensitivity. Int Arch Allergy Appl Immunol. 1970;37(4):337–343. doi: 10.1159/000230795. [DOI] [PubMed] [Google Scholar]
  323. Pogo B. G., Dales S. Biogenesis of poxviruses: further evidence for inhibition of host and virus DNA synthesis by a component of the invading inoculum particle. Virology. 1974 Apr;58(2):377–386. doi: 10.1016/0042-6822(74)90073-7. [DOI] [PubMed] [Google Scholar]
  324. Pogo B. G., Dales S. Biogenesis of poxviruses: inactivation of host DNA polymerase by a component of the invading inoculum particle. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1726–1729. doi: 10.1073/pnas.70.6.1726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  325. Pogo B. G., Friend C. Persistent infection of Friend erythroleukemia cells with vaccinia virus. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4805–4809. doi: 10.1073/pnas.79.15.4805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  326. Pogo B. G., Obom K. M., Haddad J., Holland J. G. Shope fibroma: a model system to study tumorigenesis by poxviruses. Ann N Y Acad Sci. 1989;567:222–233. doi: 10.1111/j.1749-6632.1989.tb16473.x. [DOI] [PubMed] [Google Scholar]
  327. Porter C. D., Archard L. C. Characterization and physical mapping of Molluscum contagiosum virus DNA and location of a sequence capable of encoding a conserved domain of epidermal growth factor. J Gen Virol. 1987 Mar;68(Pt 3):673–682. doi: 10.1099/0022-1317-68-3-673. [DOI] [PubMed] [Google Scholar]
  328. Porter C. D., Muhlemann M. F., Cream J. J., Archard L. C. Molluscum contagiosum: characterization of viral DNA and clinical features. Epidemiol Infect. 1987 Oct;99(2):563–566. doi: 10.1017/s0950268800068072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  329. Postlethwaite R. Molluscum contagiosum. Arch Environ Health. 1970 Sep;21(3):432–452. doi: 10.1080/00039896.1970.10667262. [DOI] [PubMed] [Google Scholar]
  330. Prose P. H., Friedman-Kien A. E., Vilcek J. Morphogenesis of rabbit fibroma virus. Correlation with pathogenesis of the skin lesion. Am J Pathol. 1971 Sep;64(3):467–478. [PMC free article] [PubMed] [Google Scholar]
  331. Puckett C., Moss B. Selective transcription of vaccinia virus genes in template dependent soluble extracts of infected cells. Cell. 1983 Dec;35(2 Pt 1):441–448. doi: 10.1016/0092-8674(83)90177-0. [DOI] [PubMed] [Google Scholar]
  332. Purcell D. A., Clarke J. K., McFerran J. B., Hughes D. A. The morphogenesis of pigeonpox virus. J Gen Virol. 1972 Apr;15(1):79–83. doi: 10.1099/0022-1317-15-1-79. [DOI] [PubMed] [Google Scholar]
  333. ROBERTS J. A. GROWTH OF ECTROMELIA VIRUS IN THE LIVER PARENCHYMAL CELLS OF DIFFERENT STRAINS OF MOUSE. Nature. 1964 Jun 13;202:1140–1141. doi: 10.1038/2021140a0. [DOI] [PubMed] [Google Scholar]
  334. ROBERTS J. A. GROWTH OF VIRULENT AND ATTENUATED ECTROMELIA VIRUS IN CULTURED MACROPHAGES FROM NORMAL AND ECTROMELIAIMMUNE MICE. J Immunol. 1964 Jun;92:837–842. [PubMed] [Google Scholar]
  335. ROBERTS J. A. HISTOPATHOGENESIS OF MOUSEPOX: III. ECTROMELIA VIRULENCE. Br J Exp Pathol. 1963 Oct;44:465–472. [PMC free article] [PubMed] [Google Scholar]
  336. ROBERTS J. A. Histopathogenesis of mousepox. I. Respiratory infection. Br J Exp Pathol. 1962 Oct;43:451–461. [PMC free article] [PubMed] [Google Scholar]
  337. ROBERTS J. A. Histopathogenesis of mousepox. II. Cutaneous infection. Br J Exp Pathol. 1962 Oct;43:462–468. [PMC free article] [PubMed] [Google Scholar]
  338. Radke K. L., Colby C., Kates J. R., Krider H. M., Prescott D. M. Establishment and maintenance of the interferon-induced antiviral state: studies in enucleated cells. J Virol. 1974 Mar;13(3):623–630. doi: 10.1128/jvi.13.3.623-630.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  339. Ramshaw I. A., Andrew M. E., Phillips S. M., Boyle D. B., Coupar B. E. Recovery of immunodeficient mice from a vaccinia virus/IL-2 recombinant infection. Nature. 1987 Oct 8;329(6139):545–546. doi: 10.1038/329545a0. [DOI] [PubMed] [Google Scholar]
  340. Ratner L., Sen G. C., Brown G. E., Lebleu B., Kawakita M., Cabrer B., Slattery E., Lengyel P. Interferon, double-stranded RNA and RNA degradation. Characteristics of an endonuclease activity. Eur J Biochem. 1977 Oct 3;79(2):565–577. doi: 10.1111/j.1432-1033.1977.tb11841.x. [DOI] [PubMed] [Google Scholar]
  341. Reisner A. H. Similarity between the vaccinia virus 19K early protein and epidermal growth factor. 1985 Feb 28-Mar 6Nature. 313(6005):801–803. doi: 10.1038/313801a0. [DOI] [PubMed] [Google Scholar]
  342. Rice A. P., Kerr I. M. Interferon-mediated, double-stranded RNA-dependent protein kinase is inhibited in extracts from vaccinia virus-infected cells. J Virol. 1984 Apr;50(1):229–236. doi: 10.1128/jvi.50.1.229-236.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  343. Rice A. P., Kerr S. M., Roberts W. K., Brown R. E., Kerr I. M. Novel 2',5'-oligoadenylates synthesized in interferon-treated, vaccinia virus-infected cells. J Virol. 1985 Dec;56(3):1041–1044. doi: 10.1128/jvi.56.3.1041-1044.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  344. Rice A. P., Roberts B. E. Vaccinia virus induces cellular mRNA degradation. J Virol. 1983 Sep;47(3):529–539. doi: 10.1128/jvi.47.3.529-539.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  345. Rodriguez J. F., Esteban M. Mapping and nucleotide sequence of the vaccinia virus gene that encodes a 14-kilodalton fusion protein. J Virol. 1987 Nov;61(11):3550–3554. doi: 10.1128/jvi.61.11.3550-3554.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  346. Rodriguez J. F., Paez E., Esteban M. A 14,000-Mr envelope protein of vaccinia virus is involved in cell fusion and forms covalently linked trimers. J Virol. 1987 Feb;61(2):395–404. doi: 10.1128/jvi.61.2.395-404.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  347. Rohrmann G., Moss B. Transcription of vaccinia virus early genes by a template-dependent soluble extract of purified virions. J Virol. 1985 Nov;56(2):349–355. doi: 10.1128/jvi.56.2.349-355.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  348. Rosemond-Hornbeak H., Moss B. Inhibition of host protein synthesis by vaccinia virus: fate of cell mRNA and synthesis of small poly (A)-rich polyribonucleotides in the presence of actinomycin D. J Virol. 1975 Jul;16(1):34–42. doi: 10.1128/jvi.16.1.34-42.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  349. Rouhandeh H., Vafai A. A novel cell transformation with DNA-containing cytoplasmic Yaba tumor poxvirus. Virology. 1982 Jul 15;120(1):77–92. doi: 10.1016/0042-6822(82)90008-3. [DOI] [PubMed] [Google Scholar]
  350. SALZMAN N. P., SHATKIN A. J., SEBRING E. D. THE SYNTHESIS OF A DNA-LIKE RNA IN THE CYTOPLASM OF HELA CELLS INFECTED WITH VACCINIA VIRUS. J Mol Biol. 1964 Mar;8:405–416. doi: 10.1016/s0022-2836(64)80204-7. [DOI] [PubMed] [Google Scholar]
  351. SCHELL K. Studies on the innate resistance of mice to infection with mousepox. I. Resistance and antibody production. Aust J Exp Biol Med Sci. 1960 Aug;38:271–288. doi: 10.1038/icb.1960.29. [DOI] [PubMed] [Google Scholar]
  352. SCHELL K. Studies on the innate resistance of mice to infection with mousepox. II. Route of inoculation and resistance; and some observations on the inheritance of resistance. Aust J Exp Biol Med Sci. 1960 Aug;38:289–299. doi: 10.1038/icb.1960.30. [DOI] [PubMed] [Google Scholar]
  353. SHATKIN A. J. The formation of vaccinia virus protein in the presence of 5-fluorodeoxyuridine. Virology. 1963 Jun;20:292–301. doi: 10.1016/0042-6822(63)90118-1. [DOI] [PubMed] [Google Scholar]
  354. SPROUL E. E., METZGAR R. S., GRACE J. T., Jr The pathogenesis of Yaba virus-induced histiocytomas in primates. Cancer Res. 1963 Jun;23:671–675. [PubMed] [Google Scholar]
  355. STEINBERGER A., RIGHTS F. L. EFFECT OF IMMUNIZATION ON TISSUE SUSCEPTIBILITY TO VACCINIA VIRUS IN VITRO. Virology. 1963 Nov;21:402–410. doi: 10.1016/0042-6822(63)90202-2. [DOI] [PubMed] [Google Scholar]
  356. Sakuma T., Suenaga T., Yoshida I., Azuma M. Mechanisms of enhanced resistance of Mycobacterium bovis BCG-treated mice to ectromelia virus infection. Infect Immun. 1983 Nov;42(2):567–573. doi: 10.1128/iai.42.2.567-573.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  357. Sandvig S., Laskay T., Andersson J., De Ley M., Andersson U. Gamma-interferon is produced by CD3+ and CD3- lymphocytes. Immunol Rev. 1987 Jun;97:51–65. doi: 10.1111/j.1600-065x.1987.tb00516.x. [DOI] [PubMed] [Google Scholar]
  358. Sarov I., Joklik W. K. Characterization of intermediates in the uncoating of vaccinia virus DNA. Virology. 1972 Nov;50(2):593–602. doi: 10.1016/0042-6822(72)90410-2. [DOI] [PubMed] [Google Scholar]
  359. Sarov I., Joklik W. K. Studies on the nature and location of the capsid polypeptides of vaccinia virions. Virology. 1972 Nov;50(2):579–592. doi: 10.1016/0042-6822(72)90409-6. [DOI] [PubMed] [Google Scholar]
  360. Schellekens H., de Reus A., Bolhuis R., Fountoulakis M., Schein C., Ecsödi J., Nagata S., Weissmann C. Comparative antiviral efficiency of leukocyte and bacterially produced human alpha-interferon in rhesus monkeys. Nature. 1981 Aug 20;292(5825):775–776. doi: 10.1038/292775a0. [DOI] [PubMed] [Google Scholar]
  361. Scholz J., Rösen-Wolff A., Bugert J., Reisner H., White M. I., Darai G., Postlethwaite R. Molecular epidemiology of molluscum contagiosum. J Infect Dis. 1988 Oct;158(4):898–900. doi: 10.1093/infdis/158.4.898. [DOI] [PubMed] [Google Scholar]
  362. Schultz R. M., Woan M. C., Tompkins W. A. Macrophage immunity to vaccina virus: factors affecting macrophage immunity in vitro. J Reticuloendothel Soc. 1974 Jul;16(1):37–47. [PubMed] [Google Scholar]
  363. Schümperli D., Menna A., Schwendimann F., Wittek R., Wyler R. Symmetrical arrangement of the heterologous regions of rabbit poxvirus and vaccinia virus DNA. J Gen Virol. 1980 Apr;47(2):385–398. doi: 10.1099/0022-1317-47-2-385. [DOI] [PubMed] [Google Scholar]
  364. Scott C. B., Holdbrook R., Sell S. Cell-mediated immune response to Shope fibroma virus-induced tumors in adult rabbits. J Natl Cancer Inst. 1981 Apr;66(4):681–689. [PubMed] [Google Scholar]
  365. Sebring E. D., Salzman N. P. Metabolic properties of early and late vaccinia virus messenger ribonucleic acid. J Virol. 1967 Jun;1(3):550–558. doi: 10.1128/jvi.1.3.550-558.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  366. Seidel-Dugan C., Ponce de Leon M., Friedman H. M., Fries L. F., Frank M. M., Cohen G. H., Eisenberg R. J. C3b receptor activity on transfected cells expressing glycoprotein C of herpes simplex virus types 1 and 2. J Virol. 1988 Nov;62(11):4027–4036. doi: 10.1128/jvi.62.11.4027-4036.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  367. Shand J. H., Gibson P., Gregory D. W., Cooper R. J., Keir H. M., Postlethwaite R. Molluscum contagiosum -- a defective poxvirus? J Gen Virol. 1976 Nov;33(2):281–295. doi: 10.1099/0022-1317-33-2-281. [DOI] [PubMed] [Google Scholar]
  368. Shida H., Hinuma Y., Hatanaka M., Morita M., Kidokoro M., Suzuki K., Maruyama T., Takahashi-Nishimaki F., Sugimoto M., Kitamura R. Effects and virulences of recombinant vaccinia viruses derived from attenuated strains that express the human T-cell leukemia virus type I envelope gene. J Virol. 1988 Dec;62(12):4474–4480. doi: 10.1128/jvi.62.12.4474-4480.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  369. Shida H. Nucleotide sequence of the vaccinia virus hemagglutinin gene. Virology. 1986 Apr 30;150(2):451–462. doi: 10.1016/0042-6822(86)90309-0. [DOI] [PubMed] [Google Scholar]
  370. Shida H., Tanabe K., Matsumoto S. Mechanism of virus occlusion into A-type inclusion during poxvirus infection. Virology. 1977 Jan;76(1):217–233. doi: 10.1016/0042-6822(77)90298-7. [DOI] [PubMed] [Google Scholar]
  371. Silver M., Dales S. Biogenesis of vaccina: interrelationship between post-translational cleavage, virus assembly, and maturation. Virology. 1982 Mar;117(2):341–356. doi: 10.1016/0042-6822(82)90474-3. [DOI] [PubMed] [Google Scholar]
  372. Silverstein S. Macrophages and viral immunity. Semin Hematol. 1970 Apr;7(2):185–214. [PubMed] [Google Scholar]
  373. Slabaugh M., Roseman N., Davis R., Mathews C. Vaccinia virus-encoded ribonucleotide reductase: sequence conservation of the gene for the small subunit and its amplification in hydroxyurea-resistant mutants. J Virol. 1988 Feb;62(2):519–527. doi: 10.1128/jvi.62.2.519-527.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  374. Smith G. L., Howard S. T., Chan Y. S. Vaccinia virus encodes a family of genes with homology to serine proteinase inhibitors. J Gen Virol. 1989 Sep;70(Pt 9):2333–2343. doi: 10.1099/0022-1317-70-9-2333. [DOI] [PubMed] [Google Scholar]
  375. Smith G. L., de Carlos A., Chan Y. S. Vaccinia virus encodes a thymidylate kinase gene: sequence and transcriptional mapping. Nucleic Acids Res. 1989 Oct 11;17(19):7581–7590. doi: 10.1093/nar/17.19.7581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  376. Smith J. W., Tevethia S. S., Levy B. M., Rawls W. E. Comparative studies on host responses to Shope fibroma virus in adult and newborn rabbits. J Natl Cancer Inst. 1973 Jun;50(6):1529–1539. doi: 10.1093/jnci/50.6.1529. [DOI] [PubMed] [Google Scholar]
  377. Spehner D., Gillard S., Drillien R., Kirn A. A cowpox virus gene required for multiplication in Chinese hamster ovary cells. J Virol. 1988 Apr;62(4):1297–1304. doi: 10.1128/jvi.62.4.1297-1304.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  378. Spyropoulos D. D., Roberts B. E., Panicali D. L., Cohen L. K. Delineation of the viral products of recombination in vaccinia virus-infected cells. J Virol. 1988 Mar;62(3):1046–1054. doi: 10.1128/jvi.62.3.1046-1054.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  379. Stern W., Dales S. Biogenesis of vaccinia: concerning the origin of the envelope phospholipids. Virology. 1974 Dec;62(2):293–306. doi: 10.1016/0042-6822(74)90393-6. [DOI] [PubMed] [Google Scholar]
  380. Stern W., Dales S. Biogenesis of vaccinia: relationship of the envelope to virus assembly. Virology. 1976 Nov;75(1):242–255. doi: 10.1016/0042-6822(76)90023-4. [DOI] [PubMed] [Google Scholar]
  381. Stewart W. E., 2nd, Scott W. D., Sulkin S. E. Relative sensitivities of viruses to different species of interferon. J Virol. 1969 Aug;4(2):147–153. doi: 10.1128/jvi.4.2.147-153.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  382. Stitz L., Althage A., Hengartner H., Zinkernagel R. Natural killer cells vs cytotoxic T cells in the peripheral blood of virus-infected mice. J Immunol. 1985 Jan;134(1):598–602. [PubMed] [Google Scholar]
  383. Stitz L., Baenziger J., Pircher H., Hengartner H., Zinkernagel R. M. Effect of rabbit anti-asialo GM1 treatment in vivo or with anti-asialo GM1 plus complement in vitro on cytotoxic T cell activities. J Immunol. 1986 Jun 15;136(12):4674–4680. [PubMed] [Google Scholar]
  384. Stitz L., Zinkernagel R., Balch C. M., Bolhuis R. L., Balner H. Immune response against vaccinia virus in rhesus monkeys: no evidence for primary MHC-restricted cytolytic T cells. Exp Cell Biol. 1984;52(4):237–250. doi: 10.1159/000163267. [DOI] [PubMed] [Google Scholar]
  385. Strayer D. S., Cabirac G., Sell S., Leibowitz J. L. Malignant rabbit fibroma virus: observations on the culture and histopathologic characteristics of a new virus-induced rabbit tumor. J Natl Cancer Inst. 1983 Jul;71(1):91–104. [PubMed] [Google Scholar]
  386. Strayer D. S., Dombrowski J. Immunosuppression during viral oncogenesis. V. Resistance to virus-induced immunosuppressive factor. J Immunol. 1988 Jul 1;141(1):347–351. [PubMed] [Google Scholar]
  387. Strayer D. S., Korber K., Dombrowski J. Immunosuppression during viral oncogenesis. IV. Generation of soluble virus-induced immunologic suppressor molecules. J Immunol. 1988 Mar 15;140(6):2051–2059. [PubMed] [Google Scholar]
  388. Strayer D. S., Leibowitz J. L. Inhibition of epidermal growth factor-induced cellular proliferation. Am J Pathol. 1987 Aug;128(2):203–209. [PMC free article] [PubMed] [Google Scholar]
  389. Strayer D. S., Leibowitz J. L. Reversal of virus-induced immune suppression. J Immunol. 1986 Apr 1;136(7):2649–2653. [PubMed] [Google Scholar]
  390. Strayer D. S., Leibowitz J. L. Virus-lymphocyte interactions during the course of immunosuppressive virus infection. J Gen Virol. 1987 Feb;68(Pt 2):463–472. doi: 10.1099/0022-1317-68-2-463. [DOI] [PubMed] [Google Scholar]
  391. Strayer D. S., Mulloy J., Leibowitz J. L. Lymphocyte-virus interactions. Identification of a restriction fragment permitting virus replication in lymphocytes. J Immunol. 1988 Mar 15;140(6):2060–2067. [PubMed] [Google Scholar]
  392. Strayer D. S., Sell S. Immunohistology of malignant rabbit fibroma virus--a comparative study with rabbit myxoma virus. J Natl Cancer Inst. 1983 Jul;71(1):105–116. [PubMed] [Google Scholar]
  393. Strayer D. S., Sell S., Skaletsky E., Leibowitz J. L. Immunologic dysfunction during viral oncogenesis. I. Nonspecific immunosuppression caused by malignant rabbit fibroma virus. J Immunol. 1983 Nov;131(5):2595–2600. [PubMed] [Google Scholar]
  394. Strayer D. S., Skaletsky E., Cabirac G. F., Sharp P. A., Corbeil L. B., Sell S., Leibowitz J. L. Malignant rabbit fibroma virus causes secondary immunosuppression in rabbits. J Immunol. 1983 Jan;130(1):399–404. [PubMed] [Google Scholar]
  395. Strayer D. S., Skaletsky E., Leibowitz J. L., Dombrowski J. Growth of malignant rabbit fibroma virus in lymphoid cells. Virology. 1987 May;158(1):147–157. doi: 10.1016/0042-6822(87)90248-0. [DOI] [PubMed] [Google Scholar]
  396. Strayer D. S., Skaletsky E., Leibowitz J. L. In vitro growth of two related leporipoxviruses in lymphoid cells. Virology. 1985 Sep;145(2):330–334. doi: 10.1016/0042-6822(85)90167-9. [DOI] [PubMed] [Google Scholar]
  397. Strayer D. S., Skaletsky E., Sell S. Strain differences in Shope fibroma virus. An immunopathologic study. Am J Pathol. 1984 Aug;116(2):342–358. [PMC free article] [PubMed] [Google Scholar]
  398. Stroobant P., Rice A. P., Gullick W. J., Cheng D. J., Kerr I. M., Waterfield M. D. Purification and characterization of vaccinia virus growth factor. Cell. 1985 Aug;42(1):383–393. doi: 10.1016/s0092-8674(85)80133-1. [DOI] [PubMed] [Google Scholar]
  399. Subrahmanyan T. P. A study of the possible basis of age-dependent resistance of mice to poxvirus diseases. Aust J Exp Biol Med Sci. 1968 Jun;46(3):251–265. doi: 10.1038/icb.1968.20. [DOI] [PubMed] [Google Scholar]
  400. Subrahmanyan T. P. Effect of neonatal thymectomy and thiotepa on the susceptibility of mice to the lethal effects of poxviruses. Aust J Exp Biol Med Sci. 1968 Jun;46(3):267–272. doi: 10.1038/icb.1968.21. [DOI] [PubMed] [Google Scholar]
  401. Subrahmanyan T. P., Mims C. A. Fate of intravenously administered interferon and the distribution of interferon during virus infections in mice. Br J Exp Pathol. 1966 Apr;47(2):168–176. [PMC free article] [PubMed] [Google Scholar]
  402. Suenaga T., Okuyama T., Yoshida I., Azuma M. Effect of Mycobacterium tuberculosis BCG infection on the resistance of mice to ectromelia virus infection: participation of interferon in enhanced resistance. Infect Immun. 1978 Apr;20(1):312–314. doi: 10.1128/iai.20.1.312-314.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  403. Sutton J. S., Burnett J. W. Ultrastructural changes in dermal and eipidermal cells of skin infected with Molluscum contagiosum virus. J Ultrastruct Res. 1969 Feb;26(3):177–196. doi: 10.1016/s0022-5320(69)80001-8. [DOI] [PubMed] [Google Scholar]
  404. Takabayashi K., McIntosh K. Effect of heat-labile factors on the neutralization of vaccinia virus by human. Infect Immun. 1973 Oct;8(4):582–589. doi: 10.1128/iai.8.4.582-589.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  405. Tas P. W., Martini O. H. Inhibition of the elongation step of protein synthesis by vaccinia virus. FEBS Lett. 1983 Mar 21;153(2):427–430. doi: 10.1016/0014-5793(83)80657-7. [DOI] [PubMed] [Google Scholar]
  406. Thacore H. R. Rescue of vesicular stomatitis virus from homologous and heterologous interferon-induced resistance in human cell cultures by poxviruses. Infect Immun. 1976 Jul;14(1):311–314. doi: 10.1128/iai.14.1.311-314.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  407. Thornton B. The antigenicity and immunogenicity of the intracellular and extracellular forms of vaccinia virus. I: The production of high-titre vaccinia extracellular virus and its antigenicity after inactivation. Br J Exp Pathol. 1980 Aug;61(4):444–450. [PMC free article] [PubMed] [Google Scholar]
  408. Tomley F., Binns M., Campbell J., Boursnell M. Sequence analysis of an 11.2 kilobase, near-terminal, BamHI fragment of fowlpox virus. J Gen Virol. 1988 May;69(Pt 5):1025–1040. doi: 10.1099/0022-1317-69-5-1025. [DOI] [PubMed] [Google Scholar]
  409. Tompkins W. A., Adams C., Rawls W. E. An in vitro measure of cellular immunity to fibroma virus. J Immunol. 1970 Feb;104(2):502–510. [PubMed] [Google Scholar]
  410. Tompkins W. A., Schultz R. M., Rao G. V. Depressed cell-mediated immunity in newborn rabbits bearing fibroma virus-induced tumors. Infect Immun. 1973 Apr;7(4):613–619. doi: 10.1128/iai.7.4.613-619.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  411. Towler D. A., Gordon J. I., Adams S. P., Glaser L. The biology and enzymology of eukaryotic protein acylation. Annu Rev Biochem. 1988;57:69–99. doi: 10.1146/annurev.bi.57.070188.000441. [DOI] [PubMed] [Google Scholar]
  412. Travis J., Salvesen G. S. Human plasma proteinase inhibitors. Annu Rev Biochem. 1983;52:655–709. doi: 10.1146/annurev.bi.52.070183.003255. [DOI] [PubMed] [Google Scholar]
  413. Tsuchiya Y., Tagaya I. Mechanism of enhanced plaque formation by poliovirus in poxvirus-infected cells. J Gen Virol. 1972 Mar;14(3):237–242. doi: 10.1099/0022-1317-14-3-237. [DOI] [PubMed] [Google Scholar]
  414. Tsuru S., Kitani H., Seno M., Abe M., Zinnaka Y., Nomoto K. Mechanism of protection during the early phase of a generalized viral infection. I. Contribution of phagocytes to protection against ectromelia virus. J Gen Virol. 1983 Sep;64(Pt 9):2021–2026. doi: 10.1099/0022-1317-64-9-2021. [DOI] [PubMed] [Google Scholar]
  415. Tsuru S., Nomoto K., Taniguchi M., Fujisawa H., Zinnaka Y. Depression of protective mechanism during the early phase of a viral infection in tumor-bearing mice and prevention by PSK. Cancer Immunol Immunother. 1986;22(2):114–118. doi: 10.1007/BF00199124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  416. Turner G. S., Squires E. J. Inactivated smallpox vaccine: immunogenicity of inactivated intracellular and extracellular vaccinia virus. J Gen Virol. 1971 Oct;13(1):19–25. doi: 10.1099/0022-1317-13-1-19. [DOI] [PubMed] [Google Scholar]
  417. Twardzik D. R., Brown J. P., Ranchalis J. E., Todaro G. J., Moss B. Vaccinia virus-infected cells release a novel polypeptide functionally related to transforming and epidermal growth factors. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5300–5304. doi: 10.1073/pnas.82.16.5300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  418. Ueda S., Nozima T. Delayed hypersensitivity in vaccinia-infected mice. I. Antigen(s) responsible for developing delayed hypersensitivity. Acta Virol. 1969 Nov;13(6):532–537. [PubMed] [Google Scholar]
  419. Upton C., Macen J. L., Maranchuk R. A., DeLange A. M., McFadden G. Tumorigenic poxviruses: fine analysis of the recombination junctions in malignant rabbit fibroma virus, a recombinant between Shope fibroma virus and myxoma virus. Virology. 1988 Sep;166(1):229–239. doi: 10.1016/0042-6822(88)90164-x. [DOI] [PubMed] [Google Scholar]
  420. Upton C., Macen J. L., McFadden G. Mapping and sequencing of a gene from myxoma virus that is related to those encoding epidermal growth factor and transforming growth factor alpha. J Virol. 1987 Apr;61(4):1271–1275. doi: 10.1128/jvi.61.4.1271-1275.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  421. Upton C., McFadden G. DNA sequence homology between the terminal inverted repeats of Shope fibroma virus and an endogenous cellular plasmid species. Mol Cell Biol. 1986 Jan;6(1):265–276. doi: 10.1128/mcb.6.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  422. Upton C., McFadden G. Tumorigenic poxviruses: analysis of viral DNA sequences implicated in the tumorigenicity of Shope fibroma virus and malignant rabbit virus. Virology. 1986 Jul 30;152(2):308–321. doi: 10.1016/0042-6822(86)90134-0. [DOI] [PubMed] [Google Scholar]
  423. VAN TONGEREN H. A. E. Spontaneous mutation of cowpox-virus by means of egg-passage. Arch Gesamte Virusforsch. 1952;5(1):35–52. doi: 10.1007/BF01245138. [DOI] [PubMed] [Google Scholar]
  424. Vafai A., Rouhandeh H. Analysis of Yaba tumor poxvirus-induced proteins in infected cells by two-dimensional gel electrophoresis. Virology. 1982 Jul 15;120(1):65–76. doi: 10.1016/0042-6822(82)90007-1. [DOI] [PubMed] [Google Scholar]
  425. Vreeswijk J., Leene W., Kalsbeek G. L. Early interactions of the virus Molluscum contagiosum with its host cell. Virus-induced alterations in the basal and suprabasal layers of the epidermis. J Ultrastruct Res. 1976 Jan;54(1):37–52. doi: 10.1016/s0022-5320(76)80006-8. [DOI] [PubMed] [Google Scholar]
  426. WAGNER R. R. Biological studies of interferon. I. Suppression of cellular infection with eastern equine encephalomyelitis virus. Virology. 1961 Mar;13:323–337. doi: 10.1016/0042-6822(61)90152-0. [DOI] [PubMed] [Google Scholar]
  427. WESTWOOD J. C., HARRIS W. J., ZWARTOUW H. T., TITMUSS D. H., APPLEYARD G. STUDIES ON THE STRUCTURE OF VACCINIA VIRUS. J Gen Microbiol. 1964 Jan;34:67–78. doi: 10.1099/00221287-34-1-67. [DOI] [PubMed] [Google Scholar]
  428. WOODROOFE G. M., FENNER F. Serological relationships within the poxvirus group: an antigen common to all members of the group. Virology. 1962 Mar;16:334–341. doi: 10.1016/0042-6822(62)90255-6. [DOI] [PubMed] [Google Scholar]
  429. Wakamiya N., Okada N., Wang Y. L., Ito T., Ueda S., Kato S., Okada H. Tumor cells treated with vaccinia virus can activate the alternative pathway of mouse complement. Jpn J Cancer Res. 1989 Aug;80(8):765–770. doi: 10.1111/j.1349-7006.1989.tb01712.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  430. Wallace G. D., Buller R. M. Kinetics of ectromelia virus (mousepox) transmission and clinical response in C57BL/6j, BALB/cByj and AKR/J inbred mice. Lab Anim Sci. 1985 Feb;35(1):41–46. [PubMed] [Google Scholar]
  431. Wallace G. D., Buller R. M., Morse H. C., 3rd Genetic determinants of resistance to ectromelia (mousepox) virus-induced mortality. J Virol. 1985 Sep;55(3):890–891. doi: 10.1128/jvi.55.3.890-891.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  432. Welsh R. M., Jr, Zinkernagel R. M., Hallenbeck L. A. Cytotoxic cells induced during lymphocytic choriomeningitis virus infection of mice. II. "Specificities" of the natural killer cells. J Immunol. 1979 Feb;122(2):475–481. [PubMed] [Google Scholar]
  433. Welsh R. M. Regulation of virus infections by natural killer cells. A review. Nat Immun Cell Growth Regul. 1986;5(4):169–199. [PubMed] [Google Scholar]
  434. Werenne J., Vanden Broecke C., Schwers A., Goossens A., Bugyaki L., Maenhoudt M., Pastoret P. P. Antiviral effect of bacterially produced human interferon (Hu-IFN alpha 2) against experimental vaccinia infection in calves. J Interferon Res. 1985 Winter;5(1):129–136. doi: 10.1089/jir.1985.5.129. [DOI] [PubMed] [Google Scholar]
  435. Werner G. T., Jentzsch U., Metzger E., Simon J. Studies on poxvirus infections in irradiated animals. Arch Virol. 1980;64(3):247–256. doi: 10.1007/BF01322704. [DOI] [PubMed] [Google Scholar]
  436. West B. C., Escheté M. L., Cox M. E., King J. W. Neutrophil uptake of vaccinia virus in vitro. J Infect Dis. 1987 Oct;156(4):597–606. doi: 10.1093/infdis/156.4.597. [DOI] [PubMed] [Google Scholar]
  437. Westwood J. C., Boulter E. A., Bowen E. T., Maber H. B. Experimental respiratory infection with poxviruses. I. Clinical virological and epidemiological studies. Br J Exp Pathol. 1966 Oct;47(5):453–465. [PMC free article] [PubMed] [Google Scholar]
  438. Whitaker-Dowling P., Youngner J. S. Characterization of a specific kinase inhibitory factor produced by vaccinia virus which inhibits the interferon-induced protein kinase. Virology. 1984 Aug;137(1):171–181. doi: 10.1016/0042-6822(84)90020-5. [DOI] [PubMed] [Google Scholar]
  439. Whitaker-Dowling P., Youngner J. S. Vaccinia rescue of VSV from interferon-induced resistance: reversal of translation block and inhibition of protein kinase activity. Virology. 1983 Nov;131(1):128–136. doi: 10.1016/0042-6822(83)90539-1. [DOI] [PubMed] [Google Scholar]
  440. YOHN D. S., GRACE J. T., Jr, HAENDIGES V. A. A QUANTITATIVE CELL CULTURE ASSAY FOR YABA TUMOUR VIRUS. Nature. 1964 May 30;202:881–883. doi: 10.1038/202881a0. [DOI] [PubMed] [Google Scholar]
  441. Yang H., Cain C. A., Tompkins W. A. Induction of Thy-1.2 homologue-positive and Thy-1.2 homologue-negative nonspecific cytotoxic lymphocytes in the hamster. J Immunol. 1983 Aug;131(2):622–627. [PubMed] [Google Scholar]
  442. Yang H., Cain C. A., Woan M. C., Tompkins W. A. Evaluation of hamster natural cytotoxic cells and vaccinia-induced cytotoxic cells for Thy-1.2 homologue by using a mouse monoclonal alpha-Thy-1.2 antibody. J Immunol. 1982 Nov;129(5):2239–2243. [PubMed] [Google Scholar]
  443. Yang H., Tompkins W. A. Nonspecific cytotoxicity of vaccinia-induced peritoneal exudates in hamsters is mediated by Thy-1.2 homologue-positive cells distinct from NK cells and macrophages. J Immunol. 1983 Nov;131(5):2545–2550. [PubMed] [Google Scholar]
  444. Yohn D. S., Marmol F. R., Olsen R. G. Growth kinetics of Yaba tumor poxvirus after in vitro adaptation to cercopithecus kidney cells. J Virol. 1970 Feb;5(2):205–211. doi: 10.1128/jvi.5.2.205-211.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  445. Young H. A., Ortaldo J. R. One-signal requirement for interferon-gamma production by human large granular lymphocytes. J Immunol. 1987 Aug 1;139(3):724–727. [PubMed] [Google Scholar]
  446. Youngner J. S., Thacore H. R., Kelly M. E. Sensitivity of ribonucleic acid and deoxyribonucleic acid viruses to different species of interferon in cell cultures. J Virol. 1972 Aug;10(2):171–178. doi: 10.1128/jvi.10.2.171-178.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  447. Yuen L., Moss B. Oligonucleotide sequence signaling transcriptional termination of vaccinia virus early genes. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6417–6421. doi: 10.1073/pnas.84.18.6417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  448. Zinkernagel R. M., Althage A. Antiviral protection by virus-immune cytotoxic T cells: infected target cells are lysed before infectious virus progeny is assembled. J Exp Med. 1977 Mar 1;145(3):644–651. doi: 10.1084/jem.145.3.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  449. Zinkernagel R. M., Althage A., Jensen F. C. Cell-mediated immune response to lymphocytic choriomeningitis and vaccinia virus in rats. J Immunol. 1977 Oct;119(4):1242–1247. [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES