Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1991 Dec;55(4):621–648. doi: 10.1128/mr.55.4.621-648.1991

Molecular genetics and pathogenesis of Clostridium perfringens.

J I Rood 1, S T Cole 1
PMCID: PMC372840  PMID: 1779929

Abstract

Clostridium perfringens is the causative agent of a number of human diseases, such as gas gangrene and food poisoning, and many diseases of animals. Recently significant advances have been made in the development of C. perfringens genetics. Studies on bacteriocin plasmids and conjugative R plasmids have led to the cloning and analysis of many C. perfringens genes and the construction of shuttle plasmids. The relationship of antibiotic resistance genes to similar genes from other bacteria has been elucidated. A detailed physical map of the C. perfringens chromosome has been prepared, and numerous genes have been located on that map. Reproducible transformation methods for the introduction of plasmids into C. perfringens have been developed, and several genes coding for the production of extracellular toxins and enzymes have been cloned. Now that it is possible to freely move genetic information back and forth between C. perfringens and Escherichia coli, it will be possible to apply modern molecular methods to studies on the pathogenesis of C. perfringens infections.

Full text

PDF
621

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham L. J., Berryman D. I., Rood J. I. Hybridization analysis of the class P tetracycline resistance determinant from the Clostridium perfringens R-plasmid, pCW3. Plasmid. 1988 Mar;19(2):113–120. doi: 10.1016/0147-619x(88)90050-9. [DOI] [PubMed] [Google Scholar]
  2. Abraham L. J., Rood J. I. Cloning and analysis of the Clostridium perfringens tetracycline resistance plasmid, pCW3. Plasmid. 1985 May;13(3):155–162. doi: 10.1016/0147-619x(85)90038-1. [DOI] [PubMed] [Google Scholar]
  3. Abraham L. J., Rood J. I. Identification of Tn4451 and Tn4452, chloramphenicol resistance transposons from Clostridium perfringens. J Bacteriol. 1987 Apr;169(4):1579–1584. doi: 10.1128/jb.169.4.1579-1584.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Abraham L. J., Rood J. I. Molecular analysis of transferable tetracycline resistance plasmids from Clostridium perfringens. J Bacteriol. 1985 Feb;161(2):636–640. doi: 10.1128/jb.161.2.636-640.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Abraham L. J., Rood J. I. The Clostridium perfringens chloramphenicol resistance transposon Tn4451 excises precisely in Escherichia coli. Plasmid. 1988 Mar;19(2):164–168. doi: 10.1016/0147-619x(88)90055-8. [DOI] [PubMed] [Google Scholar]
  6. Abraham L. J., Wales A. J., Rood J. I. Worldwide distribution of the conjugative Clostridium perfringens tetracycline resistance plasmid, pCW3. Plasmid. 1985 Jul;14(1):37–46. doi: 10.1016/0147-619x(85)90030-7. [DOI] [PubMed] [Google Scholar]
  7. Allen S. P., Blaschek H. P. Electroporation-induced transformation of intact cells of Clostridium perfringens. Appl Environ Microbiol. 1988 Sep;54(9):2322–2324. doi: 10.1128/aem.54.9.2322-2324.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Allen S. P., Blaschek H. P. Factors involved in the electroporation-induced transformation of Clostridium perfringens. FEMS Microbiol Lett. 1990 Jul;58(2):217–220. doi: 10.1111/j.1574-6968.1990.tb13981.x. [DOI] [PubMed] [Google Scholar]
  9. BOYD M. J., LOGAN M. A., TYTELL A. A. The growth requirements of Clostridium perfringens (welchii) BP6K. J Biol Chem. 1948 Jul;174(3):1013–1025. [PubMed] [Google Scholar]
  10. BROWDER H. P., ZYGMUNT W. A., YOUNG J. R., TAVORMINA P. A. LYSOSTAPHIN: ENZYMATIC MODE OF ACTION. Biochem Biophys Res Commun. 1965 Apr 23;19:383–389. doi: 10.1016/0006-291x(65)90473-0. [DOI] [PubMed] [Google Scholar]
  11. Bannam T. L., Rood J. I. Relationship between the Clostridium perfringens catQ gene product and chloramphenicol acetyltransferases from other bacteria. Antimicrob Agents Chemother. 1991 Mar;35(3):471–476. doi: 10.1128/aac.35.3.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Berryman D. I., Rood J. I. Cloning and hybridization analysis of ermP, a macrolide-lincosamide-streptogramin B resistance determinant from Clostridium perfringens. Antimicrob Agents Chemother. 1989 Aug;33(8):1346–1353. doi: 10.1128/aac.33.8.1346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Blaschek H. P., Klacik M. A. Role of DNase in recovery of plasmid DNA from Clostridium perfringens. Appl Environ Microbiol. 1984 Jul;48(1):178–181. doi: 10.1128/aem.48.1.178-181.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Blaschek H. P., Solberg M. Isolation of a plasmid responsible for caseinase activity in Clostridium perfringens ATCC 3626B. J Bacteriol. 1981 Jul;147(1):262–266. doi: 10.1128/jb.147.1.262-266.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Borriello S. P., Larson H. E., Welch A. R., Barclay F., Stringer M. F., Bartholomew B. A. Enterotoxigenic Clostridium perfringens: a possible cause of antibiotic-associated diarrhoea. Lancet. 1984 Feb 11;1(8372):305–307. doi: 10.1016/s0140-6736(84)90359-3. [DOI] [PubMed] [Google Scholar]
  16. Brefort G., Magot M., Ionesco H., Sebald M. Characterization and transferability of Clostridium perfringens plasmids. Plasmid. 1977 Nov;1(1):52–66. doi: 10.1016/0147-619x(77)90008-7. [DOI] [PubMed] [Google Scholar]
  17. Brehm J., Salmond G., Minton N. Sequence of the adenine methylase gene of the Streptococcus faecalis plasmid pAM beta 1. Nucleic Acids Res. 1987 Apr 10;15(7):3177–3177. doi: 10.1093/nar/15.7.3177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Brisson-Noël A., Arthur M., Courvalin P. Evidence for natural gene transfer from gram-positive cocci to Escherichia coli. J Bacteriol. 1988 Apr;170(4):1739–1745. doi: 10.1128/jb.170.4.1739-1745.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cabrera-Martinez R. M., Mason J. M., Setlow B., Waites W. M., Setlow P. Purification and amino acid sequence of two small, acid-soluble proteins from Clostridium bifermentans spores. FEMS Microbiol Lett. 1989 Oct 1;52(1-2):139–143. doi: 10.1016/0378-1097(89)90185-7. [DOI] [PubMed] [Google Scholar]
  20. Calvin N. M., Hanawalt P. C. High-efficiency transformation of bacterial cells by electroporation. J Bacteriol. 1988 Jun;170(6):2796–2801. doi: 10.1128/jb.170.6.2796-2801.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Canard B., Cole S. T. Genome organization of the anaerobic pathogen Clostridium perfringens. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6676–6680. doi: 10.1073/pnas.86.17.6676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Canard B., Cole S. T. Lysogenic phages of Clostridium perfringens: mapping of the chromosomal attachment sites. FEMS Microbiol Lett. 1990 Jan 1;54(1-3):323–326. doi: 10.1111/j.1574-6968.1990.tb04020.x. [DOI] [PubMed] [Google Scholar]
  23. Chen G. F., Inouye M. Suppression of the negative effect of minor arginine codons on gene expression; preferential usage of minor codons within the first 25 codons of the Escherichia coli genes. Nucleic Acids Res. 1990 Mar 25;18(6):1465–1473. doi: 10.1093/nar/18.6.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Chien S. F., Yevich S. J., Li S. C., Li Y. T. Presence of endo-beta-N-acetylglucosaminidase and protease activities in the commercial neuraminidase preparations isolated from Clostridium perfringens. Biochem Biophys Res Commun. 1975 Jul 22;65(2):683–691. doi: 10.1016/s0006-291x(75)80200-2. [DOI] [PubMed] [Google Scholar]
  25. Clarke D. J., Robson R. M., Morris J. G. Purification of two Clostridium bacteriocins by procedures appropriate to hydrophobic proteins. Antimicrob Agents Chemother. 1975 Mar;7(3):256–264. doi: 10.1128/aac.7.3.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Dornbusch K., Nord C. E., Dahlbäck A. Antibiotic susceptibility of Clostridium species isolated from human infections. Scand J Infect Dis. 1975;7(2):127–134. doi: 10.3109/inf.1975.7.issue-2.09. [DOI] [PubMed] [Google Scholar]
  27. Dreyfus-Fourcade M., Sebald M., Zavadova M. Restriction et modification du phage r par "Clostridium perfringens" NCTC 8798 et ses mutants. Ann Inst Pasteur (Paris) 1972 Jun;122(6):1117–1127. [PubMed] [Google Scholar]
  28. Dubbert W., Luczak H., Staudenbauer W. L. Cloning of two chloramphenicol acetyltransferase genes from Clostridium butyricum and their expression in Escherichia coli and Bacillus subtilis. Mol Gen Genet. 1988 Oct;214(2):328–332. doi: 10.1007/BF00337731. [DOI] [PubMed] [Google Scholar]
  29. Duncan C. L., Strong D. H., Sebald M. Sporulation and enterotoxin production by mutants of Clostridium perfringens. J Bacteriol. 1972 Apr;110(1):378–391. doi: 10.1128/jb.110.1.378-391.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Dutta G. N., Devriese L. A. Macrolide-lincosamide-streptogramin resistance patterns in Clostridium perfringens from animals. Antimicrob Agents Chemother. 1981 Feb;19(2):274–278. doi: 10.1128/aac.19.2.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Eisel U., Jarausch W., Goretzki K., Henschen A., Engels J., Weller U., Hudel M., Habermann E., Niemann H. Tetanus toxin: primary structure, expression in E. coli, and homology with botulinum toxins. EMBO J. 1986 Oct;5(10):2495–2502. doi: 10.1002/j.1460-2075.1986.tb04527.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Frieben W. R., Duncan C. L. Homology between enterotoxin protein and spore structural protein in Clostridium perfringens type A. Eur J Biochem. 1973 Nov 15;39(2):393–401. doi: 10.1111/j.1432-1033.1973.tb03137.x. [DOI] [PubMed] [Google Scholar]
  33. Garnier T., Canard B., Cole S. T. Cloning, mapping, and molecular characterization of the rRNA operons of Clostridium perfringens. J Bacteriol. 1991 Sep;173(17):5431–5438. doi: 10.1128/jb.173.17.5431-5438.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Garnier T., Cole S. T. Characterization of a bacteriocinogenic plasmid from Clostridium perfringens and molecular genetic analysis of the bacteriocin-encoding gene. J Bacteriol. 1986 Dec;168(3):1189–1196. doi: 10.1128/jb.168.3.1189-1196.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Garnier T., Cole S. T. Complete nucleotide sequence and genetic organization of the bacteriocinogenic plasmid, pIP404, from Clostridium perfringens. Plasmid. 1988 Mar;19(2):134–150. doi: 10.1016/0147-619x(88)90052-2. [DOI] [PubMed] [Google Scholar]
  36. Garnier T., Cole S. T. Identification and molecular genetic analysis of replication functions of the bacteriocinogenic plasmid pIP404 from Clostridium perfringens. Plasmid. 1988 Mar;19(2):151–160. doi: 10.1016/0147-619x(88)90053-4. [DOI] [PubMed] [Google Scholar]
  37. Garnier T., Cole S. T. Studies of UV-inducible promoters from Clostridium perfringens in vivo and in vitro. Mol Microbiol. 1988 Sep;2(5):607–614. doi: 10.1111/j.1365-2958.1988.tb00069.x. [DOI] [PubMed] [Google Scholar]
  38. Garnier T., Saurin W., Cole S. T. Molecular characterization of the resolvase gene, res, carried by a multicopy plasmid from Clostridium perfringens: common evolutionary origin for prokaryotic site-specific recombinases. Mol Microbiol. 1987 Nov;1(3):371–376. doi: 10.1111/j.1365-2958.1987.tb01944.x. [DOI] [PubMed] [Google Scholar]
  39. Gawron-Burke C., Clewell D. B. Regeneration of insertionally inactivated streptococcal DNA fragments after excision of transposon Tn916 in Escherichia coli: strategy for targeting and cloning of genes from gram-positive bacteria. J Bacteriol. 1984 Jul;159(1):214–221. doi: 10.1128/jb.159.1.214-221.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Geoffroy C., Mengaud J., Alouf J. E., Cossart P. Alveolysin, the thiol-activated toxin of Bacillus alvei, is homologous to listeriolysin O, perfringolysin O, pneumolysin, and streptolysin O and contains a single cysteine. J Bacteriol. 1990 Dec;172(12):7301–7305. doi: 10.1128/jb.172.12.7301-7305.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Gilmore M. S., Cruz-Rodz A. L., Leimeister-Wächter M., Kreft J., Goebel W. A Bacillus cereus cytolytic determinant, cereolysin AB, which comprises the phospholipase C and sphingomyelinase genes: nucleotide sequence and genetic linkage. J Bacteriol. 1989 Feb;171(2):744–753. doi: 10.1128/jb.171.2.744-753.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Goldner S. B., Solberg M., Jones S., Post L. S. Enterotoxin synthesis by nonsporulating cultures of Clostridium perfringens. Appl Environ Microbiol. 1986 Sep;52(3):407–412. doi: 10.1128/aem.52.3.407-412.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Grant R. B., Riemann H. P. Temperate phages of Clostridium perfringens type C1. Can J Microbiol. 1976 May;22(5):603–610. doi: 10.1139/m76-090. [DOI] [PubMed] [Google Scholar]
  44. Granum P. E. Clostridium perfringens toxins involved in food poisoning. Int J Food Microbiol. 1990 Mar;10(2):101–111. doi: 10.1016/0168-1605(90)90059-e. [DOI] [PubMed] [Google Scholar]
  45. Granum P. E. The effect of Ca++ and Mg++ on the action of Clostridium perfringens enterotoxin on Vero cells. Acta Pathol Microbiol Immunol Scand B. 1985 Feb;93(1):41–48. doi: 10.1111/j.1699-0463.1985.tb02849.x. [DOI] [PubMed] [Google Scholar]
  46. Granum P. E., Whitaker J. R. Improved method for purification of enterotoxin from Clostridium perfringens type A. Appl Environ Microbiol. 1980 Jun;39(6):1120–1122. doi: 10.1128/aem.39.6.1120-1122.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Graves M. C., Rabinowitz J. C. In vivo and in vitro transcription of the Clostridium pasteurianum ferredoxin gene. Evidence for "extended" promoter elements in gram-positive organisms. J Biol Chem. 1986 Aug 25;261(24):11409–11415. [PubMed] [Google Scholar]
  48. Grindley N. D., Reed R. R. Transpositional recombination in prokaryotes. Annu Rev Biochem. 1985;54:863–896. doi: 10.1146/annurev.bi.54.070185.004243. [DOI] [PubMed] [Google Scholar]
  49. Gruss A., Ehrlich S. D. The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiol Rev. 1989 Jun;53(2):231–241. doi: 10.1128/mr.53.2.231-241.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Hanna P. C., McClane B. A. A recombinant C-terminal toxin fragment provides evidence that membrane insertion is important for Clostridium perfringens enterotoxin cytotoxicity. Mol Microbiol. 1991 Jan;5(1):225–230. doi: 10.1111/j.1365-2958.1991.tb01843.x. [DOI] [PubMed] [Google Scholar]
  51. Hanna P. C., Wnek A. P., McClane B. A. Molecular cloning of the 3' half of the Clostridium perfringens enterotoxin gene and demonstration that this region encodes receptor-binding activity. J Bacteriol. 1989 Dec;171(12):6815–6820. doi: 10.1128/jb.171.12.6815-6820.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Heefner D. L., Squires C. H., Evans R. J., Kopp B. J., Yarus M. J. Transformation of Clostridium perfringens. J Bacteriol. 1984 Aug;159(2):460–464. doi: 10.1128/jb.159.2.460-464.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Henckes G., Vannier F., Seiki M., Ogasawara N., Yoshikawa H., Seror-Laurent S. J. Ribosomal RNA genes in the replication origin region of Bacillus subtilis chromosome. Nature. 1982 Sep 16;299(5880):268–271. doi: 10.1038/299268a0. [DOI] [PubMed] [Google Scholar]
  54. Holck A., Blom H., Granum P. E. Cloning and sequencing of the genes encoding acid-soluble spore proteins from Clostridium perfringens. Gene. 1990 Jul 2;91(1):107–111. doi: 10.1016/0378-1119(90)90169-r. [DOI] [PubMed] [Google Scholar]
  55. Hopewell R., Oram M., Briesewitz R., Fisher L. M. DNA cloning and organization of the Staphylococcus aureus gyrA and gyrB genes: close homology among gyrase proteins and implications for 4-quinolone action and resistance. J Bacteriol. 1990 Jun;172(6):3481–3484. doi: 10.1128/jb.172.6.3481-3484.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Horaud T., Le Bouguenec C., Pepper K. Molecular genetics of resistance to macrolides, lincosamides and streptogramin B (MLS) in streptococci. J Antimicrob Chemother. 1985 Jul;16 (Suppl A):111–135. doi: 10.1093/jac/16.suppl_a.111. [DOI] [PubMed] [Google Scholar]
  57. Hough E., Hansen L. K., Birknes B., Jynge K., Hansen S., Hordvik A., Little C., Dodson E., Derewenda Z. High-resolution (1.5 A) crystal structure of phospholipase C from Bacillus cereus. Nature. 1989 Mar 23;338(6213):357–360. doi: 10.1038/338357a0. [DOI] [PubMed] [Google Scholar]
  58. Hulkower K. I., Wnek A. P., McClane B. A. Evidence that alterations in small molecule permeability are involved in the Clostridium perfringens type A enterotoxin-induced inhibition of macromolecular synthesis in Vero cells. J Cell Physiol. 1989 Sep;140(3):498–504. doi: 10.1002/jcp.1041400314. [DOI] [PubMed] [Google Scholar]
  59. Hächler H., Berger-Bächi B., Kayser F. H. Genetic characterization of a Clostridium difficile erythromycin-clindamycin resistance determinant that is transferable to Staphylococcus aureus. Antimicrob Agents Chemother. 1987 Jul;31(7):1039–1045. doi: 10.1128/aac.31.7.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Hächler H., Kayser F. H., Berger-Bächi B. Homology of a transferable tetracycline resistance determinant of Clostridium difficile with Streptococcus (Enterococcus) faecalis transposon Tn916. Antimicrob Agents Chemother. 1987 Jul;31(7):1033–1038. doi: 10.1128/aac.31.7.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Imagawa T., Tatsuki T., Higashi Y., Amano T. Complementation characteristics of newly isolated mutants from two groups of strains of Clostridium perfringens. Biken J. 1981 Jun;24(1-2):13–21. [PubMed] [Google Scholar]
  62. Ionesco H., Bieth G., Dauguet C., Bouanchaud D. Isolement et identification de deux plasmides d'une souche bactériocinogène de Clostridium perfringens. Ann Microbiol (Paris) 1976 Oct;127B(3):283–294. [PubMed] [Google Scholar]
  63. Ionesco H., Bouanchaud D. H. Production de bactériocine liée à présence d'un plasmide chez Clostridium perfringens type. C R Acad Sci Hebd Seances Acad Sci D. 1973 May 14;276(20):2855–2857. [PubMed] [Google Scholar]
  64. Ionesco H. Transfert de la résistance à la tétracycline chez Clostridium difficile. Ann Microbiol (Paris) 1980 Mar-Apr;131A(2):171–179. [PubMed] [Google Scholar]
  65. Ionesco H., Wolff A., Sebald Production induite de bactériocine et d'un bactériophage par la souche BP6K-N-5 de Clostridium perfringens. Ann Microbiol (Paris) 1974 Oct-Nov;125B(3):335–346. [PubMed] [Google Scholar]
  66. Ionesco H., Wolff A. Sur le mode d'action de la bactériocine N5 purifiée de Clostridium perfringens. C R Acad Sci Hebd Seances Acad Sci D. 1975 Dec 22;281(24):2033–2036. [PubMed] [Google Scholar]
  67. Iwanejko L. A., Routledge M. N., Stewart G. S. Cloning in Escherichia coli of the enterotoxin gene from Clostridium perfringens type A. J Gen Microbiol. 1989 Apr;135(4):903–909. doi: 10.1099/00221287-135-4-903. [DOI] [PubMed] [Google Scholar]
  68. Jannière L., Bruand C., Ehrlich S. D. Structurally stable Bacillus subtilis cloning vectors. Gene. 1990 Mar 1;87(1):53–61. doi: 10.1016/0378-1119(90)90495-d. [DOI] [PubMed] [Google Scholar]
  69. Johansen T., Holm T., Guddal P. H., Sletten K., Haugli F. B., Little C. Cloning and sequencing of the gene encoding the phosphatidylcholine-preferring phospholipase C of Bacillus cereus. Gene. 1988 May 30;65(2):293–304. doi: 10.1016/0378-1119(88)90466-0. [DOI] [PubMed] [Google Scholar]
  70. Jones M. K., Iwanejko L. A., Longden M. S. Analysis of plasmid profiling as a method for rapid differentiation of food-associated Clostridium perfringens strains. J Appl Bacteriol. 1989 Sep;67(3):243–254. doi: 10.1111/j.1365-2672.1989.tb02492.x. [DOI] [PubMed] [Google Scholar]
  71. Keilty S., Rosenberg M. Constitutive function of a positively regulated promoter reveals new sequences essential for activity. J Biol Chem. 1987 May 5;262(13):6389–6395. [PubMed] [Google Scholar]
  72. Kennedy K. K., Norris S. J., Beckenhauer W. H., White R. G. Vaccination of cattle and sheep with a combined Clostridium perfringens types C and D toxoid. Am J Vet Res. 1977 Oct;38(10):1515–1517. [PubMed] [Google Scholar]
  73. Kim A. Y., Blaschek H. P. Construction of an Escherichia coli-Clostridium perfringens shuttle vector and plasmid transformation of Clostridium perfringens. Appl Environ Microbiol. 1989 Feb;55(2):360–365. doi: 10.1128/aem.55.2.360-365.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Larson H. E., Borriello S. P. Infectious diarrhea due to Clostridium perfringens. J Infect Dis. 1988 Feb;157(2):390–391. doi: 10.1093/infdis/157.2.390. [DOI] [PubMed] [Google Scholar]
  75. Leslie D., Fairweather N., Pickard D., Dougan G., Kehoe M. Phospholipase C and haemolytic activities of Clostridium perfringens alpha-toxin cloned in Escherichia coli: sequence and homology with a Bacillus cereus phospholipase C. Mol Microbiol. 1989 Mar;3(3):383–392. doi: 10.1111/j.1365-2958.1989.tb00183.x. [DOI] [PubMed] [Google Scholar]
  76. Levy S. B., McMurry L. M., Burdett V., Courvalin P., Hillen W., Roberts M. C., Taylor D. E. Nomenclature for tetracycline resistance determinants. Antimicrob Agents Chemother. 1989 Aug;33(8):1373–1374. doi: 10.1128/aac.33.8.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Lewendon A., Murray I. A., Kleanthous C., Cullis P. M., Shaw W. V. Substitutions in the active site of chloramphenicol acetyltransferase: role of a conserved aspartate. Biochemistry. 1988 Sep 20;27(19):7385–7390. doi: 10.1021/bi00419a032. [DOI] [PubMed] [Google Scholar]
  78. Li A. W., Krell P. J., Mahony D. E. Plasmid detection in a bacteriocinogenic strain of Clostridium perfringens. Can J Microbiol. 1980 Aug;26(8):1018–1022. doi: 10.1139/m80-173. [DOI] [PubMed] [Google Scholar]
  79. Li A. W., Verpoorte J. A., Lewis R. G., Mahony D. E. Characterization of bacteriocin 28 produced by Clostridium perfringens. Can J Microbiol. 1982 Jul;28(7):860–873. doi: 10.1139/m82-128. [DOI] [PubMed] [Google Scholar]
  80. Lindsay J. A., Sleigh R. W., Ghitgas C., Davenport J. B. Purification and properties of an enterotoxin from a coatless spore mutant of Clostridium perfringens type A. Eur J Biochem. 1985 Jun 3;149(2):287–293. doi: 10.1111/j.1432-1033.1985.tb08925.x. [DOI] [PubMed] [Google Scholar]
  81. MACLENNAN J. D. The histotoxic clostridial infections of man. Bacteriol Rev. 1962 Jun;26:177–276. [PMC free article] [PubMed] [Google Scholar]
  82. MURATA R., YAMADA T., KAMEYAMA S., WADA E. Production of alpha toxin of Clostridium perfringens. II. Failure to produce a potent alpha toxin in the simplified media. Jpn J Med Sci Biol. 1958 Dec;11(6):415–425. doi: 10.7883/yoken1952.11.415. [DOI] [PubMed] [Google Scholar]
  83. Macfarlane M. G., Knight B. C. The biochemistry of bacterial toxins: The lecithinase activity of Cl. welchii toxins. Biochem J. 1941 Sep;35(8-9):884–902. doi: 10.1042/bj0350884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Magot M. Physical characterization of the Clostridium perfringens tetracycline-chloramphenicol resistance plasmid pIP401. Ann Microbiol (Paris) 1984 Nov-Dec;135B(3):269–282. doi: 10.1016/s0769-2609(84)80094-0. [DOI] [PubMed] [Google Scholar]
  85. Mahony D. E. Bacteriocin susceptibility of Clostridium perfringens: a provisional typing schema. Appl Microbiol. 1974 Aug;28(2):172–176. doi: 10.1128/am.28.2.172-176.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Mahony D. E., Butler M. E. Bacteriocins of Clostridium perfringens. 1. Isolation and preliminary studies. Can J Microbiol. 1971 Jan;17(1):1–6. doi: 10.1139/m71-001. [DOI] [PubMed] [Google Scholar]
  87. Mahony D. E., Butler M. E., Lewis R. G. Bacteriocins of Clostridium perfringens. 2. Studies on mode of action. Can J Microbiol. 1971 Nov;17(11):1435–1442. doi: 10.1139/m71-228. [DOI] [PubMed] [Google Scholar]
  88. Mahony D. E., Clark G. A., Stringer M. F., MacDonald M. C., Duchesne D. R., Mader J. A. Rapid extraction of plasmids from Clostridium perfringens. Appl Environ Microbiol. 1986 Mar;51(3):521–523. doi: 10.1128/aem.51.3.521-523.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Mahony D. E., Easterbrook K. B. Intracellular development of a bacteriophage of Clostridium perfringens. Can J Microbiol. 1970 Oct;16(10):983–988. doi: 10.1139/m70-167. [DOI] [PubMed] [Google Scholar]
  90. Mahony D. E. Induction of bacteriocins from Clostridium perfringens by treatment with mitomycin C. Antimicrob Agents Chemother. 1977 Jun;11(6):1067–1068. doi: 10.1128/aac.11.6.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Mahony D. E., Kalz G. G. A temperate bacteriophage of Clostridium perfringens. Can J Microbiol. 1968 Oct;14(10):1085–1093. doi: 10.1139/m68-183. [DOI] [PubMed] [Google Scholar]
  92. Mahony D. E., Li A. Comparative study of ten bacteriocins of Clostridium perfringens. Antimicrob Agents Chemother. 1978 Dec;14(6):886–892. doi: 10.1128/aac.14.6.886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Mahony D. E., Mader J. A., Dubel J. R. Transformation of Clostridium perfringens L forms with shuttle plasmid DNA. Appl Environ Microbiol. 1988 Jan;54(1):264–267. doi: 10.1128/aem.54.1.264-267.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Mahony D. E. Response of Clostridium perfringens and its L form to bacteriocins of C. perfringens. Can J Microbiol. 1982 Sep;28(9):1032–1036. doi: 10.1139/m82-154. [DOI] [PubMed] [Google Scholar]
  95. Mahony D. E., Stringer M. F., Borriello S. P., Mader J. A. Plasmid analysis as a means of strain differentiation in Clostridium perfringens. J Clin Microbiol. 1987 Jul;25(7):1333–1335. doi: 10.1128/jcm.25.7.1333-1335.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Mahony D. E., Swantee C. A. Bacteriocin typing of Clostridium perfringens in human feces. J Clin Microbiol. 1978 Mar;7(3):307–309. doi: 10.1128/jcm.7.3.307-309.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Martin B., Alloing G., Méjean V., Claverys J. P. Constitutive expression of erythromycin resistance mediated by the ermAM determinant of plasmid pAM beta 1 results from deletion of 5' leader peptide sequences. Plasmid. 1987 Nov;18(3):250–253. doi: 10.1016/0147-619x(87)90068-0. [DOI] [PubMed] [Google Scholar]
  98. McClane B. A., Hanna P. C., Wnek A. P. Clostridium perfringens enterotoxin. Microb Pathog. 1988 May;4(5):317–323. doi: 10.1016/0882-4010(88)90059-9. [DOI] [PubMed] [Google Scholar]
  99. McClane B. A., Wnek A. P., Hulkower K. I., Hanna P. C. Divalent cation involvement in the action of Clostridium perfringens type A enterotoxin. Early events in enterotoxin action are divalent cation-independent. J Biol Chem. 1988 Feb 15;263(5):2423–2435. [PubMed] [Google Scholar]
  100. McClane B. A., Wnek A. P. Studies of Clostridium perfringens enterotoxin action at different temperatures demonstrate a correlation between complex formation and cytotoxicity. Infect Immun. 1990 Sep;58(9):3109–3115. doi: 10.1128/iai.58.9.3109-3115.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. McDonel J. L. Clostridium perfringens toxins (type A, B, C, D, E). Pharmacol Ther. 1980;10(3):617–655. doi: 10.1016/0163-7258(80)90031-5. [DOI] [PubMed] [Google Scholar]
  102. McDonel J. L., McClane B. A. Production, purification, and assay of Clostridium perfringens enterotoxin. Methods Enzymol. 1988;165:94–103. doi: 10.1016/s0076-6879(88)65018-x. [DOI] [PubMed] [Google Scholar]
  103. McMurry L., Petrucci R. E., Jr, Levy S. B. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3974–3977. doi: 10.1073/pnas.77.7.3974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Mengaud J., Braun-Breton C., Cossart P. Identification of phosphatidylinositol-specific phospholipase C activity in Listeria monocytogenes: a novel type of virulence factor? Mol Microbiol. 1991 Feb;5(2):367–372. doi: 10.1111/j.1365-2958.1991.tb02118.x. [DOI] [PubMed] [Google Scholar]
  105. Michel E., Reich K. A., Favier R., Berche P., Cossart P. Attenuated mutants of the intracellular bacterium Listeria monocytogenes obtained by single amino acid substitutions in listeriolysin O. Mol Microbiol. 1990 Dec;4(12):2167–2178. doi: 10.1111/j.1365-2958.1990.tb00578.x. [DOI] [PubMed] [Google Scholar]
  106. Mihelc V. A., Duncan C. L., Chambliss G. H. Characterization of a bacteriocinogenic plasmid in Clostridium perfringens CW55. Antimicrob Agents Chemother. 1978 Nov;14(5):771–779. doi: 10.1128/aac.14.5.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Miller J. F., Mekalanos J. J., Falkow S. Coordinate regulation and sensory transduction in the control of bacterial virulence. Science. 1989 Feb 17;243(4893):916–922. doi: 10.1126/science.2537530. [DOI] [PubMed] [Google Scholar]
  108. Miyoshi Y., Higa A. Interrelationship between drug resistance and bacteriocinogeny of Clostridium perfringens. Microbiol Immunol. 1984;28(3):281–289. doi: 10.1111/j.1348-0421.1984.tb00680.x. [DOI] [PubMed] [Google Scholar]
  109. Miyoshi Y. Transferability of tetracycline resistance to Clostridium perfringens isolated from human feces. Chemotherapy. 1984;30(3):170–174. doi: 10.1159/000238264. [DOI] [PubMed] [Google Scholar]
  110. Mullany P., Wilks M., Lamb I., Clayton C., Wren B., Tabaqchali S. Genetic analysis of a tetracycline resistance element from Clostridium difficile and its conjugal transfer to and from Bacillus subtilis. J Gen Microbiol. 1990 Jul;136(7):1343–1349. doi: 10.1099/00221287-136-7-1343. [DOI] [PubMed] [Google Scholar]
  111. Möllby R., Nord C. E., Wadström T. Biological activities contaminating preparations of phospholipase C ( -toxin) from Clostridium perfringens. Toxicon. 1973 Feb;11(2):139–147. doi: 10.1016/0041-0101(73)90075-5. [DOI] [PubMed] [Google Scholar]
  112. Möllby R., Thelestam M., Wadström T. Effect of Clostridium perfringens phospholipase C(alpha-toxin) on the human diploid fibroblast membrane. J Membr Biol. 1974;16(4):313–330. doi: 10.1007/BF01872421. [DOI] [PubMed] [Google Scholar]
  113. Nicholson W. L., Sun D. X., Setlow B., Setlow P. Promoter specificity of sigma G-containing RNA polymerase from sporulating cells of Bacillus subtilis: identification of a group of forespore-specific promoters. J Bacteriol. 1989 May;171(5):2708–2718. doi: 10.1128/jb.171.5.2708-2718.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Niilo L. Clostridium perfringens in animal disease: a review of current knowledge. Can Vet J. 1980 May;21(5):141–148. [PMC free article] [PubMed] [Google Scholar]
  115. Ogasawara N. Markedly unbiased codon usage in Bacillus subtilis. Gene. 1985;40(1):145–150. doi: 10.1016/0378-1119(85)90035-6. [DOI] [PubMed] [Google Scholar]
  116. Ogata S., Hongo M. Bacteriophages of the genus Clostridium. Adv Appl Microbiol. 1979;25:241–273. doi: 10.1016/s0065-2164(08)70152-7. [DOI] [PubMed] [Google Scholar]
  117. Okabe A., Shimizu T., Hayashi H. Cloning and sequencing of a phospholipase C gene of Clostridium perfringens. Biochem Biophys Res Commun. 1989 Apr 14;160(1):33–39. doi: 10.1016/0006-291x(89)91616-1. [DOI] [PubMed] [Google Scholar]
  118. Olsvik O., Granum P. E., Berdal B. P. Detection of Clostridium perfringens type A enterotoxin by ELISA. Acta Pathol Microbiol Immunol Scand B. 1982 Dec;90(6):445–447. doi: 10.1111/j.1699-0463.1982.tb00144.x. [DOI] [PubMed] [Google Scholar]
  119. Phillips-Jones M. K. Plasmid transformation of Clostridium perfringens by electroporation methods. FEMS Microbiol Lett. 1990 Jan 1;54(1-3):221–226. doi: 10.1016/0378-1097(90)90286-y. [DOI] [PubMed] [Google Scholar]
  120. Ponnambalam S., Chan B., Busby S. Functional analysis of different sequence elements in the Escherichia coli galactose operon P2 promoter. Mol Microbiol. 1988 Mar;2(2):165–172. doi: 10.1111/j.1365-2958.1988.tb00018.x. [DOI] [PubMed] [Google Scholar]
  121. Powell Ian B., Achen Marc G., Hillier Alan J., Davidson Barrie E. A Simple and Rapid Method for Genetic Transformation of Lactic Streptococci by Electroporation. Appl Environ Microbiol. 1988 Mar;54(3):655–660. doi: 10.1128/aem.54.3.655-660.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Pritchard A. E., Vasil M. L. Nucleotide sequence and expression of a phosphate-regulated gene encoding a secreted hemolysin of Pseudomonas aeruginosa. J Bacteriol. 1986 Jul;167(1):291–298. doi: 10.1128/jb.167.1.291-298.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Pugsley A. P. The ins and outs of colicins. Part I: Production, and translocation across membranes. Microbiol Sci. 1984 Oct;1(7):168–175. [PubMed] [Google Scholar]
  124. Pugsley A. P. The ins and outs of colicins. Part II. Lethal action, immunity and ecological implications. Microbiol Sci. 1984 Nov;1(8):203–205. [PubMed] [Google Scholar]
  125. ROSS H. E., WARREN M. E., BARNES J. M. Clostridium welchii iota toxin; its activation by trypsin. J Gen Microbiol. 1949 Jan;3(1):148–152. doi: 10.1099/00221287-3-1-148. [DOI] [PubMed] [Google Scholar]
  126. Reysset G., Sebald M. Conjugal transfer of plasmid-mediated antibiotic resistance from streptococci to Clostridium acetobutylicum. Ann Inst Pasteur Microbiol. 1985 Nov-Dec;136B(3):275–282. doi: 10.1016/s0769-2609(85)80073-9. [DOI] [PubMed] [Google Scholar]
  127. Richardson M., Granum P. E. Sequence of the amino-terminal part of enterotoxin from Clostridium perfringens type A: identification of points of trypsin activation. Infect Immun. 1983 Jun;40(3):943–949. doi: 10.1128/iai.40.3.943-949.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Richardson M., Granum P. E. The amino acid sequence of the enterotoxin from Clostridium perfringens type A. FEBS Lett. 1985 Mar 25;182(2):479–484. doi: 10.1016/0014-5793(85)80358-6. [DOI] [PubMed] [Google Scholar]
  129. Roberts I., Holmes W. M., Hylemon P. B. Development of a new shuttle plasmid system for Escherichia coli and Clostridium perfringens. Appl Environ Microbiol. 1988 Jan;54(1):268–270. doi: 10.1128/aem.54.1.268-270.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Roberts I., Holmes W. M., Hylemon P. B. Modified plasmid isolation method for Clostridium perfringens and Clostridium absonum. Appl Environ Microbiol. 1986 Jul;52(1):197–199. doi: 10.1128/aem.52.1.197-199.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Roggentin P., Rothe B., Kaper J. B., Galen J., Lawrisuk L., Vimr E. R., Schauer R. Conserved sequences in bacterial and viral sialidases. Glycoconj J. 1989;6(3):349–353. doi: 10.1007/BF01047853. [DOI] [PubMed] [Google Scholar]
  132. Roggentin P., Rothe B., Lottspeich F., Schauer R. Cloning and sequencing of a Clostridium perfringens sialidase gene. FEBS Lett. 1988 Sep 26;238(1):31–34. doi: 10.1016/0014-5793(88)80219-9. [DOI] [PubMed] [Google Scholar]
  133. Rood J. I., Buddle J. R., Wales A. J., Sidhu R. The occurrence of antibiotic resistance in Clostridium perfringens from pigs. Aust Vet J. 1985 Aug;62(8):276–279. doi: 10.1111/j.1751-0813.1985.tb14251.x. [DOI] [PubMed] [Google Scholar]
  134. Rood J. I., Jefferson S., Bannam T. L., Wilkie J. M., Mullany P., Wren B. W. Hybridization analysis of three chloramphenicol resistance determinants from Clostridium perfringens and Clostridium difficile. Antimicrob Agents Chemother. 1989 Sep;33(9):1569–1574. doi: 10.1128/aac.33.9.1569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Rood J. I., Maher E. A., Somers E. B., Campos E., Duncan C. L. Isolation and characterization of multiply antibiotic-resistant Clostridum perfringens strains from porcine feces. Antimicrob Agents Chemother. 1978 May;13(5):871–880. doi: 10.1128/aac.13.5.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Rood J. I., Scott V. N., Duncan C. L. Identification of a transferable tetracycline resistance plasmid (pCW3) from Clostridium perfringens. Plasmid. 1978 Sep;1(4):563–570. doi: 10.1016/0147-619x(78)90013-6. [DOI] [PubMed] [Google Scholar]
  137. Rood J. I. Transferable tetracycline resistance in Clostridium perfringens strains of porcine origin. Can J Microbiol. 1983 Oct;29(10):1241–1246. doi: 10.1139/m83-193. [DOI] [PubMed] [Google Scholar]
  138. Rood J. I., Wilkinson R. G. Isolation and characterization of Clostridium perfringens mutants altered in both hemagglutinin and sialidase production. J Bacteriol. 1975 Aug;123(2):419–427. doi: 10.1128/jb.123.2.419-427.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Rood J. I., Wilkinson R. G. Relationship between hemagglutinin and sialidase from Clostridium perfringens CN3870: chromatographic characterization of the biologically active proteins. J Bacteriol. 1976 May;126(2):831–844. doi: 10.1128/jb.126.2.831-844.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Rood J. I., Wilkinson R. G. Relationship between hemagglutinin and sialidase from Clostridium perfringens CN3870: gel filtration of mutant and reverant activities. J Bacteriol. 1976 May;126(2):845–851. doi: 10.1128/jb.126.2.845-851.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Rothe B., Roggentin P., Frank R., Blöcker H., Schauer R. Cloning, sequencing and expression of a sialidase gene from Clostridium sordellii G12. J Gen Microbiol. 1989 Nov;135(11):3087–3096. doi: 10.1099/00221287-135-11-3087. [DOI] [PubMed] [Google Scholar]
  142. Ryu S., Labbe R. G. Coat and enterotoxin-related proteins in Clostridium perfringens spores. J Gen Microbiol. 1989 Nov;135(11):3109–3118. doi: 10.1099/00221287-135-11-3109. [DOI] [PubMed] [Google Scholar]
  143. SMITH H. W. The bacteriophages of Clostridium perfringens. J Gen Microbiol. 1959 Dec;21:622–630. doi: 10.1099/00221287-21-3-622. [DOI] [PubMed] [Google Scholar]
  144. Saint-Joanis B., Garnier T., Cole S. T. Gene cloning shows the alpha-toxin of Clostridium perfringens to contain both sphingomyelinase and lecithinase activities. Mol Gen Genet. 1989 Nov;219(3):453–460. doi: 10.1007/BF00259619. [DOI] [PubMed] [Google Scholar]
  145. Satija K. C., Narayan K. G. Passive bacteriocin typing of strains of Clostridium perfringens type A causing food poisoning for epidemiologic studies. J Infect Dis. 1980 Dec;142(6):899–902. doi: 10.1093/infdis/142.6.899. [DOI] [PubMed] [Google Scholar]
  146. Schleifer K. H., Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972 Dec;36(4):407–477. doi: 10.1128/br.36.4.407-477.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Scott H. G., Mahony D. E. Further development of a bacteriocin typing system for Clostridium perfringens. J Appl Bacteriol. 1982 Dec;53(3):363–369. doi: 10.1111/j.1365-2672.1982.tb01284.x. [DOI] [PubMed] [Google Scholar]
  148. Scott J. R., Kirchman P. A., Caparon M. G. An intermediate in transposition of the conjugative transposon Tn916. Proc Natl Acad Sci U S A. 1988 Jul;85(13):4809–4813. doi: 10.1073/pnas.85.13.4809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Scott J. R. Regulation of plasmid replication. Microbiol Rev. 1984 Mar;48(1):1–23. doi: 10.1016/b978-0-12-048850-6.50006-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Scott P. T., Rood J. I. Electroporation-mediated transformation of lysostaphin-treated Clostridium perfringens. Gene. 1989 Oct 30;82(2):327–333. doi: 10.1016/0378-1119(89)90059-0. [DOI] [PubMed] [Google Scholar]
  151. Sebald M., Bouanchaud D., Bieth G., Prévot A. R. Nature plasmidique de la résistance à plusieurs antibiotiques chez C. perfringens type A, souche 659. C R Acad Sci Hebd Seances Acad Sci D. 1975 May 26;280(20):2401–2404. [PubMed] [Google Scholar]
  152. Sebald M., Bréfort M. G. Transfert du plasmide Tétracycline-Chloramphénicol chez Clostridium perfringens. C R Acad Sci Hebd Seances Acad Sci D. 1975 Jul 28;281(4):317–319. [PubMed] [Google Scholar]
  153. Sebald M., Costilow R. N. Minimal growth requirements for Clostridium perfringens and isolation of auxotrophic mutants. Appl Microbiol. 1975 Jan;29(1):1–6. doi: 10.1128/am.29.1.1-6.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Shaw W. V. Chloramphenicol acetyltransferase: enzymology and molecular biology. CRC Crit Rev Biochem. 1983;14(1):1–46. doi: 10.3109/10409238309102789. [DOI] [PubMed] [Google Scholar]
  155. Shimizu T., Okabe A., Minami J., Hayashi H. An upstream regulatory sequence stimulates expression of the perfringolysin O gene of Clostridium perfringens. Infect Immun. 1991 Jan;59(1):137–142. doi: 10.1128/iai.59.1.137-142.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Simpson L. L., Stiles B. G., Zepeda H. H., Wilkins T. D. Molecular basis for the pathological actions of Clostridium perfringens iota toxin. Infect Immun. 1987 Jan;55(1):118–122. doi: 10.1128/iai.55.1.118-122.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Sindar P., Britz M. L., Wilkinson R. G. Isolation and properties of metronidazole-resistant mutants of Clostridium perfringens. J Med Microbiol. 1982 Nov;15(4):503–509. doi: 10.1099/00222615-15-4-503. [DOI] [PubMed] [Google Scholar]
  158. Smart J. L., Roberts T. A., Stringer M. F., Shah N. The incidence and serotypes of Clostridium perfringens on beef, pork and lamb carcasses. J Appl Bacteriol. 1979 Apr;46(2):377–383. doi: 10.1111/j.1365-2672.1979.tb00834.x. [DOI] [PubMed] [Google Scholar]
  159. Smith L. D. Virulence factors of Clostridium perfringens. Rev Infect Dis. 1979 Mar-Apr;1(2):254–262. doi: 10.1093/clinids/1.2.254. [DOI] [PubMed] [Google Scholar]
  160. Squires C. H., Heefner D. L., Evans R. J., Kopp B. J., Yarus M. J. Shuttle plasmids for Escherichia coli and Clostridium perfringens. J Bacteriol. 1984 Aug;159(2):465–471. doi: 10.1128/jb.159.2.465-471.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Steffen C., Matzura H. Nucleotide sequence analysis and expression studies of a chloramphenicol-acetyltransferase-coding gene from Clostridium perfringens. Gene. 1989 Feb 20;75(2):349–354. doi: 10.1016/0378-1119(89)90282-5. [DOI] [PubMed] [Google Scholar]
  162. Sterne M. Clostridial infections. Br Vet J. 1981 Jul-Aug;137(4):443–454. doi: 10.1016/s0007-1935(17)31581-6. [DOI] [PubMed] [Google Scholar]
  163. Stevens D. L., Laine B. M., Mitten J. E. Comparison of single and combination antimicrobial agents for prevention of experimental gas gangrene caused by Clostridium perfringens. Antimicrob Agents Chemother. 1987 Feb;31(2):312–316. doi: 10.1128/aac.31.2.312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Stevens D. L., Maier K. A., Laine B. M., Mitten J. E. Comparison of clindamycin, rifampin, tetracycline, metronidazole, and penicillin for efficacy in prevention of experimental gas gangrene due to Clostridium perfringens. J Infect Dis. 1987 Feb;155(2):220–228. doi: 10.1093/infdis/155.2.220. [DOI] [PubMed] [Google Scholar]
  165. Stevens D. L., Mitten J., Henry C. Effects of alpha and theta toxins from Clostridium perfringens on human polymorphonuclear leukocytes. J Infect Dis. 1987 Aug;156(2):324–333. doi: 10.1093/infdis/156.2.324. [DOI] [PubMed] [Google Scholar]
  166. Stevens D. L., Troyer B. E., Merrick D. T., Mitten J. E., Olson R. D. Lethal effects and cardiovascular effects of purified alpha- and theta-toxins from Clostridium perfringens. J Infect Dis. 1988 Feb;157(2):272–279. doi: 10.1093/infdis/157.2.272. [DOI] [PubMed] [Google Scholar]
  167. Stewart A. W., Johnson M. G. Increased numbers of heat-resistnat spores produced by two strains of Clostridium perfringens bearing temperate phage s9. J Gen Microbiol. 1977 Nov;103(1):45–50. doi: 10.1099/00221287-103-1-45. [DOI] [PubMed] [Google Scholar]
  168. Stiles B. G., Wilkins T. D. Clostridium perfringens iota toxin: synergism between two proteins. Toxicon. 1986;24(8):767–773. doi: 10.1016/0041-0101(86)90101-7. [DOI] [PubMed] [Google Scholar]
  169. Stock J. B., Ninfa A. J., Stock A. M. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev. 1989 Dec;53(4):450–490. doi: 10.1128/mr.53.4.450-490.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Stragier P., Losick R. Cascades of sigma factors revisited. Mol Microbiol. 1990 Nov;4(11):1801–1806. doi: 10.1111/j.1365-2958.1990.tb02028.x. [DOI] [PubMed] [Google Scholar]
  171. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Tagg J. R., Dajani A. S., Wannamaker L. W. Bacteriocins of gram-positive bacteria. Bacteriol Rev. 1976 Sep;40(3):722–756. doi: 10.1128/br.40.3.722-756.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Titball R. W., Hunter S. E., Martin K. L., Morris B. C., Shuttleworth A. D., Rubidge T., Anderson D. W., Kelly D. C. Molecular cloning and nucleotide sequence of the alpha-toxin (phospholipase C) of Clostridium perfringens. Infect Immun. 1989 Feb;57(2):367–376. doi: 10.1128/iai.57.2.367-376.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Titball R. W., Leslie D. L., Harvey S., Kelly D. Hemolytic and sphingomyelinase activities of Clostridium perfringens alpha-toxin are dependent on a domain homologous to that of an enzyme from the human arachidonic acid pathway. Infect Immun. 1991 May;59(5):1872–1874. doi: 10.1128/iai.59.5.1872-1874.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Titball R. W., Rubidge T. The role of histidine residues in the alpha toxin of Clostridium perfringens. FEMS Microbiol Lett. 1990 Mar 15;56(3):261–265. doi: 10.1111/j.1574-6968.1988.tb03188.x. [DOI] [PubMed] [Google Scholar]
  176. Traub W. H. Chemotherapy of experimental (murine) Clostridium perfringens type A gas gangrene. Chemotherapy. 1988;34(6):472–477. doi: 10.1159/000238611. [DOI] [PubMed] [Google Scholar]
  177. Traub W. H. Clostridium perfringens type A. Comparison of in vitro and in vivo activity of twelve antimicrobial drugs. Chemotherapy. 1986;32(1):59–67. doi: 10.1159/000238389. [DOI] [PubMed] [Google Scholar]
  178. Tso J. Y., Siebel C. Cloning and expression of the phospholipase C gene from Clostridium perfringens and Clostridium bifermentans. Infect Immun. 1989 Feb;57(2):468–476. doi: 10.1128/iai.57.2.468-476.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Tweten R. K. Cloning and expression in Escherichia coli of the perfringolysin O (theta-toxin) gene from Clostridium perfringens and characterization of the gene product. Infect Immun. 1988 Dec;56(12):3228–3234. doi: 10.1128/iai.56.12.3228-3234.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Tweten R. K. Nucleotide sequence of the gene for perfringolysin O (theta-toxin) from Clostridium perfringens: significant homology with the genes for streptolysin O and pneumolysin. Infect Immun. 1988 Dec;56(12):3235–3240. doi: 10.1128/iai.56.12.3235-3240.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Van Damme-Jongsten M., Rodhouse J., Gilbert R. J., Notermans S. Synthetic DNA probes for detection of enterotoxigenic Clostridium perfringens strains isolated from outbreaks of food poisoning. J Clin Microbiol. 1990 Jan;28(1):131–133. doi: 10.1128/jcm.28.1.131-133.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Van Damme-Jongsten M., Wernars K., Notermans S. Cloning and sequencing of the Clostridium perfringens enterotoxin gene. Antonie Van Leeuwenhoek. 1989 Aug;56(2):181–190. doi: 10.1007/BF00399981. [DOI] [PubMed] [Google Scholar]
  183. Varenne S., Lazdunski C. Effect of distribution of unfavourable codons on the maximum rate of gene expression by an heterologous organism. J Theor Biol. 1986 May 7;120(1):99–110. doi: 10.1016/s0022-5193(86)80020-0. [DOI] [PubMed] [Google Scholar]
  184. Wang Y., Taylor D. E. Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction. Gene. 1990 Sep 28;94(1):23–28. doi: 10.1016/0378-1119(90)90463-2. [DOI] [PubMed] [Google Scholar]
  185. Williamson R. Resistance of Clostridium perfringens to beta-lactam antibiotics mediated by a decreased affinity of a single essential penicillin-binding protein. J Gen Microbiol. 1983 Aug;129(8):2339–2342. doi: 10.1099/00221287-129-8-2339. [DOI] [PubMed] [Google Scholar]
  186. Wnek A. P., McClane B. A. Preliminary evidence that Clostridium perfringens type A enterotoxin is present in a 160,000-Mr complex in mammalian membranes. Infect Immun. 1989 Feb;57(2):574–581. doi: 10.1128/iai.57.2.574-581.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Wren B. W., Mullany P., Clayton C., Tabaqchali S. Molecular cloning and genetic analysis of a chloramphenicol acetyltransferase determinant from Clostridium difficile. Antimicrob Agents Chemother. 1988 Aug;32(8):1213–1217. doi: 10.1128/aac.32.8.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Wren B. W., Mullany P., Clayton C., Tabaqchali S. Nucleotide sequence of a chloramphenicol acetyl transferase gene from Clostridium difficile. Nucleic Acids Res. 1989 Jun 26;17(12):4877–4877. doi: 10.1093/nar/17.12.4877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Wüst J., Hardegger U. Studies on the resistance of Clostridium difficile to antimicrobial agents. Zentralbl Bakteriol Mikrobiol Hyg A. 1988 Jan;267(3):383–394. doi: 10.1016/s0176-6724(88)80055-5. [DOI] [PubMed] [Google Scholar]
  190. Yamada A., Tsukagoshi N., Udaka S., Sasaki T., Makino S., Nakamura S., Little C., Tomita M., Ikezawa H. Nucleotide sequence and expression in Escherichia coli of the gene coding for sphingomyelinase of Bacillus cereus. Eur J Biochem. 1988 Aug 1;175(2):213–220. doi: 10.1111/j.1432-1033.1988.tb14186.x. [DOI] [PubMed] [Google Scholar]
  191. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  192. Young M., Minton N. P., Staudenbauer W. L. Recent advances in the genetics of the clostridia. FEMS Microbiol Rev. 1989 Dec;5(4):301–325. doi: 10.1111/j.1574-6968.1989.tb03402.x. [DOI] [PubMed] [Google Scholar]
  193. Youngman P. J., Perkins J. B., Losick R. Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn917. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2305–2309. doi: 10.1073/pnas.80.8.2305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  194. Zaidenzaig Y., Fitton J. E., Packman L. C., Shaw W. V. Characterization and comparison of chloramphenicol acetyltransferase variants. Eur J Biochem. 1979 Oct 15;100(2):609–618. doi: 10.1111/j.1432-1033.1979.tb04208.x. [DOI] [PubMed] [Google Scholar]
  195. van Damme-Jongsten M., Haagsma J., Notermans S. Testing strains of Clostridium perfringens type A isolated from diarrhoeic piglets for the presence of the enterotoxin gene. Vet Rec. 1990 Feb 24;126(8):191–192. [PubMed] [Google Scholar]
  196. von Eichel-Streiber C., Suckau D., Wachter M., Hadding U. Cloning and characterization of overlapping DNA fragments of the toxin A gene of clostridium difficile. J Gen Microbiol. 1989 Jan;135(1):55–64. doi: 10.1099/00221287-135-1-55. [DOI] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES