Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1993 Sep;57(3):522–542. doi: 10.1128/mr.57.3.522-542.1993

Regulation of fatty acid biosynthesis in Escherichia coli.

K Magnuson 1, S Jackowski 1, C O Rock 1, J E Cronan Jr 1
PMCID: PMC372925  PMID: 8246839

Abstract

Our understanding of fatty acid biosynthesis in Escherichia coli has increased greatly in recent years. Since the discovery that the intermediates of fatty acid biosynthesis are bound to the heat-stable protein cofactor termed acyl carrier protein, the fatty acid synthesis pathway of E. coli has been studied in some detail. Interestingly, many advances in the field have aided in the discovery of analogous systems in other organisms. In fact, E. coli has provided a paradigm of predictive value for the synthesis of fatty acids in bacteria and plants and the synthesis of bacterial polyketide antibiotics. In this review, we concentrate on four major areas of research. First, the reactions in fatty acid biosynthesis and the proteins catalyzing these reactions are discussed in detail. The genes encoding many of these proteins have been cloned, and characterization of these genes has led to a better understanding of the pathway. Second, the function and role of the two essential cofactors in fatty acid synthesis, coenzyme A and acyl carrier protein, are addressed. Finally, the steps governing the spectrum of products produced in synthesis and alternative destinations, other than membrane phospholipids, for fatty acids in E. coli are described. Throughout the review, the contribution of each portion of the pathway to the global regulation of synthesis is examined. In no other organism is the bulk of knowledge regarding fatty acid metabolism so great; however, questions still remain to be answered. Pursuing such questions should reveal additional regulatory mechanisms of fatty acid synthesis and, hopefully, the role of fatty acid synthesis and other cellular processes in the global control of cellular growth.

Full text

PDF
522

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberts A. W., Bell R. M., Vagelos P. R. Acyl carrier protein. XV. Studies of -ketoacyl-acyl carrier protein synthetase. J Biol Chem. 1972 May 25;247(10):3190–3198. [PubMed] [Google Scholar]
  2. Ali S. T., Moir A. J., Ashton P. R., Engel P. C., Guest J. R. Octanoylation of the lipoyl domains of the pyruvate dehydrogenase complex in a lipoyl-deficient strain of Escherichia coli. Mol Microbiol. 1990 Jun;4(6):943–950. doi: 10.1111/j.1365-2958.1990.tb00667.x. [DOI] [PubMed] [Google Scholar]
  3. Alix J. H. A rapid procedure for cloning genes from lambda libraries by complementation of E. coli defective mutants: application to the fabE region of the E. coli chromosome. DNA. 1989 Dec;8(10):779–789. doi: 10.1089/dna.1989.8.779. [DOI] [PubMed] [Google Scholar]
  4. BROWN G. M. The metabolism of pantothenic acid. J Biol Chem. 1959 Feb;234(2):370–378. [PubMed] [Google Scholar]
  5. Baldassare J. J., Rhinehart K. B., Silbert D. F. Modification of membrane lipid: physical properties in relation to fatty acid structure. Biochemistry. 1976 Jul 13;15(14):2986–2994. doi: 10.1021/bi00659a008. [DOI] [PubMed] [Google Scholar]
  6. Barnes E. M., Jr, Wakil S. J. Studies on the mechanism of fatty acid synthesis. XIX. Preparation and general properties of palmityl thioesterase. J Biol Chem. 1968 Jun 10;243(11):2955–2962. [PubMed] [Google Scholar]
  7. Bibb M. J., Biró S., Motamedi H., Collins J. F., Hutchinson C. R. Analysis of the nucleotide sequence of the Streptomyces glaucescens tcmI genes provides key information about the enzymology of polyketide antibiotic biosynthesis. EMBO J. 1989 Sep;8(9):2727–2736. doi: 10.1002/j.1460-2075.1989.tb08414.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Birge C. H., Vagelos P. R. Acyl carrier protein. XVII. Purification and properties of -hydroxyacyl acyl carrier protein dehydrase. J Biol Chem. 1972 Aug 25;247(16):4930–4938. [PubMed] [Google Scholar]
  9. Bohannon D. E., Connell N., Keener J., Tormo A., Espinosa-Urgel M., Zambrano M. M., Kolter R. Stationary-phase-inducible "gearbox" promoters: differential effects of katF mutations and role of sigma 70. J Bacteriol. 1991 Jul;173(14):4482–4492. doi: 10.1128/jb.173.14.4482-4492.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bonner W. M., Bloch K. Purification and properties of fatty acyl thioesterase I from Escherichia coli. J Biol Chem. 1972 May 25;247(10):3123–3133. [PubMed] [Google Scholar]
  11. Brookfield D. E., Green J., Ali S. T., Machado R. S., Guest J. R. Evidence for two protein-lipoylation activities in Escherichia coli. FEBS Lett. 1991 Dec 16;295(1-3):13–16. doi: 10.1016/0014-5793(91)81373-g. [DOI] [PubMed] [Google Scholar]
  12. Chang S. I., Hammes G. G. Amino acid sequences of substrate-binding sites in chicken liver fatty acid synthase. Biochemistry. 1988 Jun 28;27(13):4753–4760. doi: 10.1021/bi00413a026. [DOI] [PubMed] [Google Scholar]
  13. Cho H., Cronan J. E., Jr Escherichia coli thioesterase I, molecular cloning and sequencing of the structural gene and identification as a periplasmic enzyme. J Biol Chem. 1993 May 5;268(13):9238–9245. [PubMed] [Google Scholar]
  14. Clark D. P., DeMendoza D., Polacco M. L., Cronan J. E., Jr Beta-hydroxydecanoyl thio ester dehydrase does not catalyze a rate-limiting step in Escherichia coli unsaturated fatty acid synthesis. Biochemistry. 1983 Dec 6;22(25):5897–5902. doi: 10.1021/bi00294a032. [DOI] [PubMed] [Google Scholar]
  15. Clark D., Cronan J. E., Jr Further mapping of several membrane lipid biosynthetic genes (fabC, fabB, gpsA, plsB) of Escherichia coli. J Bacteriol. 1977 Nov;132(2):549–554. doi: 10.1128/jb.132.2.549-554.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Clough R. C., Matthis A. L., Barnum S. R., Jaworski J. G. Purification and characterization of 3-ketoacyl-acyl carrier protein synthase III from spinach. A condensing enzyme utilizing acetyl-coenzyme A to initiate fatty acid synthesis. J Biol Chem. 1992 Oct 15;267(29):20992–20998. [PubMed] [Google Scholar]
  17. Coleman J., Raetz C. R. First committed step of lipid A biosynthesis in Escherichia coli: sequence of the lpxA gene. J Bacteriol. 1988 Mar;170(3):1268–1274. doi: 10.1128/jb.170.3.1268-1274.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Collado-Vides J., Magasanik B., Gralla J. D. Control site location and transcriptional regulation in Escherichia coli. Microbiol Rev. 1991 Sep;55(3):371–394. doi: 10.1128/mr.55.3.371-394.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cooper C. L., Hsu L., Jackowski S., Rock C. O. 2-Acylglycerolphosphoethanolamine acyltransferase/acyl-acyl carrier protein synthetase is a membrane-associated acyl carrier protein binding protein. J Biol Chem. 1989 May 5;264(13):7384–7389. [PubMed] [Google Scholar]
  20. Cortes J., Haydock S. F., Roberts G. A., Bevitt D. J., Leadlay P. F. An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Nature. 1990 Nov 8;348(6297):176–178. doi: 10.1038/348176a0. [DOI] [PubMed] [Google Scholar]
  21. Cronan J. E., Jr, Birge C. H., Vagelos P. R. Evidence for two genes specifically involved in unsaturated fatty acid biosynthesis in Escherichia coli. J Bacteriol. 1969 Nov;100(2):601–604. doi: 10.1128/jb.100.2.601-604.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Cronan J. E., Jr, Gelmann E. P. Physical properties of membrane lipids: biological relevance and regulation. Bacteriol Rev. 1975 Sep;39(3):232–256. doi: 10.1128/br.39.3.232-256.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Cronan J. E., Jr, Li W. B., Coleman R., Narasimhan M., de Mendoza D., Schwab J. M. Derived amino acid sequence and identification of active site residues of Escherichia coli beta-hydroxydecanoyl thioester dehydrase. J Biol Chem. 1988 Apr 5;263(10):4641–4646. [PubMed] [Google Scholar]
  24. Cronan J. E., Jr Phospholipid alterations during growth of Escherichia coli. J Bacteriol. 1968 Jun;95(6):2054–2061. doi: 10.1128/jb.95.6.2054-2061.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Cronan J. E., Jr The E. coli bio operon: transcriptional repression by an essential protein modification enzyme. Cell. 1989 Aug 11;58(3):427–429. doi: 10.1016/0092-8674(89)90421-2. [DOI] [PubMed] [Google Scholar]
  26. Cronan J. E., Jr Thermal regulation of the membrane lipid composition of Escherichia coli. Evidence for the direct control of fatty acid synthesis. J Biol Chem. 1975 Sep 10;250(17):7074–7077. [PubMed] [Google Scholar]
  27. Cronan J. E., Jr, Weisberg L. J., Allen R. G. Regulation of membrane lipid synthesis in Escherichia coli. Accumulation of free fatty acids of abnormal length during inhibition of phospholipid synthesis. J Biol Chem. 1975 Aug 10;250(15):5835–5840. [PubMed] [Google Scholar]
  28. D'Agnolo G., Rosenfeld I. S., Awaya J., Omura S., Vagelos P. R. Inhibition of fatty acid synthesis by the antibiotic cerulenin. Specific inactivation of beta-ketoacyl-acyl carrier protein synthetase. Biochim Biophys Acta. 1973 Nov 29;326(2):155–156. doi: 10.1016/0005-2760(73)90241-5. [DOI] [PubMed] [Google Scholar]
  29. D'Agnolo G., Rosenfeld I. S., Vagelos P. R. Beta-Ketoacyl-acyl carrier protein synthetase. Characterization of the acyl-enzyme intermediate. J Biol Chem. 1975 Jul 25;250(14):5283–5288. [PubMed] [Google Scholar]
  30. D'Agnolo G., Rosenfeld I. S., Vagelos P. R. Multiple forms of beta-ketoacyl-acyl carrier protein synthetase in Escherichia coli. J Biol Chem. 1975 Jul 25;250(14):5289–5294. [PubMed] [Google Scholar]
  31. Daniels D. L., Plunkett G., 3rd, Burland V., Blattner F. R. Analysis of the Escherichia coli genome: DNA sequence of the region from 84.5 to 86.5 minutes. Science. 1992 Aug 7;257(5071):771–778. doi: 10.1126/science.1379743. [DOI] [PubMed] [Google Scholar]
  32. Debellé F., Sharma S. B. Nucleotide sequence of Rhizobium meliloti RCR2011 genes involved in host specificity of nodulation. Nucleic Acids Res. 1986 Sep 25;14(18):7453–7472. doi: 10.1093/nar/14.18.7453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. DiRusso C. C., Heimert T. L., Metzger A. K. Characterization of FadR, a global transcriptional regulator of fatty acid metabolism in Escherichia coli. Interaction with the fadB promoter is prevented by long chain fatty acyl coenzyme A. J Biol Chem. 1992 Apr 25;267(12):8685–8691. [PubMed] [Google Scholar]
  34. DiRusso C. C., Metzger A. K., Heimert T. L. Regulation of transcription of genes required for fatty acid transport and unsaturated fatty acid biosynthesis in Escherichia coli by FadR. Mol Microbiol. 1993 Jan;7(2):311–322. doi: 10.1111/j.1365-2958.1993.tb01122.x. [DOI] [PubMed] [Google Scholar]
  35. DiRusso C. C. Nucleotide sequence of the fadR gene, a multifunctional regulator of fatty acid metabolism in Escherichia coli. Nucleic Acids Res. 1988 Aug 25;16(16):7995–8009. doi: 10.1093/nar/16.16.7995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. DiRusso C. C., Nunn W. D. Cloning and characterization of a gene (fadR) involved in regulation of fatty acid metabolism in Escherichia coli. J Bacteriol. 1985 Feb;161(2):583–588. doi: 10.1128/jb.161.2.583-588.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Elovson J., Vagelos P. R. Acyl carrier protein. X. Acyl carrier protein synthetase. J Biol Chem. 1968 Jul 10;243(13):3603–3611. [PubMed] [Google Scholar]
  38. Fall R. R. Stabilization of an acetyl-coenzyme A carboxylase complex from Pseudomonas citronellolis. Biochim Biophys Acta. 1976 Dec 20;450(3):475–480. doi: 10.1016/0005-2760(76)90022-9. [DOI] [PubMed] [Google Scholar]
  39. Garwin J. L., Cronan J. E., Jr Thermal modulation of fatty acid synthesis in Escherichia coli does not involve de novo enzyme synthesis. J Bacteriol. 1980 Mar;141(3):1457–1459. doi: 10.1128/jb.141.3.1457-1459.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Garwin J. L., Klages A. L., Cronan J. E., Jr Beta-ketoacyl-acyl carrier protein synthase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis. J Biol Chem. 1980 Apr 25;255(8):3263–3265. [PubMed] [Google Scholar]
  41. Garwin J. L., Klages A. L., Cronan J. E., Jr Structural, enzymatic, and genetic studies of beta-ketoacyl-acyl carrier protein synthases I and II of Escherichia coli. J Biol Chem. 1980 Dec 25;255(24):11949–11956. [PubMed] [Google Scholar]
  42. Gelmann E. P., Cronan J. E., Jr Mutant of Escherichia coli deficient in the synthesis of cis-vaccenic acid. J Bacteriol. 1972 Oct;112(1):381–387. doi: 10.1128/jb.112.1.381-387.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Grogan D. W., Cronan J. E., Jr Characterization of Escherichia coli mutants completely defective in synthesis of cyclopropane fatty acids. J Bacteriol. 1986 Jun;166(3):872–877. doi: 10.1128/jb.166.3.872-877.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Guchhait R. B., Polakis S. E., Dimroth P., Stoll E., Moss J., Lane M. D. Acetyl coenzyme A carboxylase system of Escherichia coli. Purification and properties of the biotin carboxylase, carboxyltransferase, and carboxyl carrier protein components. J Biol Chem. 1974 Oct 25;249(20):6633–6645. [PubMed] [Google Scholar]
  45. Gupta S. D., Dowhan W., Wu H. C. Phosphatidylethanolamine is not essential for the N-acylation of apolipoprotein in Escherichia coli. J Biol Chem. 1991 May 25;266(15):9983–9986. [PubMed] [Google Scholar]
  46. Gupta S. D., Wu H. C. Identification and subcellular localization of apolipoprotein N-acyltransferase in Escherichia coli. FEMS Microbiol Lett. 1991 Feb;62(1):37–41. doi: 10.1016/0378-1097(91)90251-5. [DOI] [PubMed] [Google Scholar]
  47. Hane M. W., Wood T. H. Escherichia coli K-12 mutants resistant to nalidixic acid: genetic mapping and dominance studies. J Bacteriol. 1969 Jul;99(1):238–241. doi: 10.1128/jb.99.1.238-241.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Hayashi T., Yamamoto O., Sasaki H., Kawaguchi A., Okazaki H. Mechanism of action of the antibiotic thiolactomycin inhibition of fatty acid synthesis of Escherichia coli. Biochem Biophys Res Commun. 1983 Sep 30;115(3):1108–1113. doi: 10.1016/s0006-291x(83)80050-3. [DOI] [PubMed] [Google Scholar]
  49. Haydon D. J., Guest J. R. A new family of bacterial regulatory proteins. FEMS Microbiol Lett. 1991 Apr 15;63(2-3):291–295. doi: 10.1016/0378-1097(91)90101-f. [DOI] [PubMed] [Google Scholar]
  50. Hector M. L., Fall R. R. Multiple acyl-coenzyme A carboxylases in Pseudomonas citronellolis. Biochemistry. 1976 Aug 10;15(16):3465–3472. doi: 10.1021/bi00661a011. [DOI] [PubMed] [Google Scholar]
  51. Helmkamp G. M., Jr, Brock D. J., Bloch K. Beta-hydroxydecanoly thioester dehydrase. Specificity of substrates and acetylenic inhibitors. J Biol Chem. 1968 Jun 25;243(12):3229–3231. [PubMed] [Google Scholar]
  52. Henry M. F., Cronan J. E., Jr A new mechanism of transcriptional regulation: release of an activator triggered by small molecule binding. Cell. 1992 Aug 21;70(4):671–679. doi: 10.1016/0092-8674(92)90435-f. [DOI] [PubMed] [Google Scholar]
  53. Henry M. F., Cronan J. E., Jr Escherichia coli transcription factor that both activates fatty acid synthesis and represses fatty acid degradation. J Mol Biol. 1991 Dec 20;222(4):843–849. doi: 10.1016/0022-2836(91)90574-p. [DOI] [PubMed] [Google Scholar]
  54. Holak T. A., Nilges M., Prestegard J. H., Gronenborn A. M., Clore G. M. Three-dimensional structure of acyl carrier protein in solution determined by nuclear magnetic resonance and the combined use of dynamical simulated annealing and distance geometry. Eur J Biochem. 1988 Jul 15;175(1):9–15. doi: 10.1111/j.1432-1033.1988.tb14159.x. [DOI] [PubMed] [Google Scholar]
  55. Hopwood D. A., Sherman D. H. Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet. 1990;24:37–66. doi: 10.1146/annurev.ge.24.120190.000345. [DOI] [PubMed] [Google Scholar]
  56. Hsu L., Jackowski S., Rock C. O. Isolation and characterization of Escherichia coli K-12 mutants lacking both 2-acyl-glycerophosphoethanolamine acyltransferase and acyl-acyl carrier protein synthetase activity. J Biol Chem. 1991 Jul 25;266(21):13783–13788. [PubMed] [Google Scholar]
  57. Issartel J. P., Koronakis V., Hughes C. Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation. Nature. 1991 Jun 27;351(6329):759–761. doi: 10.1038/351759a0. [DOI] [PubMed] [Google Scholar]
  58. Jackowski S., Alix J. H. Cloning, sequence, and expression of the pantothenate permease (panF) gene of Escherichia coli. J Bacteriol. 1990 Jul;172(7):3842–3848. doi: 10.1128/jb.172.7.3842-3848.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Jackowski S., Murphy C. M., Cronan J. E., Jr, Rock C. O. Acetoacetyl-acyl carrier protein synthase. A target for the antibiotic thiolactomycin. J Biol Chem. 1989 May 5;264(13):7624–7629. [PubMed] [Google Scholar]
  60. Jackowski S., Rock C. O. Acetoacetyl-acyl carrier protein synthase, a potential regulator of fatty acid biosynthesis in bacteria. J Biol Chem. 1987 Jun 5;262(16):7927–7931. [PubMed] [Google Scholar]
  61. Jackowski S., Rock C. O. Consequences of reduced intracellular coenzyme A content in Escherichia coli. J Bacteriol. 1986 Jun;166(3):866–871. doi: 10.1128/jb.166.3.866-871.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Jackowski S., Rock C. O. Metabolism of 4'-phosphopantetheine in Escherichia coli. J Bacteriol. 1984 Apr;158(1):115–120. doi: 10.1128/jb.158.1.115-120.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Jackowski S., Rock C. O. Ratio of active to inactive forms of acyl carrier protein in Escherichia coli. J Biol Chem. 1983 Dec 25;258(24):15186–15191. [PubMed] [Google Scholar]
  64. Jackowski S., Rock C. O. Regulation of coenzyme A biosynthesis. J Bacteriol. 1981 Dec;148(3):926–932. doi: 10.1128/jb.148.3.926-932.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Jackowski S., Rock C. O. Transfer of fatty acids from the 1-position of phosphatidylethanolamine to the major outer membrane lipoprotein of Escherichia coli. J Biol Chem. 1986 Aug 25;261(24):11328–11333. [PubMed] [Google Scholar]
  66. Jackowski S., Rock C. O. Turnover of the 4'-phosphopantetheine prosthetic group of acyl carrier protein. J Biol Chem. 1984 Feb 10;259(3):1891–1895. [PubMed] [Google Scholar]
  67. Karow M., Fayet O., Georgopoulos C. The lethal phenotype caused by null mutations in the Escherichia coli htrB gene is suppressed by mutations in the accBC operon, encoding two subunits of acetyl coenzyme A carboxylase. J Bacteriol. 1992 Nov;174(22):7407–7418. doi: 10.1128/jb.174.22.7407-7418.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Kass L. R. The antibacterial activity of 3-decynoyl-n-acetylcysteamine. Inhibition in vivo of beta-hydroxydecanoyl thioester dehydrase. J Biol Chem. 1968 Jun 25;243(12):3223–3228. [PubMed] [Google Scholar]
  69. Kauppinen S., Siggaard-Andersen M., von Wettstein-Knowles P. beta-Ketoacyl-ACP synthase I of Escherichia coli: nucleotide sequence of the fabB gene and identification of the cerulenin binding residue. Carlsberg Res Commun. 1988;53(6):357–370. doi: 10.1007/BF02983311. [DOI] [PubMed] [Google Scholar]
  70. Kim B., Little J. W. Dimerization of a specific DNA-binding protein on the DNA. Science. 1992 Jan 10;255(5041):203–206. doi: 10.1126/science.1553548. [DOI] [PubMed] [Google Scholar]
  71. Kim Y., Prestegard J. H. Refinement of the NMR structures for acyl carrier protein with scalar coupling data. Proteins. 1990;8(4):377–385. doi: 10.1002/prot.340080411. [DOI] [PubMed] [Google Scholar]
  72. Kondo H., Shiratsuchi K., Yoshimoto T., Masuda T., Kitazono A., Tsuru D., Anai M., Sekiguchi M., Tanabe T. Acetyl-CoA carboxylase from Escherichia coli: gene organization and nucleotide sequence of the biotin carboxylase subunit. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9730–9733. doi: 10.1073/pnas.88.21.9730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. LEZIUS A., RINGELMANN E., LYNEN F. [On the biochemical function of biotin. IV. The biosynthesis of biotin]. Biochem Z. 1963;336:510–525. [PubMed] [Google Scholar]
  74. Lai J. S., Wu H. C. Incorporation of acyl moieties of phospholipids into murein lipoprotein in intact cells of Escherichia coli by phospholipid vesicle fusion. J Bacteriol. 1980 Oct;144(1):451–453. doi: 10.1128/jb.144.1.451-453.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Lai S. H., Philbrick W. M., Wu H. C. Acyl moieties in phospholipids are the precursors for the fatty acids in murein lipoprotein of Escherichia coli. J Biol Chem. 1980 Jun 10;255(11):5384–5387. [PubMed] [Google Scholar]
  76. Langley D., Guest J. R. Biochemical genetics of the alpha-keto acid dehydrogenase complexes of Escherichia coli K12: isolation and biochemical properties of deletion mutants. J Gen Microbiol. 1977 Apr;99(2):263–276. doi: 10.1099/00221287-99-2-263. [DOI] [PubMed] [Google Scholar]
  77. Lerouge P., Roche P., Faucher C., Maillet F., Truchet G., Promé J. C., Dénarié J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature. 1990 Apr 19;344(6268):781–784. doi: 10.1038/344781a0. [DOI] [PubMed] [Google Scholar]
  78. Li S. J., Cronan J. E., Jr The gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-CoA carboxylase. J Biol Chem. 1992 Jan 15;267(2):855–863. [PubMed] [Google Scholar]
  79. Li S. J., Cronan J. E., Jr The genes encoding the two carboxyltransferase subunits of Escherichia coli acetyl-CoA carboxylase. J Biol Chem. 1992 Aug 25;267(24):16841–16847. [PubMed] [Google Scholar]
  80. Li S. J., Rock C. O., Cronan J. E., Jr The dedB (usg) open reading frame of Escherichia coli encodes a subunit of acetyl-coenzyme A carboxylase. J Bacteriol. 1992 Sep;174(17):5755–5757. doi: 10.1128/jb.174.17.5755-5757.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Lomovskaya O., Lewis K. Emr, an Escherichia coli locus for multidrug resistance. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):8938–8942. doi: 10.1073/pnas.89.19.8938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Lowe P. N., Rhodes S. Purification and characterization of [acyl-carrier-protein] acetyltransferase from Escherichia coli. Biochem J. 1988 Mar 15;250(3):789–796. doi: 10.1042/bj2500789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Lueking D. R., Goldfine H. The involvement of guanosine 5-diphosphate-3-diphosphate in the regulation of phospholipid biosynthesis in Escherichia coli. Lack of ppGpp inhibition of acyltransfer from acyl-ACP to sn-glycerol 3-phosphate. J Biol Chem. 1975 Jul 10;250(13):4911–4917. [PubMed] [Google Scholar]
  84. Magnuson K., Oh W., Larson T. J., Cronan J. E., Jr Cloning and nucleotide sequence of the fabD gene encoding malonyl coenzyme A-acyl carrier protein transacylase of Escherichia coli. FEBS Lett. 1992 Mar 16;299(3):262–266. doi: 10.1016/0014-5793(92)80128-4. [DOI] [PubMed] [Google Scholar]
  85. Marr A. G., Ingraham J. L. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI. J Bacteriol. 1962 Dec;84(6):1260–1267. doi: 10.1128/jb.84.6.1260-1267.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Merlie J. P., Pizer L. I. Regulation of phospholipid synthesis in Escherichia coli by guanosine tetraphosphate. J Bacteriol. 1973 Oct;116(1):355–366. doi: 10.1128/jb.116.1.355-366.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Miyakawa S., Suzuki K., Noto T., Harada Y., Okazaki H. Thiolactomycin, a new antibiotic. IV. Biological properties and chemotherapeutic activity in mice. J Antibiot (Tokyo) 1982 Apr;35(4):411–419. doi: 10.7164/antibiotics.35.411. [DOI] [PubMed] [Google Scholar]
  88. Mizuno T. Random cloning of bent DNA segments from Escherichia coli chromosome and primary characterization of their structures. Nucleic Acids Res. 1987 Sep 11;15(17):6827–6841. doi: 10.1093/nar/15.17.6827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Mohamed A. H., Chirala S. S., Mody N. H., Huang W. Y., Wakil S. J. Primary structure of the multifunctional alpha subunit protein of yeast fatty acid synthase derived from FAS2 gene sequence. J Biol Chem. 1988 Sep 5;263(25):12315–12325. [PubMed] [Google Scholar]
  90. Naggert J., Narasimhan M. L., DeVeaux L., Cho H., Randhawa Z. I., Cronan J. E., Jr, Green B. N., Smith S. Cloning, sequencing, and characterization of Escherichia coli thioesterase II. J Biol Chem. 1991 Jun 15;266(17):11044–11050. [PubMed] [Google Scholar]
  91. Naggert J., Witkowski A., Wessa B., Smith S. Expression in Escherichia coli, purification and characterization of two mammalian thioesterases involved in fatty acid synthesis. Biochem J. 1991 Feb 1;273(Pt 3):787–790. doi: 10.1042/bj2730787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Nap J. P., Bisseling T. Developmental biology of a plant-prokaryote symbiosis: the legume root nodule. Science. 1990 Nov 16;250(4983):948–954. doi: 10.1126/science.250.4983.948. [DOI] [PubMed] [Google Scholar]
  93. Narasimhan M. L., Lampi J. L., Cronan J. E., Jr Genetic and biochemical characterization of an Escherichia coli K-12 mutant deficient in acyl-coenzyme A thioesterase II. J Bacteriol. 1986 Mar;165(3):911–917. doi: 10.1128/jb.165.3.911-917.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Nikaido H., Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev. 1985 Mar;49(1):1–32. doi: 10.1128/mr.49.1.1-32.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Nishida I., Kawaguchi A., Yamada M. Effect of thiolactomycin on the individual enzymes of the fatty acid synthase system in Escherichia coli. J Biochem. 1986 May;99(5):1447–1454. doi: 10.1093/oxfordjournals.jbchem.a135614. [DOI] [PubMed] [Google Scholar]
  96. Noto T., Miyakawa S., Oishi H., Endo H., Okazaki H. Thiolactomycin, a new antibiotic. III. In vitro antibacterial activity. J Antibiot (Tokyo) 1982 Apr;35(4):401–410. doi: 10.7164/antibiotics.35.401. [DOI] [PubMed] [Google Scholar]
  97. Nunn W. D., Cronan J. E., Jr Evidence for a direct effect on fatty acid synthesis in rela gene control of membrane phospholipid synthesis. J Mol Biol. 1976 Mar 25;102(1):167–172. doi: 10.1016/0022-2836(76)90080-2. [DOI] [PubMed] [Google Scholar]
  98. Nunn W. D., Cronan J. E., Jr Regulation of membrane phospholipid synthesis by the relA gene: dependence on ppGpp levels. Biochemistry. 1976 Jun 15;15(12):2546–2550. doi: 10.1021/bi00657a009. [DOI] [PubMed] [Google Scholar]
  99. Nunn W. D., Giffin K., Clark D., Cronan J. E., Jr Role for fadR in unsaturated fatty acid biosynthesis in Escherichia coli. J Bacteriol. 1983 May;154(2):554–560. doi: 10.1128/jb.154.2.554-560.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Oishi H., Noto T., Sasaki H., Suzuki K., Hayashi T., Okazaki H., Ando K., Sawada M. Thiolactomycin, a new antibiotic. I. Taxonomy of the producing organism, fermentation and biological properties. J Antibiot (Tokyo) 1982 Apr;35(4):391–395. doi: 10.7164/antibiotics.35.391. [DOI] [PubMed] [Google Scholar]
  101. Omura S. The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis. Bacteriol Rev. 1976 Sep;40(3):681–697. doi: 10.1128/br.40.3.681-697.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Overath P., Pauli G., Schairer H. U. Fatty acid degradation in Escherichia coli. An inducible acyl-CoA synthetase, the mapping of old-mutations, and the isolation of regulatory mutants. Eur J Biochem. 1969 Feb;7(4):559–574. [PubMed] [Google Scholar]
  103. Polacco M. L., Cronan J. E., Jr A mutant of Escherichia coli conditionally defective in the synthesis of holo-[acyl carrier protein]. J Biol Chem. 1981 Jun 10;256(11):5750–5754. [PubMed] [Google Scholar]
  104. Polakis S. E., Guchhait R. B., Lane M. D. Stringent control of fatty acid synthesis in Escherichia coli. Possible regulation of acetyl coenzyme A carboxylase by ppGpp. J Biol Chem. 1973 Nov 25;248(22):7957–7966. [PubMed] [Google Scholar]
  105. Polakis S. E., Guchhait R. B., Zwergel E. E., Lane M. D., Cooper T. G. Acetyl coenzyme A carboxylase system of Escherichia coli. Studies on the mechanisms of the biotin carboxylase- and carboxyltransferase-catalyzed reactions. J Biol Chem. 1974 Oct 25;249(20):6657–6667. [PubMed] [Google Scholar]
  106. Raetz C. R. Biochemistry of endotoxins. Annu Rev Biochem. 1990;59:129–170. doi: 10.1146/annurev.bi.59.070190.001021. [DOI] [PubMed] [Google Scholar]
  107. Raibaud O., Schwartz M. Positive control of transcription initiation in bacteria. Annu Rev Genet. 1984;18:173–206. doi: 10.1146/annurev.ge.18.120184.001133. [DOI] [PubMed] [Google Scholar]
  108. Rawlings M., Cronan J. E., Jr The gene encoding Escherichia coli acyl carrier protein lies within a cluster of fatty acid biosynthetic genes. J Biol Chem. 1992 Mar 25;267(9):5751–5754. [PubMed] [Google Scholar]
  109. Rock C. O., Cronan J. E., Jr Re-evaluation of the solution structure of acyl carrier protein. J Biol Chem. 1979 Oct 10;254(19):9778–9785. [PubMed] [Google Scholar]
  110. Rock C. O., Jackowski S. Regulation of phospholipid synthesis in Escherichia coli. Composition of the acyl-acyl carrier protein pool in vivo. J Biol Chem. 1982 Sep 25;257(18):10759–10765. [PubMed] [Google Scholar]
  111. Rock C. O. Turnover of fatty acids in the 1-position of phosphatidylethanolamine in Escherichia coli. J Biol Chem. 1984 May 25;259(10):6188–6194. [PubMed] [Google Scholar]
  112. Rosenfeld I. S., D'Agnolo G., Vagelos P. R. Synthesis of unsaturated fatty acids and the lesion in fab B mutants. J Biol Chem. 1973 Apr 10;248(7):2452–2460. [PubMed] [Google Scholar]
  113. Samols D., Thornton C. G., Murtif V. L., Kumar G. K., Haase F. C., Wood H. G. Evolutionary conservation among biotin enzymes. J Biol Chem. 1988 May 15;263(14):6461–6464. [PubMed] [Google Scholar]
  114. Sasaki H., Oishi H., Hayashi T., Matsuura I., Ando K., Sawada M. Thiolactomycin, a new antibiotic. II. Structure elucidation. J Antibiot (Tokyo) 1982 Apr;35(4):396–400. doi: 10.7164/antibiotics.35.396. [DOI] [PubMed] [Google Scholar]
  115. Schweizer M., Takabayashi K., Laux T., Beck K. F., Schreglmann R. Rat mammary gland fatty acid synthase: localization of the constituent domains and two functional polyadenylation/termination signals in the cDNA. Nucleic Acids Res. 1989 Jan 25;17(2):567–586. doi: 10.1093/nar/17.2.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Sherman D. H., Malpartida F., Bibb M. J., Kieser H. M., Bibb M. J., Hopwood D. A. Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber Tü22. EMBO J. 1989 Sep;8(9):2717–2725. doi: 10.1002/j.1460-2075.1989.tb08413.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Silbert D. F., Vagelos P. R. Fatty acid mutant of E. coli lacking a beta-hydroxydecanoyl thioester dehydrase. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1579–1586. doi: 10.1073/pnas.58.4.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Simons R. W., Egan P. A., Chute H. T., Nunn W. D. Regulation of fatty acid degradation in Escherichia coli: isolation and characterization of strains bearing insertion and temperature-sensitive mutations in gene fadR. J Bacteriol. 1980 May;142(2):621–632. doi: 10.1128/jb.142.2.621-632.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Simons R. W., Hughes K. T., Nunn W. D. Regulation of fatty acid degradation in Escherichia coli: dominance studies with strains merodiploid in gene fadR. J Bacteriol. 1980 Aug;143(2):726–730. doi: 10.1128/jb.143.2.726-730.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Sinensky M. Temperature control of phospholipid biosynthesis in Escherichia coli. J Bacteriol. 1971 May;106(2):449–455. doi: 10.1128/jb.106.2.449-455.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Song W. J., Jackowski S. Cloning, sequencing, and expression of the pantothenate kinase (coaA) gene of Escherichia coli. J Bacteriol. 1992 Oct;174(20):6411–6417. doi: 10.1128/jb.174.20.6411-6417.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Song W. J., Jackowski S. coaA and rts are allelic and located at kilobase 3532 on the Escherichia coli physical map. J Bacteriol. 1992 Mar;174(5):1705–1706. doi: 10.1128/jb.174.5.1705-1706.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Soulié J. M., Sheplock G. J., Tian W. X., Hsu R. Y. Transient kinetic studies of fatty acid synthetase. A kinetic self-editing mechanism for the loading of acetyl and malonyl residues and the role of coenzyme A. J Biol Chem. 1984 Jan 10;259(1):134–140. [PubMed] [Google Scholar]
  124. Spaink H. P., Sheeley D. M., van Brussel A. A., Glushka J., York W. S., Tak T., Geiger O., Kennedy E. P., Reinhold V. N., Lugtenberg B. J. A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature. 1991 Nov 14;354(6349):125–130. doi: 10.1038/354125a0. [DOI] [PubMed] [Google Scholar]
  125. Spencer A. K., Greenspan A. D., Cronan J. E., Jr Thioesterases I and II of Escherichia coli. Hydrolysis of native acyl-acyl carrier protein thioesters. J Biol Chem. 1978 Sep 10;253(17):5922–5926. [PubMed] [Google Scholar]
  126. Spencer A., Muller E., Cronan J. E., Jr, Gross T. A. relA gene control of the synthesis of lipid A fatty acyl moieties. J Bacteriol. 1977 Apr;130(1):114–117. doi: 10.1128/jb.130.1.114-117.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Stern A., Sedgwick B., Smith S. The free coenzyme A requirement of animal fatty acid synthetase. Participation in the continuous exchange of acetyl and malonyl moieties between coenzyme a thioester and enzyme. J Biol Chem. 1982 Jan 25;257(2):799–803. [PubMed] [Google Scholar]
  128. Sutton M. R., Fall R. R., Nervi A. M., Alberts A. W., Vagelos P. R., Bradshaw R. A. Amino acid sequence of Escherichia coli biotin carboxyl carrier protein (9100). J Biol Chem. 1977 Jun 10;252(11):3934–3940. [PubMed] [Google Scholar]
  129. Taylor F. R., Cronan J. E., Jr Cyclopropane fatty acid synthase of Escherichia coli. Stabilization, purification, and interaction with phospholipid vesicles. Biochemistry. 1979 Jul 24;18(15):3292–3300. doi: 10.1021/bi00582a015. [DOI] [PubMed] [Google Scholar]
  130. Therisod H., Weissborn A. C., Kennedy E. P. An essential function for acyl carrier protein in the biosynthesis of membrane-derived oligosaccharides of Escherichia coli. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7236–7240. doi: 10.1073/pnas.83.19.7236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Thliveris A. T., Little J. W., Mount D. W. Repression of the E coli recA gene requires at least two LexA protein monomers. Biochimie. 1991 Apr;73(4):449–456. doi: 10.1016/0300-9084(91)90112-e. [DOI] [PubMed] [Google Scholar]
  132. Tsay J. T., Oh W., Larson T. J., Jackowski S., Rock C. O. Isolation and characterization of the beta-ketoacyl-acyl carrier protein synthase III gene (fabH) from Escherichia coli K-12. J Biol Chem. 1992 Apr 5;267(10):6807–6814. [PubMed] [Google Scholar]
  133. Tsay J. T., Rock C. O., Jackowski S. Overproduction of beta-ketoacyl-acyl carrier protein synthase I imparts thiolactomycin resistance to Escherichia coli K-12. J Bacteriol. 1992 Jan;174(2):508–513. doi: 10.1128/jb.174.2.508-513.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Ulrich A. K., de Mendoza D., Garwin J. L., Cronan J. E., Jr Genetic and biochemical analyses of Escherichia coli mutants altered in the temperature-dependent regulation of membrane lipid composition. J Bacteriol. 1983 Apr;154(1):221–230. doi: 10.1128/jb.154.1.221-230.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Vagelos P. R., Larrabes A. R. Acyl carrier protein. IX. Acyl carrier protein hydrolase. J Biol Chem. 1967 Apr 25;242(8):1776–1781. [PubMed] [Google Scholar]
  136. Vallari D. S., Jackowski S. Biosynthesis and degradation both contribute to the regulation of coenzyme A content in Escherichia coli. J Bacteriol. 1988 Sep;170(9):3961–3966. doi: 10.1128/jb.170.9.3961-3966.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Vallari D. S., Jackowski S., Rock C. O. Regulation of pantothenate kinase by coenzyme A and its thioesters. J Biol Chem. 1987 Feb 25;262(6):2468–2471. [PubMed] [Google Scholar]
  138. Vallari D. S., Rock C. O. Isolation and characterization of Escherichia coli pantothenate permease (panF) mutants. J Bacteriol. 1985 Oct;164(1):136–142. doi: 10.1128/jb.164.1.136-142.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Vallari D. S., Rock C. O. Isolation and characterization of temperature-sensitive pantothenate kinase (coaA) mutants of Escherichia coli. J Bacteriol. 1987 Dec;169(12):5795–5800. doi: 10.1128/jb.169.12.5795-5800.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Vallari D. S., Rock C. O. Pantothenate transport in Escherichia coli. J Bacteriol. 1985 Jun;162(3):1156–1161. doi: 10.1128/jb.162.3.1156-1161.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Vanaman T. C., Wakil S. J., Hill R. L. The complete amino acid sequence of the acyl carrier protein of Escherichia coli. J Biol Chem. 1968 Dec 25;243(24):6420–6431. [PubMed] [Google Scholar]
  142. Vance D., Goldberg I., Mitsuhashi O., Bloch K. Inhibition of fatty acid synthetases by the antibiotic cerulenin. Biochem Biophys Res Commun. 1972 Aug 7;48(3):649–656. doi: 10.1016/0006-291x(72)90397-x. [DOI] [PubMed] [Google Scholar]
  143. Voelker T. A., Worrell A. C., Anderson L., Bleibaum J., Fan C., Hawkins D. J., Radke S. E., Davies H. M. Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science. 1992 Jul 3;257(5066):72–74. doi: 10.1126/science.1621095. [DOI] [PubMed] [Google Scholar]
  144. Williamson I. P., Wakil S. J. Studies on the mechanism of fatty acid synthesis. XVII. Preparation and general properties of acetyl coenzyme A and malonyl coenzyme A-acyl carrier protein transacylases. J Biol Chem. 1966 May 25;241(10):2326–2332. [PubMed] [Google Scholar]
  145. Yang S. Y., Bittman R., Schulz H. Channeling of a beta-oxidation intermediate on the large subunit of the fatty acid oxidation complex from Escherichia coli. J Biol Chem. 1985 Mar 10;260(5):2862–2868. [PubMed] [Google Scholar]
  146. Yura T., Mori H., Nagai H., Nagata T., Ishihama A., Fujita N., Isono K., Mizobuchi K., Nakata A. Systematic sequencing of the Escherichia coli genome: analysis of the 0-2.4 min region. Nucleic Acids Res. 1992 Jul 11;20(13):3305–3308. doi: 10.1093/nar/20.13.3305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. de Mendoza D., Garwin J. L., Cronan J. E., Jr Overproduction of cis-vaccenic acid and altered temperature control of fatty acid synthesis in a mutant of Escherichia coli. J Bacteriol. 1982 Sep;151(3):1608–1611. doi: 10.1128/jb.151.3.1608-1611.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. de Mendoza D., Klages Ulrich A., Cronan J. E., Jr Thermal regulation of membrane fluidity in Escherichia coli. Effects of overproduction of beta-ketoacyl-acyl carrier protein synthase I. J Biol Chem. 1983 Feb 25;258(4):2098–2101. [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES