Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1993 Dec;57(4):823–837. doi: 10.1128/mr.57.4.823-837.1993

Bacterial extracellular zinc-containing metalloproteases.

C C Häse 1, R A Finkelstein 1
PMCID: PMC372940  PMID: 8302217

Abstract

Extracellular zinc-containing metalloproteases are widely distributed in the bacterial world. The most extensively studied are those which are associated with pathogenic bacteria or bacteria which have industrial significance. They are found practically wherever they are sought in both gram-negative and gram-positive microorganisms, be they aerobic or anaerobic. This ubiquity in itself implies that these enzymes serve important functions for the organisms which produce them. Because of the importance of zinc to enzymatic activity, it is not surprising that there is a pervasive amino acid sequence homology in the primary structure of this family of enzymes regardless of their source. The evidence suggests that both convergent and divergent evolutionary forces are at work. Within the large family of bacterial zinc-containing metalloendopeptidases, smaller family units are observed, such as thermolysin-like, elastase-like, and Serratia protease-like metalloproteases from various bacterial species. While this review was in the process of construction, a new function for zinc-containing metalloproteases was discovered: the neurotoxins of Clostridium tetani and Clostridium botulinum type B have been shown to be zinc metalloproteases with specificity for synaptobrevin, an integral membrane protein of small synaptic vesicles which is involved in neurotransmission. Additional understanding of the mode of action of proteases which contribute to pathogenicity could lead to the development of inhibitors, such as chelators, surrogate substrates, or antibodies, which could prevent or interrupt the disease process. Further studies of this broad family of metalloproteases will provide important additional insights into the pathogenesis and structure-function relationships of enzymes and will lead to the development of products, including "designer proteins," which might be industrially and/or therapeutically useful.

Full text

PDF
823

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abakov A. S., Bolotin A. P., Sorokin A. V. Struktura gena metalloproteazy Bacillus brevis. Mol Biol (Mosk) 1990 Sep-Oct;24(5):1363–1372. [PubMed] [Google Scholar]
  2. Abdullah K. M., Lo R. Y., Mellors A. Cloning, nucleotide sequence, and expression of the Pasteurella haemolytica A1 glycoprotease gene. J Bacteriol. 1991 Sep;173(18):5597–5603. doi: 10.1128/jb.173.18.5597-5603.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Abdullah K. M., Udoh E. A., Shewen P. E., Mellors A. A neutral glycoprotease of Pasteurella haemolytica A1 specifically cleaves O-sialoglycoproteins. Infect Immun. 1992 Jan;60(1):56–62. doi: 10.1128/iai.60.1.56-62.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ahl T., Reinholdt J. Detection of immunoglobulin A1 protease-induced Fab alpha fragments on dental plaque bacteria. Infect Immun. 1991 Feb;59(2):563–569. doi: 10.1128/iai.59.2.563-569.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Akaike T., Molla A., Ando M., Araki S., Maeda H. Molecular mechanism of complex infection by bacteria and virus analyzed by a model using serratial protease and influenza virus in mice. J Virol. 1989 May;63(5):2252–2259. doi: 10.1128/jvi.63.5.2252-2259.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Alichanidis E. Partial purification and characterization of an extracellular proteinase from Aeromonas hydrophila strain A4. J Dairy Res. 1988 Feb;55(1):97–107. doi: 10.1017/s0022029900025899. [DOI] [PubMed] [Google Scholar]
  7. Angleton E. L., Van Wart H. E. Preparation and reconstitution with divalent metal ions of class I and class II Clostridium histolyticum apocollagenases. Biochemistry. 1988 Sep 20;27(19):7406–7412. doi: 10.1021/bi00419a035. [DOI] [PubMed] [Google Scholar]
  8. Angleton E. L., Van Wart H. E. Preparation by direct metal exchange and kinetic study of active site metal substituted class I and class II Clostridium histolyticum collagenases. Biochemistry. 1988 Sep 20;27(19):7413–7418. doi: 10.1021/bi00419a036. [DOI] [PubMed] [Google Scholar]
  9. Arvidson S. Studies on extracellular proteolytic enzymes from Staphylococcus aureus. II. Isolation and characterization of an EDTA-sensitive protease. Biochim Biophys Acta. 1973 Mar 15;302(1):149–157. doi: 10.1016/0005-2744(73)90017-x. [DOI] [PubMed] [Google Scholar]
  10. Arvidson S. The role of calcium for stability and activity of an extracellular proteolytic enzyme from Staphylococcus aureus. Acta Pathol Microbiol Scand B Microbiol Immunol. 1973 Oct;81(5):545–551. doi: 10.1111/j.1699-0463.1973.tb02240.x. [DOI] [PubMed] [Google Scholar]
  11. Atsumi Y., Yamamoto S., Morihara K., Fukushima J., Takeuchi H., Mizuki N., Kawamoto S., Okuda K. Cloning and expression of the alkaline proteinase gene from Pseudomonas aeruginosa IFO 3455. J Bacteriol. 1989 Sep;171(9):5173–5175. doi: 10.1128/jb.171.9.5173-5175.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. BLEIWEIS A. S., ZIMMERMAN L. N. PROPERTIES OF PROTEINASE FROM STREPTOCOCCUS FAECALIS VAR. LIQUEFACIENS. J Bacteriol. 1964 Sep;88:653–659. doi: 10.1128/jb.88.3.653-659.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bever R. A., Iglewski B. H. Molecular characterization and nucleotide sequence of the Pseudomonas aeruginosa elastase structural gene. J Bacteriol. 1988 Sep;170(9):4309–4314. doi: 10.1128/jb.170.9.4309-4314.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Black W. J., Quinn F. D., Tompkins L. S. Legionella pneumophila zinc metalloprotease is structurally and functionally homologous to Pseudomonas aeruginosa elastase. J Bacteriol. 1990 May;172(5):2608–2613. doi: 10.1128/jb.172.5.2608-2613.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Blander S. J., Horwitz M. A. Vaccination with the major secretory protein of Legionella pneumophila induces cell-mediated and protective immunity in a guinea pig model of Legionnaires' disease. J Exp Med. 1989 Mar 1;169(3):691–705. doi: 10.1084/jem.169.3.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Blander S. J., Szeto L., Shuman H. A., Horwitz M. A. An immunoprotective molecule, the major secretory protein of Legionella pneumophila, is not a virulence factor in a guinea pig model of Legionnaires' disease. J Clin Invest. 1990 Sep;86(3):817–824. doi: 10.1172/JCI114779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Boat T. F., Cheng P. I., Klinger J. D., Liedtke C. M., Tandler B. Proteinases release mucin from airways goblet cells. Ciba Found Symp. 1984;109:72–88. doi: 10.1002/9780470720905.ch6. [DOI] [PubMed] [Google Scholar]
  18. Bond M. D., Van Wart H. E. Characterization of the individual collagenases from Clostridium histolyticum. Biochemistry. 1984 Jun 19;23(13):3085–3091. doi: 10.1021/bi00308a036. [DOI] [PubMed] [Google Scholar]
  19. Bond M. D., Van Wart H. E. Relationship between the individual collagenases of Clostridium histolyticum: evidence for evolution by gene duplication. Biochemistry. 1984 Jun 19;23(13):3092–3099. doi: 10.1021/bi00308a037. [DOI] [PubMed] [Google Scholar]
  20. Booth B. A., Boesman-Finkelstein M., Finkelstein R. A. Vibrio cholerae hemagglutinin/protease nicks cholera enterotoxin. Infect Immun. 1984 Sep;45(3):558–560. doi: 10.1128/iai.45.3.558-560.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Booth B. A., Boesman-Finkelstein M., Finkelstein R. A. Vibrio cholerae soluble hemagglutinin/protease is a metalloenzyme. Infect Immun. 1983 Nov;42(2):639–644. doi: 10.1128/iai.42.2.639-644.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Booth B. A., Finkelstein R. A. Presence of hemagglutinin/protease and other potential virulence factors in O1 and non-O1 Vibrio cholerae. J Infect Dis. 1986 Jul;154(1):183–186. doi: 10.1093/infdis/154.1.183. [DOI] [PubMed] [Google Scholar]
  23. Braunagel S. C., Benedik M. J. The metalloprotease gene of Serratia marcescens strain SM6. Mol Gen Genet. 1990 Jul;222(2-3):446–451. doi: 10.1007/BF00633854. [DOI] [PubMed] [Google Scholar]
  24. Brumlik M. J., Storey D. G. Zinc and iron regulate translation of the gene encoding Pseudomonas aeruginosa elastase. Mol Microbiol. 1992 Feb;6(3):337–344. doi: 10.1111/j.1365-2958.1992.tb01476.x. [DOI] [PubMed] [Google Scholar]
  25. Burstein Y., Walsh K. A., Neurath H. Evidence of an essential histidine residue in thermolysin. Biochemistry. 1974 Jan 1;13(1):205–210. doi: 10.1021/bi00698a030. [DOI] [PubMed] [Google Scholar]
  26. Butler M. J., Davey C. C., Krygsman P., Walczyk E., Malek L. T. Cloning of genetic loci involved in endoprotease activity in Streptomyces lividans 66: a novel neutral protease gene with an adjacent divergent putative regulatory gene. Can J Microbiol. 1992 Sep;38(9):912–920. doi: 10.1139/m92-148. [DOI] [PubMed] [Google Scholar]
  27. Casas I. A., Zimmerman L. N. Dependence of protease secretion by Streptococcus faecalis var. liquefaciens on arginine and its possible relation to site of synthesis. J Bacteriol. 1969 Jan;97(1):307–312. doi: 10.1128/jb.97.1.307-312.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Chakraborty T., Leimeister-Wächter M., Domann E., Hartl M., Goebel W., Nichterlein T., Notermans S. Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J Bacteriol. 1992 Jan;174(2):568–574. doi: 10.1128/jb.174.2.568-574.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Chaloupka J., Kucerová H. Netropsin increases formation of mRNA coding for a neutral metalloproteinase in Bacillus megaterium. J Basic Microbiol. 1988;28(1-2):11–16. doi: 10.1002/jobm.3620280103. [DOI] [PubMed] [Google Scholar]
  30. Chang P. C., Kuo T. C., Tsugita A., Lee Y. H. Extracellular metalloprotease gene of Streptomyces cacaoi: structure, nucleotide sequence and characterization of the cloned gene product. Gene. 1990 Mar 30;88(1):87–95. doi: 10.1016/0378-1119(90)90063-w. [DOI] [PubMed] [Google Scholar]
  31. Chang P. C., Lee Y. H. Extracellular autoprocessing of a metalloprotease from Streptomyces cacaoi. J Biol Chem. 1992 Feb 25;267(6):3952–3958. [PubMed] [Google Scholar]
  32. Chen C. C., Cleary P. P. Complete nucleotide sequence of the streptococcal C5a peptidase gene of Streptococcus pyogenes. J Biol Chem. 1990 Feb 25;265(6):3161–3167. [PubMed] [Google Scholar]
  33. Chowdhury M. A., Miyoshi S., Shinoda S. Purification and characterization of a protease produced by Vibrio mimicus. Infect Immun. 1990 Dec;58(12):4159–4162. doi: 10.1128/iai.58.12.4159-4162.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Chowdhury M. A., Miyoshi S., Shinoda S. Role of Vibrio mimicus protease in enterotoxigenicity. J Diarrhoeal Dis Res. 1991 Dec;9(4):332–334. [PubMed] [Google Scholar]
  35. Chowdhury M. A., Miyoshi S., Shinoda S. Vascular permeability enhancement by Vibrio mimicus protease and the mechanisms of action. Microbiol Immunol. 1991;35(12):1049–1058. doi: 10.1111/j.1348-0421.1991.tb01627.x. [DOI] [PubMed] [Google Scholar]
  36. Colman P. M., Jansonius J. N., Matthews B. W. The structure of thermolysin: an electron density map at 2-3 A resolution. J Mol Biol. 1972 Oct 14;70(3):701–724. doi: 10.1016/0022-2836(72)90569-4. [DOI] [PubMed] [Google Scholar]
  37. Coolbear T., Whittaker J. M., Daniel R. M. The effect of metal ions on the activity and thermostability of the extracellular proteinase from a thermophilic Bacillus, strain EA.1. Biochem J. 1992 Oct 15;287(Pt 2):367–374. doi: 10.1042/bj2870367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Croux C., Paquet V., Goma G., Soucaille P. Purification and characterization of acidolysin, an acidic metalloprotease produced by Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol. 1990 Dec;56(12):3634–3642. doi: 10.1128/aem.56.12.3634-3642.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Crowther R. S., Roomi N. W., Fahim R. E., Forstner J. F. Vibrio cholerae metalloproteinase degrades intestinal mucin and facilitates enterotoxin-induced secretion from rat intestine. Biochim Biophys Acta. 1987 Jun 22;924(3):393–402. doi: 10.1016/0304-4165(87)90153-x. [DOI] [PubMed] [Google Scholar]
  40. Dahler G. S., Barras F., Keen N. T. Cloning of genes encoding extracellular metalloproteases from Erwinia chrysanthemi EC16. J Bacteriol. 1990 Oct;172(10):5803–5815. doi: 10.1128/jb.172.10.5803-5815.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Dalhammar G., Steiner H. Characterization of inhibitor A, a protease from Bacillus thuringiensis which degrades attacins and cecropins, two classes of antibacterial proteins in insects. Eur J Biochem. 1984 Mar 1;139(2):247–252. doi: 10.1111/j.1432-1033.1984.tb08000.x. [DOI] [PubMed] [Google Scholar]
  42. Dammann T., Wohlleben W. A metalloprotease gene from Streptomyces coelicolor 'Müller' and its transcriptional activator, a member of the LysR family. Mol Microbiol. 1992 Aug;6(16):2267–2278. doi: 10.1111/j.1365-2958.1992.tb01402.x. [DOI] [PubMed] [Google Scholar]
  43. DasGupta B. R., Tepp W. Protease activity of botulinum neurotoxin type E and its light chain: cleavage of actin. Biochem Biophys Res Commun. 1993 Jan 29;190(2):470–474. doi: 10.1006/bbrc.1993.1071. [DOI] [PubMed] [Google Scholar]
  44. David V. A., Deutch A. H., Sloma A., Pawlyk D., Ally A., Durham D. R. Cloning, sequencing and expression of the gene encoding the extracellular neutral protease, vibriolysin, of Vibrio proteolyticus. Gene. 1992 Mar 1;112(1):107–112. doi: 10.1016/0378-1119(92)90310-l. [DOI] [PubMed] [Google Scholar]
  45. Daza A., Gil J. A., Vigal T., Martin J. F. Cloning and characterization of a gene of Streptomyces griseus that increases production of extracellular enzymes in several species of Streptomyces. Mol Gen Genet. 1990 Jul;222(2-3):384–392. doi: 10.1007/BF00633844. [DOI] [PubMed] [Google Scholar]
  46. Delepelaire P., Wandersman C. Characterization, localization and transmembrane organization of the three proteins PrtD, PrtE and PrtF necessary for protease secretion by the gram-negative bacterium Erwinia chrysanthemi. Mol Microbiol. 1991 Oct;5(10):2427–2434. doi: 10.1111/j.1365-2958.1991.tb02088.x. [DOI] [PubMed] [Google Scholar]
  47. Delepelaire P., Wandersman C. Protease secretion by Erwinia chrysanthemi. Proteases B and C are synthesized and secreted as zymogens without a signal peptide. J Biol Chem. 1989 May 25;264(15):9083–9089. [PubMed] [Google Scholar]
  48. Delepelaire P., Wandersman C. Protein secretion in gram-negative bacteria. The extracellular metalloprotease B from Erwinia chrysanthemi contains a C-terminal secretion signal analogous to that of Escherichia coli alpha-hemolysin. J Biol Chem. 1990 Oct 5;265(28):17118–17125. [PubMed] [Google Scholar]
  49. Domann E., Leimeister-Wächter M., Goebel W., Chakraborty T. Molecular cloning, sequencing, and identification of a metalloprotease gene from Listeria monocytogenes that is species specific and physically linked to the listeriolysin gene. Infect Immun. 1991 Jan;59(1):65–72. doi: 10.1128/iai.59.1.65-72.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Dow J. M., Clarke B. R., Milligan D. E., Tang J. L., Daniels M. J. Extracellular proteases from Xanthomonas campestris pv. campestris, the black rot pathogen. Appl Environ Microbiol. 1990 Oct;56(10):2994–2998. doi: 10.1128/aem.56.10.2994-2998.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Dowling J. N., Saha A. K., Glew R. H. Virulence factors of the family Legionellaceae. Microbiol Rev. 1992 Mar;56(1):32–60. doi: 10.1128/mr.56.1.32-60.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Drapeau G. R. Role of metalloprotease in activation of the precursor of staphylococcal protease. J Bacteriol. 1978 Nov;136(2):607–613. doi: 10.1128/jb.136.2.607-613.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Drapeau G. R. Substrate specificity of a proteolytic enzyme isolated from a mutant of Pseudomonas fragi. J Biol Chem. 1980 Feb 10;255(3):839–840. [PubMed] [Google Scholar]
  54. Duong F., Lazdunski A., Cami B., Murgier M. Sequence of a cluster of genes controlling synthesis and secretion of alkaline protease in Pseudomonas aeruginosa: relationships to other secretory pathways. Gene. 1992 Nov 2;121(1):47–54. doi: 10.1016/0378-1119(92)90160-q. [DOI] [PubMed] [Google Scholar]
  55. Durham D. R. The unique stability of Vibrio proteolyticus neutral protease under alkaline conditions affords a selective step for purification and use in amino acid-coupling reactions. Appl Environ Microbiol. 1990 Aug;56(8):2277–2281. doi: 10.1128/aem.56.8.2277-2281.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Eijsink V. G., Vriend G., Van Den Burg B., Venema G., Stulp B. K. Contribution of the C-terminal amino acid to the stability of Bacillus subtilis neutral protease. Protein Eng. 1990 Oct;4(1):99–104. doi: 10.1093/protein/4.1.99. [DOI] [PubMed] [Google Scholar]
  57. Eijsink V. G., van der Zee J. R., van den Burg B., Vriend G., Venema G. Improving the thermostability of the neutral protease of Bacillus stearothermophilus by replacing a buried asparagine by leucine. FEBS Lett. 1991 Apr 22;282(1):13–16. doi: 10.1016/0014-5793(91)80434-5. [DOI] [PubMed] [Google Scholar]
  58. Eisel U., Jarausch W., Goretzki K., Henschen A., Engels J., Weller U., Hudel M., Habermann E., Niemann H. Tetanus toxin: primary structure, expression in E. coli, and homology with botulinum toxins. EMBO J. 1986 Oct;5(10):2495–2502. doi: 10.1002/j.1460-2075.1986.tb04527.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Farrell D. H., Crosa J. H. Purification and characterization of a secreted protease from the pathogenic marine bacterium Vibrio anguillarum. Biochemistry. 1991 Apr 9;30(14):3432–3436. doi: 10.1021/bi00228a012. [DOI] [PubMed] [Google Scholar]
  60. Fath M. J., Skvirsky R. C., Kolter R. Functional complementation between bacterial MDR-like export systems: colicin V, alpha-hemolysin, and Erwinia protease. J Bacteriol. 1991 Dec;173(23):7549–7556. doi: 10.1128/jb.173.23.7549-7556.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Finkelstein R. A., Boesman-Finkelstein M., Chang Y., Häse C. C. Vibrio cholerae hemagglutinin/protease, colonial variation, virulence, and detachment. Infect Immun. 1992 Feb;60(2):472–478. doi: 10.1128/iai.60.2.472-478.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Finkelstein R. A., Boesman-Finkelstein M., Holt P. Vibrio cholerae hemagglutinin/lectin/protease hydrolyzes fibronectin and ovomucin: F.M. Burnet revisited. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1092–1095. doi: 10.1073/pnas.80.4.1092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Finkelstein R. A., Hanne L. F. Purification and characterization of the soluble hemagglutinin (cholera lectin)( produced by Vibrio cholerae. Infect Immun. 1982 Jun;36(3):1199–1208. doi: 10.1128/iai.36.3.1199-1208.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Fontana A. Structure and stability of thermophilic enzymes. Studies on thermolysin. Biophys Chem. 1988 Feb;29(1-2):181–193. doi: 10.1016/0301-4622(88)87038-8. [DOI] [PubMed] [Google Scholar]
  65. Frandsen E. V., Reinholdt J., Kilian M. Enzymatic and antigenic characterization of immunoglobulin A1 proteases from Bacteroides and Capnocytophaga spp. Infect Immun. 1987 Mar;55(3):631–638. doi: 10.1128/iai.55.3.631-638.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Freitag N. E., Youngman P., Portnoy D. A. Transcriptional activation of the Listeria monocytogenes hemolysin gene in Bacillus subtilis. J Bacteriol. 1992 Feb;174(4):1293–1298. doi: 10.1128/jb.174.4.1293-1298.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Fukushima J., Takeuchi H., Tanaka E., Hamajima K., Sato Y., Kawamoto S., Morihara K., Keil B., Okuda K. Molecular cloning and partial DNA sequencing of the collagenase gene of Vibrio alginolyticus. Microbiol Immunol. 1990;34(12):977–984. doi: 10.1111/j.1348-0421.1990.tb01519.x. [DOI] [PubMed] [Google Scholar]
  68. Fukushima J., Yamamoto S., Morihara K., Atsumi Y., Takeuchi H., Kawamoto S., Okuda K. Structural gene and complete amino acid sequence of Pseudomonas aeruginosa IFO 3455 elastase. J Bacteriol. 1989 Mar;171(3):1698–1704. doi: 10.1128/jb.171.3.1698-1704.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Galloway D. R. Pseudomonas aeruginosa elastase and elastolysis revisited: recent developments. Mol Microbiol. 1991 Oct;5(10):2315–2321. doi: 10.1111/j.1365-2958.1991.tb02076.x. [DOI] [PubMed] [Google Scholar]
  70. Gambello M. J., Iglewski B. H. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol. 1991 May;173(9):3000–3009. doi: 10.1128/jb.173.9.3000-3009.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Gambello M. J., Kaye S., Iglewski B. H. LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect Immun. 1993 Apr;61(4):1180–1184. doi: 10.1128/iai.61.4.1180-1184.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Ghigo J. M., Wandersman C. Cloning, nucleotide sequence and characterization of the gene encoding the Erwinia chrysanthemi B374 PrtA metalloprotease: a third metalloprotease secreted via a C-terminal secretion signal. Mol Gen Genet. 1992 Dec;236(1):135–144. doi: 10.1007/BF00279652. [DOI] [PubMed] [Google Scholar]
  73. Gilbert J. V., Plaut A. G., Fishman Y., Wright A. Cloning of the gene encoding streptococcal immunoglobulin A protease and its expression in Escherichia coli. Infect Immun. 1988 Aug;56(8):1961–1966. doi: 10.1128/iai.56.8.1961-1966.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Gilbert J. V., Plaut A. G., Wright A. Analysis of the immunoglobulin A protease gene of Streptococcus sanguis. Infect Immun. 1991 Jan;59(1):7–17. doi: 10.1128/iai.59.1.7-17.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Gilleland H. E., Gilleland L. B., Fowler M. R. Vaccine efficacies of elastase, exotoxin A, and outer-membrane protein F in preventing chronic pulmonary infection by Pseudomonas aeruginosa in a rat model. J Med Microbiol. 1993 Feb;38(2):79–86. doi: 10.1099/00222615-38-2-79. [DOI] [PubMed] [Google Scholar]
  76. Griffin T. B., Prescott J. M. Some physical characteristics of a proteinase from Aeromonas proteolytica. J Biol Chem. 1970 Mar 25;245(6):1348–1356. [PubMed] [Google Scholar]
  77. Guddal P. H., Johansen T., Schulstad K., Little C. Apparent phosphate retrieval system in Bacillus cereus. J Bacteriol. 1989 Oct;171(10):5702–5706. doi: 10.1128/jb.171.10.5702-5706.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Guzzo J., Duong F., Wandersman C., Murgier M., Lazdunski A. The secretion genes of Pseudomonas aeruginosa alkaline protease are functionally related to those of Erwinia chrysanthemi proteases and Escherichia coli alpha-haemolysin. Mol Microbiol. 1991 Feb;5(2):447–453. doi: 10.1111/j.1365-2958.1991.tb02128.x. [DOI] [PubMed] [Google Scholar]
  79. Guzzo J., Murgier M., Filloux A., Lazdunski A. Cloning of the Pseudomonas aeruginosa alkaline protease gene and secretion of the protease into the medium by Escherichia coli. J Bacteriol. 1990 Feb;172(2):942–948. doi: 10.1128/jb.172.2.942-948.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Guzzo J., Pages J. M., Duong F., Lazdunski A., Murgier M. Pseudomonas aeruginosa alkaline protease: evidence for secretion genes and study of secretion mechanism. J Bacteriol. 1991 Sep;173(17):5290–5297. doi: 10.1128/jb.173.17.5290-5297.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Hanne L. F., Finkelstein R. A. Characterization and distribution of the hemagglutinins produced by Vibrio cholerae. Infect Immun. 1982 Apr;36(1):209–214. doi: 10.1128/iai.36.1.209-214.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Harada S., Kitadokoro K., Kinoshita T., Kai Y., Kasai N. Crystallization and main-chain structure of neutral protease from Streptomyces caespitosus. J Biochem. 1991 Jul;110(1):46–49. doi: 10.1093/oxfordjournals.jbchem.a123541. [DOI] [PubMed] [Google Scholar]
  83. He X. S., Brückner R., Doi R. H. The protease genes of Bacillus subtilis. Res Microbiol. 1991 Sep-Oct;142(7-8):797–803. doi: 10.1016/0923-2508(91)90058-i. [DOI] [PubMed] [Google Scholar]
  84. Heinrich P., Rosenstein R., Böhmer M., Sonner P., Götz F. The molecular organization of the lysostaphin gene and its sequences repeated in tandem. Mol Gen Genet. 1987 Oct;209(3):563–569. doi: 10.1007/BF00331163. [DOI] [PubMed] [Google Scholar]
  85. Higaki J. N., Fletterick R. J., Craik C. S. Engineered metalloregulation in enzymes. Trends Biochem Sci. 1992 Mar;17(3):100–104. doi: 10.1016/0968-0004(92)90245-5. [DOI] [PubMed] [Google Scholar]
  86. Hines D. A., Saurugger P. N., Ihler G. M., Benedik M. J. Genetic analysis of extracellular proteins of Serratia marcescens. J Bacteriol. 1988 Sep;170(9):4141–4146. doi: 10.1128/jb.170.9.4141-4146.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Holder I. A. Experimental studies of the pathogenesis of infections due to Pseudomonas aeruginosa: effect of treatment with protease inhibitors. Rev Infect Dis. 1983 Nov-Dec;5 (Suppl 5):S914–S921. doi: 10.1093/clinids/5.supplement_5.s914. [DOI] [PubMed] [Google Scholar]
  88. Holland D. R., Tronrud D. E., Pley H. W., Flaherty K. M., Stark W., Jansonius J. N., McKay D. B., Matthews B. W. Structural comparison suggests that thermolysin and related neutral proteases undergo hinge-bending motion during catalysis. Biochemistry. 1992 Nov 24;31(46):11310–11316. doi: 10.1021/bi00161a008. [DOI] [PubMed] [Google Scholar]
  89. Holmes M. A., Matthews B. W. Structure of thermolysin refined at 1.6 A resolution. J Mol Biol. 1982 Oct 5;160(4):623–639. doi: 10.1016/0022-2836(82)90319-9. [DOI] [PubMed] [Google Scholar]
  90. Holmquist B., Vallee B. L. Metal substitutions and inhibition of thermolysin: spectra of the cobalt enzyme. J Biol Chem. 1974 Jul 25;249(14):4601–4607. [PubMed] [Google Scholar]
  91. Honda T., Booth B. A., Boesman-Finkelstein M., Finkelstein R. A. Comparative study of Vibrio cholerae non-O1 protease and soluble hemagglutinin with those of Vibrio cholerae O1. Infect Immun. 1987 Feb;55(2):451–454. doi: 10.1128/iai.55.2.451-454.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Honda T., Hata-Naka A., Lertpocasombat K., Miwatani T. Production of monoclonal antibodies against a hemagglutinin/protease of Vibrio cholerae non-01. FEMS Microbiol Lett. 1991 Mar 1;62(2-3):227–230. doi: 10.1016/0378-1097(91)90162-4. [DOI] [PubMed] [Google Scholar]
  93. Honda T., Lertpocasombat K., Hata A., Miwatani T., Finkelstein R. A. Purification and characterization of a protease produced by Vibrio cholerae non-O1 and comparison with a protease of V. cholerae O1. Infect Immun. 1989 Sep;57(9):2799–2803. doi: 10.1128/iai.57.9.2799-2803.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Huttner W. B. Cell biology. Snappy exocytoxins. Nature. 1993 Sep 9;365(6442):104–105. doi: 10.1038/365104a0. [DOI] [PubMed] [Google Scholar]
  95. Häse C. C., Finkelstein R. A. Cloning and nucleotide sequence of the Vibrio cholerae hemagglutinin/protease (HA/protease) gene and construction of an HA/protease-negative strain. J Bacteriol. 1991 Jun;173(11):3311–3317. doi: 10.1128/jb.173.11.3311-3317.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Häse C. C., Finkelstein R. A. Comparison of the Vibrio cholerae hemagglutinin/protease and the Pseudomonas aeruginosa elastase. Infect Immun. 1990 Dec;58(12):4011–4015. doi: 10.1128/iai.58.12.4011-4015.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Imanaka T., Shibazaki M., Takagi M. A new way of enhancing the thermostability of proteases. Nature. 1986 Dec 18;324(6098):695–697. doi: 10.1038/324695a0. [DOI] [PubMed] [Google Scholar]
  98. Ingrosso D., Fowler A. V., Bleibaum J., Clarke S. Specificity of endoproteinase Asp-N (Pseudomonas fragi): cleavage at glutamyl residues in two proteins. Biochem Biophys Res Commun. 1989 Aug 15;162(3):1528–1534. doi: 10.1016/0006-291x(89)90848-6. [DOI] [PubMed] [Google Scholar]
  99. Janzon L., Arvidson S. The role of the delta-lysin gene (hld) in the regulation of virulence genes by the accessory gene regulator (agr) in Staphylococcus aureus. EMBO J. 1990 May;9(5):1391–1399. doi: 10.1002/j.1460-2075.1990.tb08254.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Jiang W., Bond J. S. Families of metalloendopeptidases and their relationships. FEBS Lett. 1992 Nov 9;312(2-3):110–114. doi: 10.1016/0014-5793(92)80916-5. [DOI] [PubMed] [Google Scholar]
  101. Jongeneel C. V., Bouvier J., Bairoch A. A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett. 1989 Jan 2;242(2):211–214. doi: 10.1016/0014-5793(89)80471-5. [DOI] [PubMed] [Google Scholar]
  102. Kajiwara K., Fujita A., Tsuyuki H., Kumazaki T., Ishii S. Interactions of Streptomyces serine-protease inhibitors with Streptomyces griseus metalloendopeptidase II. J Biochem. 1991 Sep;110(3):350–354. doi: 10.1093/oxfordjournals.jbchem.a123584. [DOI] [PubMed] [Google Scholar]
  103. Kamata R., Matsumoto K., Okamura R., Yamamoto T., Maeda H. The serratial 56K protease as a major pathogenic factor in serratial keratitis. Clinical and experimental study. Ophthalmology. 1985 Oct;92(10):1452–1459. doi: 10.1016/s0161-6420(85)33855-1. [DOI] [PubMed] [Google Scholar]
  104. Kamata R., Yamamoto T., Matsumoto K., Maeda H. A serratial protease causes vascular permeability reaction by activation of the Hageman factor-dependent pathway in guinea pigs. Infect Immun. 1985 Jun;48(3):747–753. doi: 10.1128/iai.48.3.747-753.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Karakiulakis G., Papadimitriu E., Missirlis E., Maragoudakis M. E. Effect of divalent metal ions on collagenase from Clostridium histolyticum. Biochem Int. 1991 Jun;24(3):397–404. [PubMed] [Google Scholar]
  106. Kato T., Takahashi N., Kuramitsu H. K. Sequence analysis and characterization of the Porphyromonas gingivalis prtC gene, which expresses a novel collagenase activity. J Bacteriol. 1992 Jun;174(12):3889–3895. doi: 10.1128/jb.174.12.3889-3895.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Katsuya Y., Sato M., Katsube Y., Matsuura Y., Tomoda K. Small-angle x-ray scattering study of metal ion-induced conformational changes in Serratia protease. J Biol Chem. 1992 Jun 25;267(18):12668–12672. [PubMed] [Google Scholar]
  108. Kawamoto S., Shibano Y., Fukushima J., Ishii N., Morihara K., Okuda K. Site-directed mutagenesis of Glu-141 and His-223 in Pseudomonas aeruginosa elastase: catalytic activity, processing, and protective activity of the elastase against Pseudomonas infection. Infect Immun. 1993 Apr;61(4):1400–1405. doi: 10.1128/iai.61.4.1400-1405.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Keil-Dlouha V. Chemical characterization and study of the autodigestion of pure collagenase from Achromobacter iophagus. Biochim Biophys Acta. 1976 Mar 11;429(1):239–251. doi: 10.1016/0005-2744(76)90047-4. [DOI] [PubMed] [Google Scholar]
  110. Kessler E., Safrin M. Partial purification and characterization of an inactive precursor of Pseudomonas aeruginosa elastase. J Bacteriol. 1988 Mar;170(3):1215–1219. doi: 10.1128/jb.170.3.1215-1219.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Kessler E., Safrin M., Peretz M., Burstein Y. Identification of cleavage sites involved in proteolytic processing of Pseudomonas aeruginosa preproelastase. FEBS Lett. 1992 Mar 16;299(3):291–293. doi: 10.1016/0014-5793(92)80134-3. [DOI] [PubMed] [Google Scholar]
  112. Kessler E., Safrin M. Synthesis, processing, and transport of Pseudomonas aeruginosa elastase. J Bacteriol. 1988 Nov;170(11):5241–5247. doi: 10.1128/jb.170.11.5241-5247.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Kobayashi R., Kanatani A., Yoshimoto T., Tsuru D. Chemical modification of neutral protease from Bacillus subtilis var. amylosacchariticus with tetranitromethane: assignment of tyrosyl residues nitrated. J Biochem. 1989 Dec;106(6):1110–1113. doi: 10.1093/oxfordjournals.jbchem.a122974. [DOI] [PubMed] [Google Scholar]
  114. Kothary M. H., Kreger A. S. Purification and characterization of an elastolytic protease of Vibrio vulnificus. J Gen Microbiol. 1987 Jul;133(7):1783–1791. doi: 10.1099/00221287-133-7-1783. [DOI] [PubMed] [Google Scholar]
  115. Kubo M., Imanaka T. Cloning and nucleotide sequence of the highly thermostable neutral protease gene from Bacillus stearothermophilus. J Gen Microbiol. 1988 Jul;134(7):1883–1892. doi: 10.1099/00221287-134-7-1883. [DOI] [PubMed] [Google Scholar]
  116. Kurazono H., Mochida S., Binz T., Eisel U., Quanz M., Grebenstein O., Wernars K., Poulain B., Tauc L., Niemann H. Minimal essential domains specifying toxicity of the light chains of tetanus toxin and botulinum neurotoxin type A. J Biol Chem. 1992 Jul 25;267(21):14721–14729. [PubMed] [Google Scholar]
  117. Kwon Y. T., Lee H. H., Rho H. M. Cloning, sequencing, and expression of a minor protease-encoding gene from Serratia marcescens ATCC21074. Gene. 1993 Mar 15;125(1):75–80. doi: 10.1016/0378-1119(93)90748-r. [DOI] [PubMed] [Google Scholar]
  118. Kyöstiö S. R., Cramer C. L., Lacy G. H. Erwinia carotovora subsp. carotovora extracellular protease: characterization and nucleotide sequence of the gene. J Bacteriol. 1991 Oct;173(20):6537–6546. doi: 10.1128/jb.173.20.6537-6546.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Kühn S., Fortnagel P. Molecular cloning and nucleotide sequence of the gene encoding a calcium-dependent exoproteinase from Bacillus megaterium ATCC 14581. J Gen Microbiol. 1993 Jan;139(1):39–47. doi: 10.1099/00221287-139-1-39. [DOI] [PubMed] [Google Scholar]
  120. Labib R. S., Calvanico N. J., Tomasi T. B., Jr Studies on extracellular proteases of Streptococcus sanguis. Purification and characterization of a human IgA1 specific protease. Biochim Biophys Acta. 1978 Oct 12;526(2):547–559. doi: 10.1016/0005-2744(78)90145-6. [DOI] [PubMed] [Google Scholar]
  121. Lagacé J., Fréchette M. Four epitopes of Pseudomonas aeruginosa elastase defined by monoclonal antibodies. Infect Immun. 1991 Feb;59(2):712–715. doi: 10.1128/iai.59.2.712-715.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Lampel J. S., Aphale J. S., Lampel K. A., Strohl W. R. Cloning and sequencing of a gene encoding a novel extracellular neutral proteinase from Streptomyces sp. strain C5 and expression of the gene in Streptomyces lividans 1326. J Bacteriol. 1992 May;174(9):2797–2808. doi: 10.1128/jb.174.9.2797-2808.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Leung K. Y., Stevenson R. M. Tn5-induced protease-deficient strains of Aeromonas hydrophila with reduced virulence for fish. Infect Immun. 1988 Oct;56(10):2639–2644. doi: 10.1128/iai.56.10.2639-2644.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Levy P. L., Pangburn M. K., Burstein Y., Ericsson L. H., Neurath H., Walsh K. A. Evidence of homologous relationship between thermolysin and neutral protease A of Bacillus subtilis. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4341–4345. doi: 10.1073/pnas.72.11.4341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Lichenstein H. S., Busse L. A., Smith G. A., Narhi L. O., McGinley M. O., Rohde M. F., Katzowitz J. L., Zukowski M. M. Cloning and characterization of a gene encoding extracellular metalloprotease from Streptomyces lividans. Gene. 1992 Feb 1;111(1):125–130. doi: 10.1016/0378-1119(92)90613-t. [DOI] [PubMed] [Google Scholar]
  126. Lory S. Determinants of extracellular protein secretion in gram-negative bacteria. J Bacteriol. 1992 Jun;174(11):3423–3428. doi: 10.1128/jb.174.11.3423-3428.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Lyerly D. M., Kreger A. S. Importance of serratia protease in the pathogenesis of experimental Serratia marcescens pneumonia. Infect Immun. 1983 Apr;40(1):113–119. doi: 10.1128/iai.40.1.113-119.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Lyerly D., Gray L., Kreger A. Characterization of rabbit corneal damage produced by Serratia keratitis and by a serratia protease. Infect Immun. 1981 Sep;33(3):927–932. doi: 10.1128/iai.33.3.927-932.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Létoffé S., Delepelaire P., Wandersman C. Characterization of a protein inhibitor of extracellular proteases produced by Erwinia chrysanthemi. Mol Microbiol. 1989 Jan;3(1):79–86. doi: 10.1111/j.1365-2958.1989.tb00106.x. [DOI] [PubMed] [Google Scholar]
  130. Létoffé S., Delepelaire P., Wandersman C. Cloning and expression in Escherichia coli of the Serratia marcescens metalloprotease gene: secretion of the protease from E. coli in the presence of the Erwinia chrysanthemi protease secretion functions. J Bacteriol. 1991 Apr;173(7):2160–2166. doi: 10.1128/jb.173.7.2160-2166.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Létoffé S., Delepelaire P., Wandersman C. Protease secretion by Erwinia chrysanthemi: the specific secretion functions are analogous to those of Escherichia coli alpha-haemolysin. EMBO J. 1990 May;9(5):1375–1382. doi: 10.1002/j.1460-2075.1990.tb08252.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Létoffé S., Wandersman C. Secretion of CyaA-PrtB and HlyA-PrtB fusion proteins in Escherichia coli: involvement of the glycine-rich repeat domain of Erwinia chrysanthemi protease B. J Bacteriol. 1992 Aug;174(15):4920–4927. doi: 10.1128/jb.174.15.4920-4927.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Lövgren A., Zhang M., Engström A., Dalhammar G., Landén R. Molecular characterization of immune inhibitor A, a secreted virulence protease from Bacillus thuringiensis. Mol Microbiol. 1990 Dec;4(12):2137–2146. doi: 10.1111/j.1365-2958.1990.tb00575.x. [DOI] [PubMed] [Google Scholar]
  134. Macfarlane G. T., Macfarlane S. Physiological and nutritional factors affecting synthesis of extracellular metalloproteases by Clostridium bifermentans NCTC 2914. Appl Environ Microbiol. 1992 Apr;58(4):1195–1200. doi: 10.1128/aem.58.4.1195-1200.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Makinen K. K., Makinen P. L. Purification and properties of an extracellular collagenolytic protease produced by the human oral bacterium Bacillus cereus (strain Soc 67). J Biol Chem. 1987 Sep 15;262(26):12488–12495. [PubMed] [Google Scholar]
  136. Matthews B. W., Jansonius J. N., Colman P. M., Schoenborn B. P., Dupourque D. Three-dimensional structure of thermolysin. Nat New Biol. 1972 Jul 12;238(80):37–41. doi: 10.1038/newbio238037a0. [DOI] [PubMed] [Google Scholar]
  137. Matthews B. W., Weaver L. H., Kester W. R. The conformation of thermolysin. J Biol Chem. 1974 Dec 25;249(24):8030–8044. [PubMed] [Google Scholar]
  138. McIver K., Kessler E., Ohman D. E. Substitution of active-site His-223 in Pseudomonas aeruginosa elastase and expression of the mutated lasB alleles in Escherichia coli show evidence for autoproteolytic processing of proelastase. J Bacteriol. 1991 Dec;173(24):7781–7789. doi: 10.1128/jb.173.24.7781-7789.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. McKerrow J. H. Human fibroblast collagenase contains an amino acid sequence homologous to the zinc-binding site of Serratia protease. J Biol Chem. 1987 May 5;262(13):5943–5943. [PubMed] [Google Scholar]
  140. McKevitt A. I., Bajaksouzian S., Klinger J. D., Woods D. E. Purification and characterization of an extracellular protease from Pseudomonas cepacia. Infect Immun. 1989 Mar;57(3):771–778. doi: 10.1128/iai.57.3.771-778.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Mengaud J., Geoffroy C., Cossart P. Identification of a new operon involved in Listeria monocytogenes virulence: its first gene encodes a protein homologous to bacterial metalloproteases. Infect Immun. 1991 Mar;59(3):1043–1049. doi: 10.1128/iai.59.3.1043-1049.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Mengaud J., Vicente M. F., Cossart P. Transcriptional mapping and nucleotide sequence of the Listeria monocytogenes hlyA region reveal structural features that may be involved in regulation. Infect Immun. 1989 Dec;57(12):3695–3701. doi: 10.1128/iai.57.12.3695-3701.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Milton D. L., Norqvist A., Wolf-Watz H. Cloning of a metalloprotease gene involved in the virulence mechanism of Vibrio anguillarum. J Bacteriol. 1992 Nov;174(22):7235–7244. doi: 10.1128/jb.174.22.7235-7244.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Miyoshi N., Miyoshi S., Sugiyama K., Suzuki Y., Furuta H., Shinoda S. Activation of the plasma kallikrein-kinin system by Vibrio vulnificus protease. Infect Immun. 1987 Aug;55(8):1936–1939. doi: 10.1128/iai.55.8.1936-1939.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Miyoshi S., Shinoda S. Alpha-macroglobulin-like plasma inactivator for Vibrio vulnificus metalloprotease. J Biochem. 1991 Oct;110(4):548–552. doi: 10.1093/oxfordjournals.jbchem.a123617. [DOI] [PubMed] [Google Scholar]
  146. Miyoshi S., Shinoda S. Inhibitory effect of alpha 2-macroglobulin on Vibrio vulnificus protease. J Biochem. 1989 Aug;106(2):299–303. doi: 10.1093/oxfordjournals.jbchem.a122848. [DOI] [PubMed] [Google Scholar]
  147. Miyoshi S., Shinoda S. Role of the protease in the permeability enhancement by Vibrio vulnificus. Microbiol Immunol. 1988;32(10):1025–1032. doi: 10.1111/j.1348-0421.1988.tb01467.x. [DOI] [PubMed] [Google Scholar]
  148. Molla A., Akaike T., Maeda H. Inactivation of various proteinase inhibitors and the complement system in human plasma by the 56-kilodalton proteinase from Serratia marcescens. Infect Immun. 1989 Jun;57(6):1868–1871. doi: 10.1128/iai.57.6.1868-1871.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Molla A., Matsumoto K., Oyamada I., Katsuki T., Maeda H. Degradation of protease inhibitors, immunoglobulins, and other serum proteins by Serratia protease and its toxicity to fibroblast in culture. Infect Immun. 1986 Sep;53(3):522–529. doi: 10.1128/iai.53.3.522-529.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Morfeldt E., Janzon L., Arvidson S., Löfdahl S. Cloning of a chromosomal locus (exp) which regulates the expression of several exoprotein genes in Staphylococcus aureus. Mol Gen Genet. 1988 Mar;211(3):435–440. doi: 10.1007/BF00425697. [DOI] [PubMed] [Google Scholar]
  151. Murai H., Hara S., Ikenaka T., Oda K., Murao S. Amino acid sequence of Streptomyces metallo-proteinase inhibitor from Streptomyces nigrescens TK-23. J Biochem. 1985 Jan;97(1):173–180. doi: 10.1093/oxfordjournals.jbchem.a135041. [DOI] [PubMed] [Google Scholar]
  152. Mynott T. L., Chandler D. S., Luke R. K. Efficacy of enteric-coated protease in preventing attachment of enterotoxigenic Escherichia coli and diarrheal disease in the RITARD model. Infect Immun. 1991 Oct;59(10):3708–3714. doi: 10.1128/iai.59.10.3708-3714.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Mäkinen P. L., Clewell D. B., An F., Mäkinen K. K. Purification and substrate specificity of a strongly hydrophobic extracellular metalloendopeptidase ("gelatinase") from Streptococcus faecalis (strain 0G1-10). J Biol Chem. 1989 Feb 25;264(6):3325–3334. [PubMed] [Google Scholar]
  154. Naka A., Yamamoto K., Miwatani T., Honda T. Characterization of two forms of hemagglutinin/protease produced by Vibrio cholerae non-O1. FEMS Microbiol Lett. 1992 Nov 1;77(1-3):197–200. doi: 10.1016/0378-1097(92)90155-h. [DOI] [PubMed] [Google Scholar]
  155. Nakahama K., Yoshimura K., Marumoto R., Kikuchi M., Lee I. S., Hase T., Matsubara H. Cloning and sequencing of Serratia protease gene. Nucleic Acids Res. 1986 Jul 25;14(14):5843–5855. doi: 10.1093/nar/14.14.5843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Narahashi Y., Shibuya K., Yanagita M. Studies on proteolytic enzymes (pronase) of Streptomyces griseus K-1. II. Separation of exo- and endopeptidases of pronase. J Biochem. 1968 Oct;64(4):427–437. doi: 10.1093/oxfordjournals.jbchem.a128914. [DOI] [PubMed] [Google Scholar]
  157. Narukawa H., Miyoshi S., Shinoda S. Chemical modification of Vibrio vulnificus metalloprotease with activated polyethylene glycol. FEMS Microbiol Lett. 1993 Mar 15;108(1):43–46. doi: 10.1111/j.1574-6968.1993.tb06071.x. [DOI] [PubMed] [Google Scholar]
  158. Neumann V. C., Heath H. E., LeBlanc P. A., Sloan G. L. Extracellular proteolytic activation of bacteriolytic peptidoglycan hydrolases of Staphylococcus simulans biovar staphylolyticus. FEMS Microbiol Lett. 1993 Jun 15;110(2):205–211. doi: 10.1111/j.1574-6968.1993.tb06321.x. [DOI] [PubMed] [Google Scholar]
  159. Nieto T. P., Ellis A. E. Characterization of extracellular metallo- and serine-proteases of Aeromonas hydrophila strain B51. J Gen Microbiol. 1986 Jul;132(7):1975–1979. doi: 10.1099/00221287-132-7-1975. [DOI] [PubMed] [Google Scholar]
  160. Nishina Y., Miyoshi S., Nagase A., Shinoda S. Significant role of an exocellular protease in utilization of heme by Vibrio vulnificus. Infect Immun. 1992 May;60(5):2128–2132. doi: 10.1128/iai.60.5.2128-2132.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Nishiya Y., Imanaka T. Cloning and nucleotide sequences of the Bacillus stearothermophilus neutral protease gene and its transcriptional activator gene. J Bacteriol. 1990 Sep;172(9):4861–4869. doi: 10.1128/jb.172.9.4861-4869.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Noreau J., Drapeau G. R. Isolation and properties of the protease from the wild-type and mutant strains of Pseudomonas fragi. J Bacteriol. 1979 Dec;140(3):911–916. doi: 10.1128/jb.140.3.911-916.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Norqvist A., Norrman B., Wolf-Watz H. Identification and characterization of a zinc metalloprotease associated with invasion by the fish pathogen Vibrio anguillarum. Infect Immun. 1990 Nov;58(11):3731–3736. doi: 10.1128/iai.58.11.3731-3736.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  164. Oda K., Koyama T., Murao S. Purification and properties of a proteinaceous metallo-proteinase inhibitor from Streptomyces nigrescens TK-23. Biochim Biophys Acta. 1979 Nov 9;571(1):147–156. doi: 10.1016/0005-2744(79)90235-3. [DOI] [PubMed] [Google Scholar]
  165. Oda T., Kojima Y., Akaike T., Ijiri S., Molla A., Maeda H. Inactivation of chemotactic activity of C5a by the serratial 56-kilodalton protease. Infect Immun. 1990 May;58(5):1269–1272. doi: 10.1128/iai.58.5.1269-1272.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Okuda K., Morihara K., Atsumi Y., Takeuchi H., Kawamoto S., Kawasaki H., Suzuki K., Fukushima J. Complete nucleotide sequence of the structural gene for alkaline proteinase from Pseudomonas aeruginosa IFO 3455. Infect Immun. 1990 Dec;58(12):4083–4088. doi: 10.1128/iai.58.12.4083-4088.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Olson J. C., Ohman D. E. Efficient production and processing of elastase and LasA by Pseudomonas aeruginosa require zinc and calcium ions. J Bacteriol. 1992 Jun;174(12):4140–4147. doi: 10.1128/jb.174.12.4140-4147.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Park K. B., Labbé R. G. Proteolysis of Clostridium perfringens type A enterotoxin during purification. Infect Immun. 1990 Jun;58(6):1999–2001. doi: 10.1128/iai.58.6.1999-2001.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Pauptit R. A., Karlsson R., Picot D., Jenkins J. A., Niklaus-Reimer A. S., Jansonius J. N. Crystal structure of neutral protease from Bacillus cereus refined at 3.0 A resolution and comparison with the homologous but more thermostable enzyme thermolysin. J Mol Biol. 1988 Feb 5;199(3):525–537. doi: 10.1016/0022-2836(88)90623-7. [DOI] [PubMed] [Google Scholar]
  170. Pessi A., Bianchi E., Crameri A., Venturini S., Tramontano A., Sollazzo M. A designed metal-binding protein with a novel fold. Nature. 1993 Mar 25;362(6418):367–369. doi: 10.1038/362367a0. [DOI] [PubMed] [Google Scholar]
  171. Plaut A. G. The IgA1 proteases of pathogenic bacteria. Annu Rev Microbiol. 1983;37:603–622. doi: 10.1146/annurev.mi.37.100183.003131. [DOI] [PubMed] [Google Scholar]
  172. Porzio M. A., Pearson A. M. Isolation of an extracellular neutral proteinase from Pseudomonas fragi. Biochim Biophys Acta. 1975 Mar 28;384(1):235–241. doi: 10.1016/0005-2744(75)90112-6. [DOI] [PubMed] [Google Scholar]
  173. Potempa J., Porwit-Bobr Z., Travis J. Stabilization vs. degradation of Staphylococcus aureus metalloproteinase. Biochim Biophys Acta. 1989 Dec 8;993(2-3):301–304. doi: 10.1016/0304-4165(89)90181-5. [DOI] [PubMed] [Google Scholar]
  174. Poyart C., Abachin E., Razafimanantsoa I., Berche P. The zinc metalloprotease of Listeria monocytogenes is required for maturation of phosphatidylcholine phospholipase C: direct evidence obtained by gene complementation. Infect Immun. 1993 Apr;61(4):1576–1580. doi: 10.1128/iai.61.4.1576-1580.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Proctor M., Manning P. J. Production of immunoglobulin A protease by Streptococcus pneumoniae from animals. Infect Immun. 1990 Sep;58(9):2733–2737. doi: 10.1128/iai.58.9.2733-2737.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Prokesová L., Porwit-Bóbr Z., Baran K., Potempa J., Pospísil M., John C. Effect of metalloproteinase from Staphylococcus aureus on in vitro stimulation of human lymphocytes. Immunol Lett. 1991 Mar;27(3):225–230. doi: 10.1016/0165-2478(91)90156-5. [DOI] [PubMed] [Google Scholar]
  177. Pugsley A. P. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev. 1993 Mar;57(1):50–108. doi: 10.1128/mr.57.1.50-108.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Quinn F. D., Keen M. G., Tompkins L. S. Genetic, immunological, and cytotoxic comparisons of Legionella proteolytic activities. Infect Immun. 1989 Sep;57(9):2719–2725. doi: 10.1128/iai.57.9.2719-2725.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Quinn F. D., Tompkins L. S. Analysis of a cloned sequence of Legionella pneumophila encoding a 38 kD metalloprotease possessing haemolytic and cytotoxic activities. Mol Microbiol. 1989 Jun;3(6):797–805. doi: 10.1111/j.1365-2958.1989.tb00228.x. [DOI] [PubMed] [Google Scholar]
  180. Raveneau J., Geoffroy C., Beretti J. L., Gaillard J. L., Alouf J. E., Berche P. Reduced virulence of a Listeria monocytogenes phospholipase-deficient mutant obtained by transposon insertion into the zinc metalloprotease gene. Infect Immun. 1992 Mar;60(3):916–921. doi: 10.1128/iai.60.3.916-921.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Rechnitzer C., Kharazmi A. Effect of Legionella pneumophila cytotoxic protease on human neutrophil and monocyte function. Microb Pathog. 1992 Feb;12(2):115–125. doi: 10.1016/0882-4010(92)90114-4. [DOI] [PubMed] [Google Scholar]
  182. Rechnitzer C., Williams A., Wright J. B., Dowsett A. B., Milman N., Fitzgeorge R. B. Demonstration of the intracellular production of tissue-destructive protease by Legionella pneumophila multiplying within guinea-pig and human alveolar macrophages. J Gen Microbiol. 1992 Aug;138(Pt 8):1671–1677. doi: 10.1099/00221287-138-8-1671. [DOI] [PubMed] [Google Scholar]
  183. Recsei P. A., Gruss A. D., Novick R. P. Cloning, sequence, and expression of the lysostaphin gene from Staphylococcus simulans. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1127–1131. doi: 10.1073/pnas.84.5.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Reinholdt J., Kilian M. Interference of IgA protease with the effect of secretory IgA on adherence of oral streptococci to saliva-coated hydroxyapatite. J Dent Res. 1987 Feb;66(2):492–497. doi: 10.1177/00220345870660021801. [DOI] [PubMed] [Google Scholar]
  185. Reinholdt J., Tomana M., Mortensen S. B., Kilian M. Molecular aspects of immunoglobulin A1 degradation by oral streptococci. Infect Immun. 1990 May;58(5):1186–1194. doi: 10.1128/iai.58.5.1186-1194.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Rivero O., Anguita J., Paniagua C., Naharro G. Molecular cloning and characterization of an extracellular protease gene from Aeromonas hydrophila. J Bacteriol. 1990 Jul;172(7):3905–3908. doi: 10.1128/jb.172.7.3905-3908.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Rodriguez L. A., Ellis A. E., Nieto T. P. Purification and characterisation of an extracellular metalloprotease, serine protease and haemolysin of Aeromonas hydrophila strain B32: all are lethal for fish. Microb Pathog. 1992 Jul;13(1):17–24. doi: 10.1016/0882-4010(92)90028-m. [DOI] [PubMed] [Google Scholar]
  188. SCHINDLER C. A., SCHUHARDT V. T. PURIFICATION AND PROPERTIES OF LYSOSTAPHIN--A LYTIC AGENT FOR STAPHYLOCOCCUS AUREUS. Biochim Biophys Acta. 1965 Feb 15;97:242–250. doi: 10.1016/0304-4165(65)90088-7. [DOI] [PubMed] [Google Scholar]
  189. Salmond G. P., Reeves P. J. Membrane traffic wardens and protein secretion in gram-negative bacteria. Trends Biochem Sci. 1993 Jan;18(1):7–12. doi: 10.1016/0968-0004(93)90080-7. [DOI] [PubMed] [Google Scholar]
  190. Schad P. A., Bever R. A., Nicas T. I., Leduc F., Hanne L. F., Iglewski B. H. Cloning and characterization of elastase genes from Pseudomonas aeruginosa. J Bacteriol. 1987 Jun;169(6):2691–2696. doi: 10.1128/jb.169.6.2691-2696.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Schiavo G., Benfenati F., Poulain B., Rossetto O., Polverino de Laureto P., DasGupta B. R., Montecucco C. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 1992 Oct 29;359(6398):832–835. doi: 10.1038/359832a0. [DOI] [PubMed] [Google Scholar]
  192. Schiavo G., Poulain B., Rossetto O., Benfenati F., Tauc L., Montecucco C. Tetanus toxin is a zinc protein and its inhibition of neurotransmitter release and protease activity depend on zinc. EMBO J. 1992 Oct;11(10):3577–3583. doi: 10.1002/j.1460-2075.1992.tb05441.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  193. Schneider D. R., Parker C. D. Isolation and characterization of protease-deficient mutants of vibrio cholerae. J Infect Dis. 1978 Aug;138(2):143–151. doi: 10.1093/infdis/138.2.143. [DOI] [PubMed] [Google Scholar]
  194. Senior B. W., Loomes L. M., Kerr M. A. The production and activity in vivo of Proteus mirabilis IgA protease in infections of the urinary tract. J Med Microbiol. 1991 Oct;35(4):203–207. doi: 10.1099/00222615-35-4-203. [DOI] [PubMed] [Google Scholar]
  195. Sidler W., Niederer E., Suter F., Zuber H. The primary structure of Bacillus cereus neutral proteinase and comparison with thermolysin and Bacillus subtilis neutral proteinase. Biol Chem Hoppe Seyler. 1986 Jul;367(7):643–657. doi: 10.1515/bchm3.1986.367.2.643. [DOI] [PubMed] [Google Scholar]
  196. Signor G., Vita C., Fontana A., Frigerio F., Bolognesi M., Toma S., Gianna R., De Gregoriis E., Grandi G. Structural features of neutral protease from Bacillus subtilis deduced from model-building and limited proteolysis experiments. Eur J Biochem. 1990 Apr 30;189(2):221–227. doi: 10.1111/j.1432-1033.1990.tb15480.x. [DOI] [PubMed] [Google Scholar]
  197. Simonen M., Palva I. Protein secretion in Bacillus species. Microbiol Rev. 1993 Mar;57(1):109–137. doi: 10.1128/mr.57.1.109-137.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Sloma A., Rudolph C. F., Rufo G. A., Jr, Sullivan B. J., Theriault K. A., Ally D., Pero J. Gene encoding a novel extracellular metalloprotease in Bacillus subtilis. J Bacteriol. 1990 Feb;172(2):1024–1029. doi: 10.1128/jb.172.2.1024-1029.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Smith G. C., Merkel J. R. Collagenolytic activity of Vibrio vulnificus: potential contribution to its invasiveness. Infect Immun. 1982 Mar;35(3):1155–1156. doi: 10.1128/iai.35.3.1155-1156.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Stark W., Pauptit R. A., Wilson K. S., Jansonius J. N. The structure of neutral protease from Bacillus cereus at 0.2-nm resolution. Eur J Biochem. 1992 Jul 15;207(2):781–791. doi: 10.1111/j.1432-1033.1992.tb17109.x. [DOI] [PubMed] [Google Scholar]
  201. Stenn K. S., Link R., Moellmann G., Madri J., Kuklinska E. Dispase, a neutral protease from Bacillus polymyxa, is a powerful fibronectinase and type IV collagenase. J Invest Dermatol. 1989 Aug;93(2):287–290. doi: 10.1111/1523-1747.ep12277593. [DOI] [PubMed] [Google Scholar]
  202. Stoeva S., Kleinschmidt T., Mesrob B., Braunitzer G. Primary structure of a zinc protease from Bacillus mesentericus strain 76. Biochemistry. 1990 Jan 16;29(2):527–534. doi: 10.1021/bi00454a029. [DOI] [PubMed] [Google Scholar]
  203. Stoeva S. Modification of a zinc proteinase from Bacillus mesentericus strain 76 by diethylpyrocarbonate. Int J Pept Protein Res. 1991 Apr;37(4):325–330. doi: 10.1111/j.1399-3011.1991.tb00746.x. [DOI] [PubMed] [Google Scholar]
  204. Suh Y., Benedik M. J. Production of active Serratia marcescens metalloprotease from Escherichia coli by alpha-hemolysin HlyB and HlyD. J Bacteriol. 1992 Apr;174(7):2361–2366. doi: 10.1128/jb.174.7.2361-2366.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Sutherland D. R., Abdullah K. M., Cyopick P., Mellors A. Cleavage of the cell-surface O-sialoglycoproteins CD34, CD43, CD44, and CD45 by a novel glycoprotease from Pasteurella haemolytica. J Immunol. 1992 Mar 1;148(5):1458–1464. [PubMed] [Google Scholar]
  206. Szeto L., Shuman H. A. The Legionella pneumophila major secretory protein, a protease, is not required for intracellular growth or cell killing. Infect Immun. 1990 Aug;58(8):2585–2592. doi: 10.1128/iai.58.8.2585-2592.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  207. Takagi M., Imanaka T. Addition of a methyl group changes both the catalytic velocity and thermostability of the neutral protease from Bacillus stearothermophilus. FEBS Lett. 1989 Aug 28;254(1-2):43–46. doi: 10.1016/0014-5793(89)81006-3. [DOI] [PubMed] [Google Scholar]
  208. Takagi M., Imanaka T., Aiba S. Nucleotide sequence and promoter region for the neutral protease gene from Bacillus stearothermophilus. J Bacteriol. 1985 Sep;163(3):824–831. doi: 10.1128/jb.163.3.824-831.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Takekawa S., Uozumi N., Tsukagoshi N., Udaka S. Proteases involved in generation of beta- and alpha-amylases from a large amylase precursor in Bacillus polymyxa. J Bacteriol. 1991 Nov;173(21):6820–6825. doi: 10.1128/jb.173.21.6820-6825.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Takeuchi H., Shibano Y., Morihara K., Fukushima J., Inami S., Keil B., Gilles A. M., Kawamoto S., Okuda K. Structural gene and complete amino acid sequence of Vibrio alginolyticus collagenase. Biochem J. 1992 Feb 1;281(Pt 3):703–708. doi: 10.1042/bj2810703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Tanaka E., Kawamoto S., Fukushima J., Hamajima K., Onishi H., Miyagi Y., Inami S., Morihara K., Okuda K. Detection of elastase production in Escherichia coli with the elastase structural gene from several non-elastase-producing strains of Pseudomonas aeruginosa. J Bacteriol. 1991 Oct;173(19):6153–6158. doi: 10.1128/jb.173.19.6153-6158.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Teufel P., Götz F. Characterization of an extracellular metalloprotease with elastase activity from Staphylococcus epidermidis. J Bacteriol. 1993 Jul;175(13):4218–4224. doi: 10.1128/jb.175.13.4218-4224.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  213. Thayer M. M., Flaherty K. M., McKay D. B. Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-A resolution. J Biol Chem. 1991 Feb 15;266(5):2864–2871. doi: 10.2210/pdb1ezm/pdb. [DOI] [PubMed] [Google Scholar]
  214. Titani K., Hermodson M. A., Ericsson L. H., Walsh K. A., Neurath H. Amino-acid sequence of thermolysin. Nat New Biol. 1972 Jul 12;238(80):35–37. doi: 10.1038/newbio238035a0. [DOI] [PubMed] [Google Scholar]
  215. Toder D. S., Gambello M. J., Iglewski B. H. Pseudomonas aeruginosa LasA: a second elastase under the transcriptional control of lasR. Mol Microbiol. 1991 Aug;5(8):2003–2010. doi: 10.1111/j.1365-2958.1991.tb00822.x. [DOI] [PubMed] [Google Scholar]
  216. Toma S., Campagnoli S., De Gregoriis E., Gianna R., Margarit I., Zamai M., Grandi G. Effect of Glu-143 and His-231 substitutions on the catalytic activity and secretion of Bacillus subtilis neutral protease. Protein Eng. 1989 Jan;2(5):359–364. doi: 10.1093/protein/2.5.359. [DOI] [PubMed] [Google Scholar]
  217. Toma S., Campagnoli S., Margarit I., Gianna R., Grandi G., Bolognesi M., De Filippis V., Fontana A. Grafting of a calcium-binding loop of thermolysin to Bacillus subtilis neutral protease. Biochemistry. 1991 Jan 8;30(1):97–106. doi: 10.1021/bi00215a015. [DOI] [PubMed] [Google Scholar]
  218. Tommassen J., Filloux A., Bally M., Murgier M., Lazdunski A. Protein secretion in Pseudomonas aeruginosa. FEMS Microbiol Rev. 1992 Sep;9(1):73–90. doi: 10.1016/0378-1097(92)90336-m. [DOI] [PubMed] [Google Scholar]
  219. Tran L., Wu X. C., Wong S. L. Cloning and expression of a novel protease gene encoding an extracellular neutral protease from Bacillus subtilis. J Bacteriol. 1991 Oct;173(20):6364–6372. doi: 10.1128/jb.173.20.6364-6372.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  220. Trayer H. R., Buckley C. E., 3rd Molecular properties of lysostaphin, a bacteriolytic agent specific for Staphylococcus aureus. J Biol Chem. 1970 Sep 25;245(18):4842–4846. [PubMed] [Google Scholar]
  221. Tsuru D., Imajo S., Morikawa S., Yoshimoto T., Ishiguro M. Zinc protease of Bacillus subtilis var. amylosacchariticus: construction of a three-dimensional model and comparison with thermolysin. J Biochem. 1993 Jan;113(1):101–105. doi: 10.1093/oxfordjournals.jbchem.a123991. [DOI] [PubMed] [Google Scholar]
  222. Tsuyuki H., Kajiwara K., Fujita A., Kumazaki T., Ishii S. Purification and characterization of Streptomyces griseus metalloendopeptidases I and II. J Biochem. 1991 Sep;110(3):339–344. doi: 10.1093/oxfordjournals.jbchem.a123582. [DOI] [PubMed] [Google Scholar]
  223. Vallee B. L., Auld D. S. Active-site zinc ligands and activated H2O of zinc enzymes. Proc Natl Acad Sci U S A. 1990 Jan;87(1):220–224. doi: 10.1073/pnas.87.1.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  224. Vallee B. L., Auld D. S. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry. 1990 Jun 19;29(24):5647–5659. doi: 10.1021/bi00476a001. [DOI] [PubMed] [Google Scholar]
  225. Vasantha N., Thompson L. D., Rhodes C., Banner C., Nagle J., Filpula D. Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J Bacteriol. 1984 Sep;159(3):811–819. doi: 10.1128/jb.159.3.811-819.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Vriend G., Berendsen H. J., van der Zee J. R., van den Burg B., Venema G., Eijsink V. G. Stabilization of the neutral protease of Bacillus stearothermophilus by removal of a buried water molecule. Protein Eng. 1991 Dec;4(8):941–945. doi: 10.1093/protein/4.8.941. [DOI] [PubMed] [Google Scholar]
  227. Wandersman C., Delepelaire P., Letoffe S., Schwartz M. Characterization of Erwinia chrysanthemi extracellular proteases: cloning and expression of the protease genes in Escherichia coli. J Bacteriol. 1987 Nov;169(11):5046–5053. doi: 10.1128/jb.169.11.5046-5053.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Wandersman C., Létoffé S. Involvement of lipopolysaccharide in the secretion of Escherichia coli alpha-haemolysin and Erwinia chrysanthemi proteases. Mol Microbiol. 1993 Jan;7(1):141–150. doi: 10.1111/j.1365-2958.1993.tb01105.x. [DOI] [PubMed] [Google Scholar]
  229. Wandersman C. Secretion across the bacterial outer membrane. Trends Genet. 1992 Sep;8(9):317–322. doi: 10.1016/0168-9525(92)90264-5. [DOI] [PubMed] [Google Scholar]
  230. Wandersman C. Secretion, processing and activation of bacterial extracellular proteases. Mol Microbiol. 1989 Dec;3(12):1825–1831. doi: 10.1111/j.1365-2958.1989.tb00169.x. [DOI] [PubMed] [Google Scholar]
  231. Wang L. F., Ekkel S. M., Devenish R. J. Expression in Escherichia coli of the Bacillus subtilis neutral protease gene (NPRE) lacking its ribosome binding site. Biochem Int. 1990 Dec;22(6):1085–1093. [PubMed] [Google Scholar]
  232. Wasylewski Z., Stryjewski W., Waśniowska A., Potempa J., Baran K. Effect of calcium binding on conformational changes of staphylococcal metalloproteinase measured by means of intrinsic protein fluorescence. Biochim Biophys Acta. 1986 Jun 5;871(2):177–181. doi: 10.1016/0167-4838(86)90171-8. [DOI] [PubMed] [Google Scholar]
  233. Wetmore D. R., Wong S. L., Roche R. S. The role of the pro-sequence in the processing and secretion of the thermolysin-like neutral protease from Bacillus cereus. Mol Microbiol. 1992 Jun;6(12):1593–1604. doi: 10.1111/j.1365-2958.1992.tb00884.x. [DOI] [PubMed] [Google Scholar]
  234. Wikström M., Jonsson G., Svennerholm A. M. Production and characterization of monoclonal antibodies to Vibrio cholerae soluble haemagglutinin. APMIS. 1991 Mar;99(3):249–256. [PubMed] [Google Scholar]
  235. Wolf U., Bauer D., Traub W. H. Metalloproteases of Serratia liquefaciens: degradation of purified human serum proteins. Zentralbl Bakteriol. 1991 Dec;276(1):16–26. doi: 10.1016/s0934-8840(11)80214-8. [DOI] [PubMed] [Google Scholar]
  236. Wretlind B., Pavlovskis O. R. Pseudomonas aeruginosa elastase and its role in pseudomonas infections. Rev Infect Dis. 1983 Nov-Dec;5 (Suppl 5):S998–1004. doi: 10.1093/clinids/5.supplement_5.s998. [DOI] [PubMed] [Google Scholar]
  237. Wright J. F., Pernollet M., Reboul A., Aude C., Colomb M. G. Identification and partial characterization of a low affinity metal-binding site in the light chain of tetanus toxin. J Biol Chem. 1992 May 5;267(13):9053–9058. [PubMed] [Google Scholar]
  238. Wu Z. R., Qi B. J., Jiao R. Q., Chen F. D., Wang L. F. Development of a novel Bacillus subtilis cloning system employing its neutral protease as screen marker. Gene. 1991 Sep 30;106(1):103–107. doi: 10.1016/0378-1119(91)90572-s. [DOI] [PubMed] [Google Scholar]
  239. Yamamoto S., Fukushima J., Atsumi Y., Takeuchi H., Kawamoto S., Okuda K., Morihara K. Cloning and characterization of elastase structural gene from Pseudomonas aeruginosa IFO 3455. Biochem Biophys Res Commun. 1988 May 16;152(3):1117–1122. doi: 10.1016/s0006-291x(88)80400-5. [DOI] [PubMed] [Google Scholar]
  240. Yang M. Y., Ferrari E., Henner D. J. Cloning of the neutral protease gene of Bacillus subtilis and the use of the cloned gene to create an in vitro-derived deletion mutation. J Bacteriol. 1984 Oct;160(1):15–21. doi: 10.1128/jb.160.1.15-21.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Yokota S., Ohtsuka H., Noguchi H. Monoclonal antibodies against Pseudomonas aeruginosa elastase: a neutralizing antibody which recognizes a conformational epitope related to an active site of elastase. Eur J Biochem. 1992 Jun 1;206(2):587–593. doi: 10.1111/j.1432-1033.1992.tb16963.x. [DOI] [PubMed] [Google Scholar]
  242. van den Burg B., Enequist H. G., van der Haar M. E., Eijsink V. G., Stulp B. K., Venema G. A highly thermostable neutral protease from Bacillus caldolyticus: cloning and expression of the gene in Bacillus subtilis and characterization of the gene product. J Bacteriol. 1991 Jul;173(13):4107–4115. doi: 10.1128/jb.173.13.4107-4115.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES