Abstract
This review compares the results of different methods of investigating the morphology of nucleoids of bacteria grown under conditions favoring short generation times. We consider the evidence from fixed and stained specimens, from phase-contrast and fluorescence microscopy of growing bacteria, and from electron microscopy of whole as well as thinly sectioned ones. It is concluded that the nucleoid of growing cells is in a dynamic state: part of the chromatin is "pulled out" of the bulk of the nucleoid in order to be transcribed. This activity is performed by excrescences which extend far into the cytoplasm so as to reach the maximum of available ribosomes. Different means of fixation provide markedly different views of the texture of the DNA-containing plasm of the bulk of the nucleoid. Conventional chemical fixatives stabilize the cytoplasm of bacteria but not their protein-low chromatin. Uranyl acetate does cross-link the latter well but only if the cytoplasm has first been fixed conventionally. In the interval between the two fixations, the DNA arranges itself in liquid-crystalline form, supposedly because of loss of supercoiling. In stark contrast, cryofixation preserves bacterial chromatin in a finely granular form, believed to reflect its native strongly negatively supercoiled state. In dinoflagellates the DNA of their permanently visible chromosomes (also low in histone-like protein) is natively present as a liquid crystal. The arrangement of chromatin in Epulocystis fishelsoni, one of the largest known prokaryotes, is briefly described.
Full text
PDF





















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- A unique symbiosis in the gut of tropical herbivorous surgeonfish (acanthuridae: teleostei) from the red sea. Science. 1985 Jul 5;229(4708):49–51. doi: 10.1126/science.229.4708.49. [DOI] [PubMed] [Google Scholar]
- Angert E. R., Clements K. D., Pace N. R. The largest bacterium. Nature. 1993 Mar 18;362(6417):239–241. doi: 10.1038/362239a0. [DOI] [PubMed] [Google Scholar]
- BORYSKO E. Recent developments in methacrylate embedding. I. A study of the polymerization damage phenomenon by phase contrast microscopy. J Biophys Biochem Cytol. 1956 Jul 25;2(4 Suppl):3–14. doi: 10.1083/jcb.2.4.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bacterial chromosomes. 22nd annual Keystone symposia. April 18-25, 1993, Keystone, Colorado. Abstracts. J Cell Biochem Suppl. 1993;17E:273–310. [PubMed] [Google Scholar]
- Bohrmann B., Haider M., Kellenberger E. Concentration evaluation of chromatin in unstained resin-embedded sections by means of low-dose ratio-contrast imaging in STEM. Ultramicroscopy. 1993 Feb;49(1-4):235–251. doi: 10.1016/0304-3991(93)90230-u. [DOI] [PubMed] [Google Scholar]
- Bohrmann B., Villiger W., Johansen R., Kellenberger E. Coralline shape of the bacterial nucleoid after cryofixation. J Bacteriol. 1991 May;173(10):3149–3158. doi: 10.1128/jb.173.10.3149-3158.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouligand Y., Soyer M. O., Puiseux-Dao S. La structure fibrillaire et l'orientation des chromosomes chez les Dinoflagellés. Chromosoma. 1968;24(3):251–287. doi: 10.1007/BF00336195. [DOI] [PubMed] [Google Scholar]
- Brock T. D. The bacterial nucleus: a history. Microbiol Rev. 1988 Dec;52(4):397–411. doi: 10.1128/mr.52.4.397-411.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broyles S. S., Pettijohn D. E. Interaction of the Escherichia coli HU protein with DNA. Evidence for formation of nucleosome-like structures with altered DNA helical pitch. J Mol Biol. 1986 Jan 5;187(1):47–60. doi: 10.1016/0022-2836(86)90405-5. [DOI] [PubMed] [Google Scholar]
- CAIRNS J. The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol Biol. 1963 Mar;6:208–213. doi: 10.1016/s0022-2836(63)80070-4. [DOI] [PubMed] [Google Scholar]
- CARO L. G., FORRO F., Jr Localization of macromolecules in Escherichia coli. II. RNA and its site of synthesis. J Biophys Biochem Cytol. 1961 Mar;9:555–565. doi: 10.1083/jcb.9.3.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CASSEL W. A., HUTCHINSON W. G. Nuclear studies on the smaller Myxophyceae. Exp Cell Res. 1954 Feb;6(1):134–150. doi: 10.1016/0014-4827(54)90155-x. [DOI] [PubMed] [Google Scholar]
- CHAPMAN G. B., HILLIER J. Electron microscopy of ultra-thin sections of bacteria I. Cellular division in Bacillus cereus. J Bacteriol. 1953 Sep;66(3):362–373. doi: 10.1128/jb.66.3.362-373.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clements K. D., Bullivant S. An unusual symbiont from the gut of surgeonfishes may be the largest known prokaryote. J Bacteriol. 1991 Sep;173(17):5359–5362. doi: 10.1128/jb.173.17.5359-5362.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DELAMATER E. D. Cytology of bacteria. II. The bacterial nucleus. Annu Rev Microbiol. 1954;8:23–46. doi: 10.1146/annurev.mi.08.100154.000323. [DOI] [PubMed] [Google Scholar]
- DELAPORTE B. ETUDE DESCRIPTIVE DE BACT'ERIES DE TR'ES GRANDES DIMENSIONS. Ann Inst Pasteur (Paris) 1964 Dec;107:845–862. [PubMed] [Google Scholar]
- Delaporte B. Description de Bacillus medusa n. sp. C R Acad Sci Hebd Seances Acad Sci D. 1969 Sep;269(12):1129–1131. [PubMed] [Google Scholar]
- Dubochet J., McDowall A. W., Menge B., Schmid E. N., Lickfeld K. G. Electron microscopy of frozen-hydrated bacteria. J Bacteriol. 1983 Jul;155(1):381–390. doi: 10.1128/jb.155.1.381-390.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dürrenberger M., Bjornsti M. A., Uetz T., Hobot J. A., Kellenberger E. Intracellular location of the histonelike protein HU in Escherichia coli. J Bacteriol. 1988 Oct;170(10):4757–4768. doi: 10.1128/jb.170.10.4757-4768.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EISERLING F. A., ROMIG W. R. Studies of Bacillus subtilis bacteriophages. Structural characterization by electron microscopy. J Ultrastruct Res. 1962 Jun;6:540–546. doi: 10.1016/s0022-5320(62)80008-2. [DOI] [PubMed] [Google Scholar]
- Fuhs G. W. Symposium on the fine structure and replication of bacteria and their parts. I. Fine structure and replication of bacterial nucleoids. Bacteriol Rev. 1965 Sep;29(3):277–293. doi: 10.1128/br.29.3.277-293.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GLAUERT A. M., GLAUERT R. H., ROGERS G. E. A new embedding medium for electron microscopy. Nature. 1956 Oct 13;178(4537):803–803. doi: 10.1038/178803a0. [DOI] [PubMed] [Google Scholar]
- Gama M. J., Toussaint A., Higgins N. P. Stabilization of bacteriophage Mu repressor-operator complexes by the Escherichia coli integration host factor protein. Mol Microbiol. 1992 Jun;6(12):1715–1722. doi: 10.1111/j.1365-2958.1992.tb00896.x. [DOI] [PubMed] [Google Scholar]
- Giesbrecht P. Ueber die Tertiärstruktur der DNS in den Chromosomen lebender Zellen. Z Naturforsch B. 1965 Sep;20(9):927–928. [PubMed] [Google Scholar]
- HARTMAN P. E., PAYNE J. I. Direct staining of the two types of nucleoproteins in Escherichia coli. J Bacteriol. 1954 Aug;68(2):237–242. doi: 10.1128/jb.68.2.237-242.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hauser P. M., Karamata D. A method for the determination of bacterial spore DNA content based on isotopic labelling, spore germination and diphenylamine assay; ploidy of spores of several Bacillus species. Biochimie. 1992 Jul-Aug;74(7-8):723–733. doi: 10.1016/0300-9084(92)90145-5. [DOI] [PubMed] [Google Scholar]
- Herzog M., Soyer M. O. Distinctive features of dinoflagellate chromatin. Absence of nucleosomes in a primitive species Prorocentrum micans E. Eur J Cell Biol. 1981 Feb;23(2):295–302. [PubMed] [Google Scholar]
- Higgins M. L., Tsien H. C., Daneo-Moore L. Organization of mesosomes in fixed and unfixed cells. J Bacteriol. 1976 Sep;127(3):1519–1523. doi: 10.1128/jb.127.3.1519-1523.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hillier J., Mudd S., Smith A. G. INTERNAL STRUCTURE AND NUCLEI IN CELLS OF ESCHERICHIA COLI AS SHOWN BY IMPROVED ELECTRON MICROSCOPIC TECHNIQUES. J Bacteriol. 1949 Mar;57(3):319–338. doi: 10.1128/jb.57.3.319-338.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hiraga S. Chromosome and plasmid partition in Escherichia coli. Annu Rev Biochem. 1992;61:283–306. doi: 10.1146/annurev.bi.61.070192.001435. [DOI] [PubMed] [Google Scholar]
- Hiraga S. Chromosome partition in Escherichia coli. Curr Opin Genet Dev. 1993 Oct;3(5):789–801. doi: 10.1016/s0959-437x(05)80100-5. [DOI] [PubMed] [Google Scholar]
- Hiraga S., Niki H., Ogura T., Ichinose C., Mori H., Ezaki B., Jaffé A. Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells. J Bacteriol. 1989 Mar;171(3):1496–1505. doi: 10.1128/jb.171.3.1496-1505.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hobot J. A., Bjornsti M. A., Kellenberger E. Use of on-section immunolabeling and cryosubstitution for studies of bacterial DNA distribution. J Bacteriol. 1987 May;169(5):2055–2062. doi: 10.1128/jb.169.5.2055-2062.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hobot J. A., Villiger W., Escaig J., Maeder M., Ryter A., Kellenberger E. Shape and fine structure of nucleoids observed on sections of ultrarapidly frozen and cryosubstituted bacteria. J Bacteriol. 1985 Jun;162(3):960–971. doi: 10.1128/jb.162.3.960-971.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howard R. J., Aist J. R. Hyphal tip cell ultrastructure of the fungus Fusarium: improved preservation by freeze-substitution. J Ultrastruct Res. 1979 Mar;66(3):224–234. doi: 10.1016/s0022-5320(79)90120-5. [DOI] [PubMed] [Google Scholar]
- Imamura R., Niki H., Kitaoka M., Yamanaka K., Ogura T., Hiraga S. Characterization of high molecular weights of complexes and polymers of cytoplasmic proteins in Escherichia coli. Res Microbiol. 1992 Oct;143(8):743–753. doi: 10.1016/0923-2508(92)90102-t. [DOI] [PubMed] [Google Scholar]
- Johnston G. C., Young I. E. Variability of DNA content in individual cells of Bacillus. Nat New Biol. 1972 Aug 9;238(84):164–166. doi: 10.1038/newbio238164a0. [DOI] [PubMed] [Google Scholar]
- KELLENBERGER E. Les nucléoides de Escherichia coli étudiés à l'aide du microscope électronique. Experientia. 1952 Mar 15;8(3):99–101. doi: 10.1007/BF02301441. [DOI] [PubMed] [Google Scholar]
- KELLENBERGER E. Les transformations des nucléoides de Escherichia coli déclenchées par les rayons X. Experientia. 1955 Aug 15;11(8):305–307. doi: 10.1007/BF02158388. [DOI] [PubMed] [Google Scholar]
- KELLENBERGER E., RYTER A., SCHWAB W. L'utilisation d'un copolymère du groupe des polyesters comme matériel d'inclusion en ultramicrotomie. Experientia. 1956 Nov 15;12(11):421–422. doi: 10.1007/BF02157363. [DOI] [PubMed] [Google Scholar]
- KNOLL H., ZAPF K. Untersuchungen zum Problem des Bakterienzellkerns. Zentralbl Bakteriol Orig. 1951 Dec 20;157(6):389–406. [PubMed] [Google Scholar]
- Kellenberger E. About the organisation of condensed and decondensed non-eukaryotic DNA and the concept of vegetative DNA (a critical review). Biophys Chem. 1988 Feb;29(1-2):51–62. doi: 10.1016/0301-4622(88)87024-8. [DOI] [PubMed] [Google Scholar]
- Kellenberger E., Arnold-Schulz-Gahmen B. Chromatins of low-protein content: special features of their compaction and condensation. FEMS Microbiol Lett. 1992 Dec 15;100(1-3):361–370. doi: 10.1111/j.1574-6968.1992.tb14064.x. [DOI] [PubMed] [Google Scholar]
- Kellenberger E., Bitterli D. Preparation and counts of particles in electron microscopy: application of negative stain in the agarfiltration method. Microsc Acta. 1976 May;78(2):131–148. [PubMed] [Google Scholar]
- Kellenberger E. Functional consequences of improved structural information on bacterial nucleoids. Res Microbiol. 1991 Feb-Apr;142(2-3):229–238. doi: 10.1016/0923-2508(91)90035-9. [DOI] [PubMed] [Google Scholar]
- Knaysi G., Baker R. F. Demonstration, with the Electron Microscope, of a Nucleus in Bacillus mycoides Grown in a Nitrogen-free Medium. J Bacteriol. 1947 May;53(5):539–553. doi: 10.1128/jb.53.5.539-553.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuroiwa T. Mitochondrial nuclei. Int Rev Cytol. 1982;75:1–59. doi: 10.1016/s0074-7696(08)61001-3. [DOI] [PubMed] [Google Scholar]
- Lutkenhaus J. FtsZ ring in bacterial cytokinesis. Mol Microbiol. 1993 Aug;9(3):403–409. doi: 10.1111/j.1365-2958.1993.tb01701.x. [DOI] [PubMed] [Google Scholar]
- Løbner-Olesen A., Kuempel P. L. Chromosome partitioning in Escherichia coli. J Bacteriol. 1992 Dec;174(24):7883–7889. doi: 10.1128/jb.174.24.7883-7889.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MASON D. J., POWELSON D. M. Nuclear division as observed in live bacteria by a new technique. J Bacteriol. 1956 Apr;71(4):474–479. doi: 10.1128/jb.71.4.474-479.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mukherjee A., Dai K., Lutkenhaus J. Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1053–1057. doi: 10.1073/pnas.90.3.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nash H. A. Bending and supercoiling of DNA at the attachment site of bacteriophage lambda. Trends Biochem Sci. 1990 Jun;15(6):222–227. doi: 10.1016/0968-0004(90)90034-9. [DOI] [PubMed] [Google Scholar]
- Okada Y., Wachi M., Hirata A., Suzuki K., Nagai K., Matsuhashi M. Cytoplasmic axial filaments in Escherichia coli cells: possible function in the mechanism of chromosome segregation and cell division. J Bacteriol. 1994 Feb;176(3):917–922. doi: 10.1128/jb.176.3.917-922.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PIECHAUD M. La coloration sans hydrolyse du noyau des bactéries. Ann Inst Pasteur (Paris) 1954 Jun;86(6):787–793. [PubMed] [Google Scholar]
- Pettijohn D. E., Pfenninger O. Supercoils in prokaryotic DNA restrained in vivo. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1331–1335. doi: 10.1073/pnas.77.3.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pettijohn D. E. Structure and properties of the bacterial nucleoid. Cell. 1982 Oct;30(3):667–669. doi: 10.1016/0092-8674(82)90269-0. [DOI] [PubMed] [Google Scholar]
- ROBINOW C. F. Morphology of the bacterial nucleus. Br Med Bull. 1962 Jan;18:31–35. doi: 10.1093/oxfordjournals.bmb.a069931. [DOI] [PubMed] [Google Scholar]
- ROBINOW C. F. The chromatin bodies of bacteria. Bacteriol Rev. 1956 Dec;20(4):207–242. doi: 10.1128/br.20.4.207-242.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBINOW C. F. The structure and behavior of the nuclei in spores and growing hyphae of Mucorales. I. Mucor hiemalis and Mucor fragilis. Can J Microbiol. 1957 Aug;3(5):771–789. doi: 10.1139/m57-087. [DOI] [PubMed] [Google Scholar]
- RYTER A., KELLENBERGER E., BIRCHANDERSEN A., MAALOE O. Etude au microscope électronique de plasmas contenant de l'acide désoxyribonucliéique. I. Les nucléoides des bactéries en croissance active. Z Naturforsch B. 1958 Sep;13B(9):597–605. [PubMed] [Google Scholar]
- RYTER A., KELLENBERGER E. L'inclusion au polyester pour l'ultramicrotomie. J Ultrastruct Res. 1958 Dec;2(2):200–214. doi: 10.1016/s0022-5320(58)90018-2. [DOI] [PubMed] [Google Scholar]
- RYTER A. [Electron microscopic study of the nuclear transformations 05 E. coli K12S and K12S (lambda 26) after irradiation with ultraviolet rays and x-rays]. J Biophys Biochem Cytol. 1960 Oct;8:399–412. [PMC free article] [PubMed] [Google Scholar]
- Rizzo P. J. Comparative aspects of basic chromatin proteins in dinoflagellates. Biosystems. 1981;14(3-4):433–443. doi: 10.1016/0303-2647(81)90048-4. [DOI] [PubMed] [Google Scholar]
- Ryter A., Chang A. Localization of transcribing genes in the bacterial cell by means of high resolution autoradiography. J Mol Biol. 1975 Nov 15;98(4):797–810. doi: 10.1016/s0022-2836(75)80011-8. [DOI] [PubMed] [Google Scholar]
- SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHREIL W. H. STUDIES ON THE FIXATION OF ARTIFICIAL AND BACTERIAL DNA PLASMS FOR THE ELECTRON MICROSCOPY OF THIN SECTIONS. J Cell Biol. 1964 Jul;22:1–20. doi: 10.1083/jcb.22.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STEMPEN H. Demonstration of the chromatinic bodies of Escherichia coli and Proteus vulgaris with the aid of the phase contrast microscope. J Bacteriol. 1950 Jul;60(1):81–87. doi: 10.1128/jb.60.1.81-87.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmid M. B. Structure and function of the bacterial chromosome. Trends Biochem Sci. 1988 Apr;13(4):131–135. doi: 10.1016/0968-0004(88)90069-2. [DOI] [PubMed] [Google Scholar]
- Setlow B., Magill N., Febbroriello P., Nakhimovsky L., Koppel D. E., Setlow P. Condensation of the forespore nucleoid early in sporulation of Bacillus species. J Bacteriol. 1991 Oct;173(19):6270–6278. doi: 10.1128/jb.173.19.6270-6278.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sigee D. C. Structural DNA and genetically active DNA in dinoflagellate chromosomes. Biosystems. 1983;16(3-4):203–210. doi: 10.1016/0303-2647(83)90004-7. [DOI] [PubMed] [Google Scholar]
- Soyer M. O., Haapala O. K. Structural changes of dinoflagellate chromosomes by pronase and ribonuclease. Chromosoma. 1974;47(2):179–192. doi: 10.1007/BF00331805. [DOI] [PubMed] [Google Scholar]
- Séchaud J., Kellenberger E. Electron microscopy of DNA-containing plasms. IV. Glutaraldehyde-uranyl acetate fixation of virus-infected bacteria for thin sectioning. J Ultrastruct Res. 1972 Jun;39(5):598–607. doi: 10.1016/s0022-5320(72)90124-4. [DOI] [PubMed] [Google Scholar]
- Taubeneck U. Virusproteine in Bakterienzellen. Z Allg Mikrobiol. 1969;9(4):315–326. doi: 10.1002/jobm.3630090408. [DOI] [PubMed] [Google Scholar]
- Trun N. J., Gottesman S. On the bacterial cell cycle: Escherichia coli mutants with altered ploidy. Genes Dev. 1990 Dec;4(12A):2036–2047. doi: 10.1101/gad.4.12a.2036. [DOI] [PubMed] [Google Scholar]
- VAN ITERSON W., ROBINOW C. F. Observations with the electron microscope on the fine structure of the nuclei of two spherical bacteria. J Biophys Biochem Cytol. 1961 Jan;9:171–181. doi: 10.1083/jcb.9.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vernet G., Sala-Rovira M., Maeder M., Jacques F., Herzog M. Basic nuclear proteins of the histone-less eukaryote Crypthecodinium cohnii (Pyrrhophyta): two-dimensional electrophoresis and DNA-binding properties. Biochim Biophys Acta. 1990 Apr 6;1048(2-3):281–289. doi: 10.1016/0167-4781(90)90068-d. [DOI] [PubMed] [Google Scholar]
- WHITFIELD J. F., MURRAY R. G. The effects of the ionic environment on the chromatin structures of bacteria. Can J Microbiol. 1956 May;2(3):245–260. doi: 10.1139/m56-029. [DOI] [PubMed] [Google Scholar]
- Williamson D. H., Fennell D. J. The use of fluorescent DNA-binding agent for detecting and separating yeast mitochondrial DNA. Methods Cell Biol. 1975;12:335–351. doi: 10.1016/s0091-679x(08)60963-2. [DOI] [PubMed] [Google Scholar]
- van Iterson W., Hoeniger J. F., Nijman van Zanten E. A "microtubule" in a bacterium. J Cell Biol. 1967 Jan;32(1):1–10. doi: 10.1083/jcb.32.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Iterson W. Symposium on the fine structure and replication of bacteria and their parts. II. Bacterial cytoplasm. Bacteriol Rev. 1965 Sep;29(3):299–325. doi: 10.1128/br.29.3.299-325.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]















