Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1994 Sep;58(3):387–400. doi: 10.1128/mr.58.3.387-400.1994

Do prokaryotes contain microtubules?

D Bermudes 1, G Hinkle 1, L Margulis 1
PMCID: PMC372974  PMID: 7968920

Abstract

In eukaryotic cells, microtubules are 24-nm-diameter tubular structures composed of a class of conserved proteins called tubulin. They are involved in numerous cell functions including ciliary motility, nerve cell elongation, pigment migration, centrosome formation, and chromosome movement. Although cytoplasmic tubules and fibers have been observed in bacteria, some with diameters similar to those of eukaryotes, no homologies to eukaryotic microtubules have been established. Certain groups of bacteria including azotobacters, cyanobacteria, enteric bacteria, and spirochetes have been frequently observed to possess microtubule-like structures, and others, including archaebacteria, have been shown to be sensitive to drugs that inhibit the polymerization of microtubules. Although little biochemical or molecular biological information is available, the differences observed among these prokaryotic structures suggest that their composition generally differs among themselves as well as from that of eukaryotes. We review the distribution of cytoplasmic tubules in prokaryotes, even though, in all cases, their functions remain unknown. At least some tend to occur in cells that are large, elongate, and motile, suggesting that they may be involved in cytoskeletal functions, intracellular motility, or transport activities comparable to those performed by eukaryotic microtubules. In Escherichia coli, the FtsZ protein is associated with the formation of a ring in the division zone between the newly forming offspring cells. Like tubulin, FtsZ is a GTPase and shares with tubulin a 7-amino-acid motif, making it a promising candidate in which to seek the origin of tubulins.

Full text

PDF
387

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adhikari P. C., Chatterjee S. N. Rhapidosomes in Vibrio species. Can J Microbiol. 1972 Apr;18(4):541–542. doi: 10.1139/m72-086. [DOI] [PubMed] [Google Scholar]
  2. Allen R. D., Weiss D. G., Hayden J. H., Brown D. T., Fujiwake H., Simpson M. Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport. J Cell Biol. 1985 May;100(5):1736–1752. doi: 10.1083/jcb.100.5.1736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bailey-Watts A. E., Bindloss M. E., Belcher J. H. Freshwater primary production by a blue-green alga of bacterial size. Nature. 1968 Dec 28;220(5174):1344–1345. doi: 10.1038/2201344a0. [DOI] [PubMed] [Google Scholar]
  4. Bairoch A. PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res. 1991 Apr 25;19 (Suppl):2241–2245. doi: 10.1093/nar/19.suppl.2241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bermudes D., Chase D., Margulis L. Morphology as a basis for taxonomy of large spirochetes symbiotic in wood-eating cockroaches and termites: Pillotina gen. nov., nom. rev.; Pillotina calotermitidis sp. nov., nom. rev.; Diplocalyx gen. nov., nom. rev.; Diplocalyx calotermitidis sp. nov., nom. rev.; Hollandina gen. nov., nom.[TRUNCATED]. Int J Syst Bacteriol. 1988 Jul;38(3):291–302. doi: 10.1099/00207713-38-3-291. [DOI] [PubMed] [Google Scholar]
  6. Bermudes D., Margulis L., Tzertzinis G. Prokaryotic origin of undulipodia. Application of the panda principle to the centriole enigma. Ann N Y Acad Sci. 1987;503:187–197. doi: 10.1111/j.1749-6632.1987.tb40608.x. [DOI] [PubMed] [Google Scholar]
  7. Bi E. F., Lutkenhaus J. FtsZ ring structure associated with division in Escherichia coli. Nature. 1991 Nov 14;354(6349):161–164. doi: 10.1038/354161a0. [DOI] [PubMed] [Google Scholar]
  8. Birch-Andersen A., Hovind Hougen K., Borg-Petersen C. Electron microscopy of Leptospira. 1. Leptospira strain Pomona. Acta Pathol Microbiol Scand B Microbiol Immunol. 1973 Dec;81(6):665–676. doi: 10.1111/j.1699-0463.1973.tb02258.x. [DOI] [PubMed] [Google Scholar]
  9. Bramhill D., Thompson C. M. GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5813–5817. doi: 10.1073/pnas.91.13.5813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Burchard A. C., Burchard R. P., Kloetzel J. A. Intracellular, periodic structures in the gliding bacterium Myxococcus xanthus. J Bacteriol. 1977 Nov;132(2):666–672. doi: 10.1128/jb.132.2.666-672.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cavalier-Smith T. The evolutionary origin and phylogeny of eukaryote flagella. Symp Soc Exp Biol. 1982;35:465–493. [PubMed] [Google Scholar]
  12. Cole R. M., Tully J. G., Popkin T. J., Bové J. M. Morphology, ultrastructure, and bacteriophage infection of the helical mycoplasma-like organism (Spiroplasma citri gen. nov., sp. nov.) cultured from "stubborn" disease of citrus. J Bacteriol. 1973 Jul;115(1):367–384. doi: 10.1128/jb.115.1.367-386.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Coleman S. E., Bleiweis A. S. Ultrastructural, physiological, and cytochemical characterization of cores in group D streptococci. J Bacteriol. 1977 Jan;129(1):445–456. doi: 10.1128/jb.129.1.445-456.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Corfield P. S., Smith D. G. Microtubular structures in group D streptococcal L-forms. Arch Mikrobiol. 1968;63(4):356–361. doi: 10.1007/BF00412121. [DOI] [PubMed] [Google Scholar]
  15. D'Aoust J. Y., Kushner D. J. Tubular structures of Vibrio psychroerythrus. Arch Microbiol. 1976 Feb;107(1):71–73. doi: 10.1007/BF00427869. [DOI] [PubMed] [Google Scholar]
  16. Delk A. S., Dekker C. A. Characterization of rhapidosomes of Saprospira grandis. J Mol Biol. 1972 Feb 28;64(1):287–295. doi: 10.1016/0022-2836(72)90336-1. [DOI] [PubMed] [Google Scholar]
  17. Dettori G., Amalfitano G., Polonelli L., Rossi A., Grillo R., Plaisant P. Electron microscopy studies of human intestinal spirochetes. Eur J Epidemiol. 1987 Jun;3(2):187–195. doi: 10.1007/BF00239758. [DOI] [PubMed] [Google Scholar]
  18. Deysson G. Autimitotic substances. Int Rev Cytol. 1968;24:99–148. [PubMed] [Google Scholar]
  19. Eda T., Kanda Y., Mori C., Kimura S. Core-like and microtubular structures in a stable L-form of Escherichia coli. Microbiol Immunol. 1979;23(9):915–920. doi: 10.1111/j.1348-0421.1979.tb02825.x. [DOI] [PubMed] [Google Scholar]
  20. Eipert S. R., Black S. H. Characterization of the cytoplasmic fibrils of Treponema refringens (Nichols). Arch Microbiol. 1979 Mar 12;120(3):205–214. doi: 10.1007/BF00423067. [DOI] [PubMed] [Google Scholar]
  21. Felter R. A., Kennedy S. F., Colwell R. R., Chapman G. B. Intracytoplasmic membrane structures in Vibrio marinus. J Bacteriol. 1970 May;102(2):552–560. doi: 10.1128/jb.102.2.552-560.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Fracek S. P., Jr, Stolz J. F. Spirochaeta bajacaliforniensis sp. n. from a microbial mat community at Laguna Figueroa, Baja California Norte, Mexico. Arch Microbiol. 1985;142:317–325. doi: 10.1007/BF00491897. [DOI] [PubMed] [Google Scholar]
  23. Ghosh A., Maniloff J., Gerling D. A. Inhibition of mycoplasma cell division by cytochalasin B. Cell. 1978 Jan;13(1):57–64. doi: 10.1016/0092-8674(78)90137-x. [DOI] [PubMed] [Google Scholar]
  24. Guerrero R., Ashen J., Sole M., Margulis L. Spirosymplokos deltaeiberi nov. gen., nov. sp.: variable-diameter composite spirochete from microbial mats. Arch Microbiol. 1993;160:461–470. doi: 10.1007/BF00245307. [DOI] [PubMed] [Google Scholar]
  25. Hollande A., Gharagozlou I., Grassé P. P. Morphologie infrastructurale de Pillotina calotermitidis nov. gen., nov. sp., Spirochaetale de l'intestin de Calotermes praecox. C R Acad Sci Hebd Seances Acad Sci D. 1967 Oct 30;265(18):1309–1312. [PubMed] [Google Scholar]
  26. Hougen K. H., Birch-Andersen A. Electron microscopy of endoflagella and microtubules in Treponema reiter. Acta Pathol Microbiol Scand B Microbiol Immunol. 1971;79(1):37–50. doi: 10.1111/j.1699-0463.1971.tb00031.x. [DOI] [PubMed] [Google Scholar]
  27. Hougen K. H. Further observations on the ultrastructure of Treponema pallidum nichols. Acta Pathol Microbiol Scand B Microbiol Immunol. 1972;80(2):297–304. doi: 10.1111/j.1699-0463.1972.tb00163.x. [DOI] [PubMed] [Google Scholar]
  28. Hougen K. H. The ultrastructure of cultivable treponemes. 2. Treponema calligyrum, Treponema minutum and Treponema microdentium. Acta Pathol Microbiol Scand B Microbiol Immunol. 1974 Aug;82(4):495–507. [PubMed] [Google Scholar]
  29. Hougen K. H. The ultrastructure of cultivable treponemes. Acta Pathol Microbiol Scand B. 1975 Apr;83(2):91–99. doi: 10.1111/j.1699-0463.1975.tb00076.x. [DOI] [PubMed] [Google Scholar]
  30. Hovind-Hougen K., Birch-Andersen A., Henrik-Nielsen R., Orholm M., Pedersen J. O., Teglbjaerg P. S., Thaysen E. H. Intestinal spirochetosis: morphological characterization and cultivation of the spirochete Brachyspira aalborgi gen. nov., sp. nov. J Clin Microbiol. 1982 Dec;16(6):1127–1136. doi: 10.1128/jcm.16.6.1127-1136.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hovind-Hougen K., Birch-Andersen A., Jensen H. J. Ultrastructure of cells of Treponema pertenue obtained from experimentally infected hamsters. Acta Pathol Microbiol Scand B. 1976 Apr;84(2):101–108. doi: 10.1111/j.1699-0463.1976.tb01909.x. [DOI] [PubMed] [Google Scholar]
  32. Hovind-Hougen K. Determination by means of electron microscopy of morphological criteria of value for classification of some spirochetes, in particular treponemes. Acta Pathol Microbiol Scand Suppl. 1976;(255):1–41. [PubMed] [Google Scholar]
  33. Hovind-Hougen K. Ultrastructure of spirochetes isolated from Ixodes ricinus and Ixodes dammini. Yale J Biol Med. 1984 Jul-Aug;57(4):543–548. [PMC free article] [PubMed] [Google Scholar]
  34. Jensen T. E., Ayala R. P. The fine structure of a microplate-microtubule array, microfilaments and polyhedral body associated microtubules in several species of Anabaena. Arch Microbiol. 1976 Dec 1;111(1-2):1–6. doi: 10.1007/BF00446542. [DOI] [PubMed] [Google Scholar]
  35. Jensen T. E., Ayala R. P. The fine structure of striated microtubules and sleeve bodies in several species of Anabaena. J Ultrastruct Res. 1976 Nov;57(2):185–193. doi: 10.1016/s0022-5320(76)80108-6. [DOI] [PubMed] [Google Scholar]
  36. Jung M. K., Oakley B. R. Identification of an amino acid substitution in the benA, beta-tubulin gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensitivity. Cell Motil Cytoskeleton. 1990;17(2):87–94. doi: 10.1002/cm.970170204. [DOI] [PubMed] [Google Scholar]
  37. Jung M. K., Wilder I. B., Oakley B. R. Amino acid alterations in the benA (beta-tubulin) gene of Aspergillus nidulans that confer benomyl resistance. Cell Motil Cytoskeleton. 1992;22(3):170–174. doi: 10.1002/cm.970220304. [DOI] [PubMed] [Google Scholar]
  38. KELLENBERGER E., DELATOUR E. B. ON THE FINE STRUCTURE OF NORMAL AND "POLYMERIZED" TAIL SHEATH OF PHAGE T4. J Ultrastruct Res. 1964 Dec;11:545–563. doi: 10.1016/s0022-5320(64)80081-2. [DOI] [PubMed] [Google Scholar]
  39. Kessel M., Peleg I., Muhlrad A., Kahane I. Cytoplasmic helical structure associated with Acholeplasma laidlawii. J Bacteriol. 1981 Aug;147(2):653–659. doi: 10.1128/jb.147.2.653-659.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Khan Z. N., Godward M. B. Tubular elements - a new structure in blue-green algal cells. J Cell Sci. 1977 Dec;28:303–308. doi: 10.1242/jcs.28.1.303. [DOI] [PubMed] [Google Scholar]
  41. Klingmüller G., Ishibashi Y., Radke K. Der elektronenmikroskopische Aufbau des Treponema pallidum. Arch Klin Exp Dermatol. 1968;233(2):197–205. [PubMed] [Google Scholar]
  42. Lewin R. A., Kiethe J. Formation of rhapidosomes in Saprospira. Can J Microbiol. 1965 Dec;11(6):935–938. doi: 10.1139/m65-124. [DOI] [PubMed] [Google Scholar]
  43. Linck R. W., Stephens R. E. Biochemical characterization of tektins from sperm flagellar doublet microtubules. J Cell Biol. 1987 Apr;104(4):1069–1075. doi: 10.1083/jcb.104.4.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Liss A. Release of a group 1 mycoplasma virus from Acholeplasma laidlawii after treatment with mitomycin C. J Virol. 1981 Oct;40(1):285–288. doi: 10.1128/jvi.40.1.285-288.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Little M. An evaluation of tubulin as a molecular clock. Biosystems. 1985;18(3-4):241–247. doi: 10.1016/0303-2647(85)90024-3. [DOI] [PubMed] [Google Scholar]
  46. Little M., Krauhs E., Ponstingl H. Tubulin sequence conservation. Biosystems. 1981;14(3-4):239–246. doi: 10.1016/0303-2647(81)90031-9. [DOI] [PubMed] [Google Scholar]
  47. Little M., Seehaus T. Comparative analysis of tubulin sequences. Comp Biochem Physiol B. 1988;90(4):655–670. doi: 10.1016/0305-0491(88)90320-3. [DOI] [PubMed] [Google Scholar]
  48. MacRae T. H., McCurdy H. D. Ultrastructural studies of Chondromyces crocatus vegetative cells. Can J Microbiol. 1975 Nov;21(11):1815–1826. doi: 10.1139/m75-264. [DOI] [PubMed] [Google Scholar]
  49. Maniloff J., Chaudhuri U. Gliding mycoplasmas are inhibited by cytochalasin B and contain a polymerizable protein fraction. J Supramol Struct. 1979;12(3):299–304. doi: 10.1002/jss.400120303. [DOI] [PubMed] [Google Scholar]
  50. Maniloff J. Cytoskeletal elements in mycoplasmas and other prokaryotes. Biosystems. 1981;14(3-4):305–312. doi: 10.1016/0303-2647(81)90037-x. [DOI] [PubMed] [Google Scholar]
  51. Margulis L., Ashen J. B., Solé M., Guerrero R. Composite, large spirochetes from microbial mats: spirochete structure review. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6966–6970. doi: 10.1073/pnas.90.15.6966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Margulis L., Olendzenski L., Afzelius B. A. Endospore-forming filamentous bacteria symbiotic in termites: ultrastructure and growth in culture of Arthromitus. Symbiosis. 1990;8:95–116. [PubMed] [Google Scholar]
  53. Margulis L., To L., Chase D. Microtubules in prokaryotes. Science. 1978 Jun 9;200(4346):1118–1124. doi: 10.1126/science.349692. [DOI] [PubMed] [Google Scholar]
  54. Margulis L. Undulipodia, flagella and cilia. Biosystems. 1980;12(1-2):105–108. doi: 10.1016/0303-2647(80)90041-6. [DOI] [PubMed] [Google Scholar]
  55. Meloni G. A., Bertoloni G., Busolo F., Conventi L. Colony morphology, ultrastructure and morphogenesis in Mycoplasma hominis, Acholeplasma laidlawii and Ureaplasma urealyticum. J Gen Microbiol. 1980 Feb;116(2):435–443. doi: 10.1099/00221287-116-2-435. [DOI] [PubMed] [Google Scholar]
  56. Meng K. E., Pfister R. M. Intracellular structures of Mycoplasma pneumoniae revealed after membrane removal. J Bacteriol. 1980 Oct;144(1):390–399. doi: 10.1128/jb.144.1.390-399.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Mercado-Blanco J., Olivares J. A protein involved in stabilization of a large non-symbiotic plasmid of Rhizobium meliloti shows homology to eukaryotic cytoskeletal proteins and DNA-binding proteins. Gene. 1994 Feb 11;139(1):133–134. doi: 10.1016/0378-1119(94)90536-3. [DOI] [PubMed] [Google Scholar]
  58. Mukherjee A., Dai K., Lutkenhaus J. Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1053–1057. doi: 10.1073/pnas.90.3.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Munson D., Obar R., Tzertzinis G., Margulis L. The 'tubulin-like' S1 protein of Spirochaeta is a member of the hsp65 stress protein family. Biosystems. 1993;31(2-3):161–167. doi: 10.1016/0303-2647(93)90045-e. [DOI] [PubMed] [Google Scholar]
  60. Nagano T., Suzuki F. Microtubules with 15 subunits in cockroach epidermal cells. J Cell Biol. 1975 Jan;64(1):242–245. doi: 10.1083/jcb.64.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Neimark H. C. Extraction of an actin-like protein from the prokaryote Mycoplasma pneumoniae. Proc Natl Acad Sci U S A. 1977 Sep;74(9):4041–4045. doi: 10.1073/pnas.74.9.4041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Oakley C. E., Oakley B. R. Identification of gamma-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature. 1989 Apr 20;338(6217):662–664. doi: 10.1038/338662a0. [DOI] [PubMed] [Google Scholar]
  63. Ovcinnikov N. M., Delectorskij V. V. Further study of ultrathin sections of Treponema pallidum under the electron microscope. Br J Vener Dis. 1968 Mar;44(1):1–34. doi: 10.1136/sti.44.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Ovcinnikov N. M., Delektorskij V. V. Further studies of the morphology of Treponema pallidum under the electron microscope. Br J Vener Dis. 1969 Jun;45(2):87–116. doi: 10.1136/sti.45.2.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Ovcinnikov N. M., Delektorskij V. V. Morphology of Treponema pallidum. Bull World Health Organ. 1966;35(2):223–229. [PMC free article] [PubMed] [Google Scholar]
  66. Ovcinnikov N. M., Delektorskij V. V. Treponema pertenue under the electron microscope. Br J Vener Dis. 1970 Oct;46(5):349–379. doi: 10.1136/sti.46.5.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Pate J. L., Johnson J. L., Ordal E. J. The fine structure of Chondrococcus columnaris. II. Structure and formation of rhapidosomes. J Cell Biol. 1967 Oct;35(1):15–35. doi: 10.1083/jcb.35.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Pickett-Heaps J. The evolution of mitosis and the eukaryotic condition. Biosystems. 1974 Jul;6(1):37–48. doi: 10.1016/0303-2647(74)90009-4. [DOI] [PubMed] [Google Scholar]
  69. Pope L. M., Jurtshuk P. Microtubule in Azotobacter vinelandii strain O. J Bacteriol. 1967 Dec;94(6):2062–2064. doi: 10.1128/jb.94.6.2062-2064.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. ROBRISH S. A., MARR A. G. Location of enzymes in Azotobacteragilis. J Bacteriol. 1962 Jan;83:158–168. doi: 10.1128/jb.83.1.158-168.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. RayChaudhuri D., Park J. T. Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature. 1992 Sep 17;359(6392):251–254. doi: 10.1038/359251a0. [DOI] [PubMed] [Google Scholar]
  72. Rodwell A. W., Peterson J. E., Rodwell E. S. Striated fibers of the rho form of Mycoplasma: in vitro reassembly, composition, and structure. J Bacteriol. 1975 Jun;122(3):1216–1229. doi: 10.1128/jb.122.3.1216-1229.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Sioud M., Baldacci G., Forterre P., de Recondo A. M. Antitumor drugs inhibit the growth of halophilic archaebacteria. Eur J Biochem. 1987 Dec 1;169(2):231–236. doi: 10.1111/j.1432-1033.1987.tb13602.x. [DOI] [PubMed] [Google Scholar]
  74. Stearns T., Evans L., Kirschner M. Gamma-tubulin is a highly conserved component of the centrosome. Cell. 1991 May 31;65(5):825–836. doi: 10.1016/0092-8674(91)90390-k. [DOI] [PubMed] [Google Scholar]
  75. Stearns T., Kirschner M. In vitro reconstitution of centrosome assembly and function: the central role of gamma-tubulin. Cell. 1994 Feb 25;76(4):623–637. doi: 10.1016/0092-8674(94)90503-7. [DOI] [PubMed] [Google Scholar]
  76. Szathmáry E. Early evolution of microtubules and undulipodia. Biosystems. 1987;20(2):115–131. doi: 10.1016/0303-2647(87)90039-6. [DOI] [PubMed] [Google Scholar]
  77. Townsend R., Archer D. B., Plaskitt K. A. Purification and preliminary characterization of Spiroplasma fibrils. J Bacteriol. 1980 May;142(2):694–700. doi: 10.1128/jb.142.2.694-700.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Townsend R., Burgess J., Plaskitt K. A. Morphology and ultrastructure of helical and nonhelical strains of Spiroplasma citri. J Bacteriol. 1980 Jun;142(3):973–981. doi: 10.1128/jb.142.3.973-981.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Tucker J. B. Development and deployment of cilia, basal bodies, and other microtubular organelles in the cortex of the ciliate Nassula. J Cell Sci. 1971 Nov;9(3):539–567. doi: 10.1242/jcs.9.3.539. [DOI] [PubMed] [Google Scholar]
  80. Van Iterson W., Hoeniger J. F., Van Zanten E. N. Basal bodies of bacterial flagella in Proteus mirabilis. I. Electron microscopy of sectioned material. J Cell Biol. 1966 Dec;31(3):585–601. doi: 10.1083/jcb.31.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Vela G. R., Cagle G. D., Holmgren P. R. Ultrastructure of Azotobacter vinelandii. J Bacteriol. 1970 Nov;104(2):933–939. doi: 10.1128/jb.104.2.933-939.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Walker R. A., Sheetz M. P. Cytoplasmic microtubule-associated motors. Annu Rev Biochem. 1993;62:429–451. doi: 10.1146/annurev.bi.62.070193.002241. [DOI] [PubMed] [Google Scholar]
  83. Wall F., Pfister R. M., Somerson N. L. Freeze-fracture confirmation of the presence of a core in the specialized tip structure of Mycoplasma pneumoniae. J Bacteriol. 1983 May;154(2):924–929. doi: 10.1128/jb.154.2.924-929.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Wiegand S. E., Strobel P. L., Glassman L. H. Electron microscopic anatomy of pathogenic Treponema pallidum. J Invest Dermatol. 1972 Apr;58(4):186–204. doi: 10.1111/1523-1747.ep12539907. [DOI] [PubMed] [Google Scholar]
  85. Williamson D. L. Unusual fibrils from the spirochete-like sex ratio organism. J Bacteriol. 1974 Feb;117(2):904–906. doi: 10.1128/jb.117.2.904-906.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Wilson L. Properties of colchicine binding protein from chick embryo brain. Interactions with vinca alkaloids and podophyllotoxin. Biochemistry. 1970 Dec 8;9(25):4999–5007. doi: 10.1021/bi00827a026. [DOI] [PubMed] [Google Scholar]
  87. Wilson M. H., Collier A. M. Ultrastructural study of Mycoplasma pneumoniae in organ culture. J Bacteriol. 1976 Jan;125(1):332–339. doi: 10.1128/jb.125.1.332-339.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Yamamoto T. Presence of rhapidosomes in various species of bacteria and their morphological characteristics. J Bacteriol. 1967 Nov;94(5):1746–1756. doi: 10.1128/jb.94.5.1746-1756.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Yanagawa R., Faine S. Morphological and serological analysis of leptospiral structure. Nature. 1966 Aug 20;211(5051):823–826. doi: 10.1038/211823a0. [DOI] [PubMed] [Google Scholar]
  91. Zheng Y., Jung M. K., Oakley B. R. Gamma-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome. Cell. 1991 May 31;65(5):817–823. doi: 10.1016/0092-8674(91)90389-g. [DOI] [PubMed] [Google Scholar]
  92. de Boer P., Crossley R., Rothfield L. The essential bacterial cell-division protein FtsZ is a GTPase. Nature. 1992 Sep 17;359(6392):254–256. doi: 10.1038/359254a0. [DOI] [PubMed] [Google Scholar]
  93. van Iterson W., Hoeniger J. F., Nijman van Zanten E. A "microtubule" in a bacterium. J Cell Biol. 1967 Jan;32(1):1–10. doi: 10.1083/jcb.32.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES