Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1994 Dec;58(4):641–685. doi: 10.1128/mr.58.4.641-685.1994

Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications.

S Fetzner 1, F Lingens 1
PMCID: PMC372986  PMID: 7854251

Abstract

This review is a survey of bacterial dehalogenases that catalyze the cleavage of halogen substituents from haloaromatics, haloalkanes, haloalcohols, and haloalkanoic acids. Concerning the enzymatic cleavage of the carbon-halogen bond, seven mechanisms of dehalogenation are known, namely, reductive, oxygenolytic, hydrolytic, and thiolytic dehalogenation; intramolecular nucleophilic displacement; dehydrohalogenation; and hydration. Spontaneous dehalogenation reactions may occur as a result of chemical decomposition of unstable primary products of an unassociated enzyme reaction, and fortuitous dehalogenation can result from the action of broad-specificity enzymes converting halogenated analogs of their natural substrate. Reductive dehalogenation either is catalyzed by a specific dehalogenase or may be mediated by free or enzyme-bound transition metal cofactors (porphyrins, corrins). Desulfomonile tiedjei DCB-1 couples energy conservation to a reductive dechlorination reaction. The biochemistry and genetics of oxygenolytic and hydrolytic haloaromatic dehalogenases are discussed. Concerning the haloalkanes, oxygenases, glutathione S-transferases, halidohydrolases, and dehydrohalogenases are involved in the dehalogenation of different haloalkane compounds. The epoxide-forming halohydrin hydrogen halide lyases form a distinct class of dehalogenases. The dehalogenation of alpha-halosubstituted alkanoic acids is catalyzed by halidohydrolases, which, according to their substrate and inhibitor specificity and mode of product formation, are placed into distinct mechanistic groups. beta-Halosubstituted alkanoic acids are dehalogenated by halidohydrolases acting on the coenzyme A ester of the beta-haloalkanoic acid. Microbial systems offer a versatile potential for biotechnological applications. Because of their enantiomer selectivity, some dehalogenases are used as industrial biocatalysts for the synthesis of chiral compounds. The application of dehalogenases or bacterial strains in environmental protection technologies is discussed in detail.

Full text

PDF
641

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. H., Huang C. M., Higson F. K., Brenner V., Focht D. D. Construction of a 3-chlorobiphenyl-utilizing recombinant from an intergeneric mating. Appl Environ Microbiol. 1992 Feb;58(2):647–654. doi: 10.1128/aem.58.2.647-654.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adriaens P., Focht D. D. Cometabolism of 3,4-dichlorobenzoate by Acinetobacter sp. strain 4-CB1. Appl Environ Microbiol. 1991 Jan;57(1):173–179. doi: 10.1128/aem.57.1.173-179.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Adriaens P., Kohler H. P., Kohler-Staub D., Focht D. D. Bacterial dehalogenation of chlorobenzoates and coculture biodegradation of 4,4'-dichlorobiphenyl. Appl Environ Microbiol. 1989 Apr;55(4):887–892. doi: 10.1128/aem.55.4.887-892.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Adrian N. R., Suflita J. M. Reductive dehalogenation of a nitrogen heterocyclic herbicide in anoxic aquifer slurries. Appl Environ Microbiol. 1990 Jan;56(1):292–294. doi: 10.1128/aem.56.1.292-294.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ahmad D., Sylvestre M., Sondossi M. Subcloning of bph genes from Pseudomonas testosteroni B-356 in Pseudomonas putida and Escherichia coli: evidence for dehalogenation during initial attack on chlorobiphenyls. Appl Environ Microbiol. 1991 Oct;57(10):2880–2887. doi: 10.1128/aem.57.10.2880-2887.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ahmed A. E., Anders M. W. Metabolism of dihalomethanes to formaldehyde and inorganic halide--II. Studies on the mechanism of the reaction. Biochem Pharmacol. 1978;27(16):2021–2025. doi: 10.1016/0006-2952(78)90061-8. [DOI] [PubMed] [Google Scholar]
  7. Ahr H. J., King L. J., Nastainczyk W., Ullrich V. The mechanism of chloroform and carbon monoxide formation from carbon tetrachloride by microsomal cytochrome P-450. Biochem Pharmacol. 1980 Oct 15;29(20):2855–2861. doi: 10.1016/0006-2952(80)90022-2. [DOI] [PubMed] [Google Scholar]
  8. Altenschmidt U., Fuchs G. Novel aerobic 2-aminobenzoate metabolism. Purification and characterization of 2-aminobenzoate-CoA ligase, localisation of the gene on a 8-kbp plasmid, and cloning and sequencing of the gene from a denitrifying Pseudomonas sp. Eur J Biochem. 1992 Apr 15;205(2):721–727. doi: 10.1111/j.1432-1033.1992.tb16835.x. [DOI] [PubMed] [Google Scholar]
  9. Altenschmidt U., Oswald B., Fuchs G. Purification and characterization of benzoate-coenzyme A ligase and 2-aminobenzoate-coenzyme A ligases from a denitrifying Pseudomonas sp. J Bacteriol. 1991 Sep;173(17):5494–5501. doi: 10.1128/jb.173.17.5494-5501.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Altenschmidt U., Oswald B., Steiner E., Herrmann H., Fuchs G. New aerobic benzoate oxidation pathway via benzoyl-coenzyme A and 3-hydroxybenzoyl-coenzyme A in a denitrifying Pseudomonas sp. J Bacteriol. 1993 Aug;175(15):4851–4858. doi: 10.1128/jb.175.15.4851-4858.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Apajalahti J. H., Salkinoja-Salonen M. S. Complete dechlorination of tetrachlorohydroquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus. J Bacteriol. 1987 Nov;169(11):5125–5130. doi: 10.1128/jb.169.11.5125-5130.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Apajalahti J. H., Salkinoja-Salonen M. S. Dechlorination and para-hydroxylation of polychlorinated phenols by Rhodococcus chlorophenolicus. J Bacteriol. 1987 Feb;169(2):675–681. doi: 10.1128/jb.169.2.675-681.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Arciero D., Vannelli T., Logan M., Hooper A. B. Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea. Biochem Biophys Res Commun. 1989 Mar 15;159(2):640–643. doi: 10.1016/0006-291x(89)90042-9. [DOI] [PubMed] [Google Scholar]
  14. Assaf-Anid N., Nies L., Vogel T. M. Reductive dechlorination of a polychlorinated biphenyl congener and hexachlorobenzene by vitamin B12. Appl Environ Microbiol. 1992 Mar;58(3):1057–1060. doi: 10.1128/aem.58.3.1057-1060.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Babbitt P. C., Kenyon G. L., Martin B. M., Charest H., Slyvestre M., Scholten J. D., Chang K. H., Liang P. H., Dunaway-Mariano D. Ancestry of the 4-chlorobenzoate dehalogenase: analysis of amino acid sequence identities among families of acyl:adenyl ligases, enoyl-CoA hydratases/isomerases, and acyl-CoA thioesterases. Biochemistry. 1992 Jun 23;31(24):5594–5604. doi: 10.1021/bi00139a024. [DOI] [PubMed] [Google Scholar]
  16. Bachmann A., Walet P., Wijnen P., de Bruin W., Huntjens J. L., Roelofsen W., Zehnder A. J. Biodegradation of alpha- and beta-hexachlorocyclohexane in a soil slurry under different redox conditions. Appl Environ Microbiol. 1988 Jan;54(1):143–149. doi: 10.1128/aem.54.1.143-149.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bachmann A., de Bruin W., Jumelet J. C., Rijnaarts H. H., Zehnder A. J. Aerobic biomineralization of alpha-hexachlorocyclohexane in contaminated soil. Appl Environ Microbiol. 1988 Feb;54(2):548–554. doi: 10.1128/aem.54.2.548-554.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Balajee S., Mahadevan A. Dissimilation of 2,4-dichlorophenoxyacetic acid by Azotobacter chroococcum. Xenobiotica. 1990 Jun;20(6):607–617. doi: 10.3109/00498259009046876. [DOI] [PubMed] [Google Scholar]
  19. Balfanz J., Rehm H. J. Biodegradation of 4-chlorophenol by adsorptive immobilized Alcaligenes sp. A 7-2 in soil. Appl Microbiol Biotechnol. 1991 Aug;35(5):662–668. doi: 10.1007/BF00169634. [DOI] [PubMed] [Google Scholar]
  20. Bartels I., Knackmuss H. J., Reineke W. Suicide Inactivation of Catechol 2,3-Dioxygenase from Pseudomonas putida mt-2 by 3-Halocatechols. Appl Environ Microbiol. 1984 Mar;47(3):500–505. doi: 10.1128/aem.47.3.500-505.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Barth P. T., Bolton L., Thomson J. C. Cloning and partial sequencing of an operon encoding two Pseudomonas putida haloalkanoate dehalogenases of opposite stereospecificity. J Bacteriol. 1992 Apr;174(8):2612–2619. doi: 10.1128/jb.174.8.2612-2619.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Bartnicki E. W., Castro C. E. Biodehalogenation. The pathway for transhalogenation and the stereochemistry of epoxide formation from halohydrins. Biochemistry. 1969 Dec;8(12):4677–4680. doi: 10.1021/bi00840a003. [DOI] [PubMed] [Google Scholar]
  23. Belay N., Daniels L. Production of ethane, ethylene, and acetylene from halogenated hydrocarbons by methanogenic bacteria. Appl Environ Microbiol. 1987 Jul;53(7):1604–1610. doi: 10.1128/aem.53.7.1604-1610.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Biegert T., Altenschmidt U., Eckerskorn C., Fuchs G. Enzymes of anaerobic metabolism of phenolic compounds. 4-Hydroxybenzoate-CoA ligase from a denitrifying Pseudomonas species. Eur J Biochem. 1993 Apr 1;213(1):555–561. doi: 10.1111/j.1432-1033.1993.tb17794.x. [DOI] [PubMed] [Google Scholar]
  25. Blow D. M., Birktoft J. J., Hartley B. S. Role of a buried acid group in the mechanism of action of chymotrypsin. Nature. 1969 Jan 25;221(5178):337–340. doi: 10.1038/221337a0. [DOI] [PubMed] [Google Scholar]
  26. Bordeleau L. M., Bartha R. Biochemical transformations of herbicide-derived anilines in culture medium and in soil. Can J Microbiol. 1972 Dec;18(12):1857–1864. doi: 10.1139/m72-290. [DOI] [PubMed] [Google Scholar]
  27. Bouwer E. J., McCarty P. L. Ethylene dibromide transformation under methanogenic conditions. Appl Environ Microbiol. 1985 Aug;50(2):527–528. doi: 10.1128/aem.50.2.527-528.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Bouwer E. J., McCarty P. L. Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl Environ Microbiol. 1983 Apr;45(4):1286–1294. doi: 10.1128/aem.45.4.1286-1294.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Bouwer E. J., McCarty P. L. Transformations of halogenated organic compounds under denitrification conditions. Appl Environ Microbiol. 1983 Apr;45(4):1295–1299. doi: 10.1128/aem.45.4.1295-1299.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Boyd S. A., Shelton D. R. Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge. Appl Environ Microbiol. 1984 Feb;47(2):272–277. doi: 10.1128/aem.47.2.272-277.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Boyd S. A., Shelton D. R., Berry D., Tiedje J. M. Anaerobic biodegradation of phenolic compounds in digested sludge. Appl Environ Microbiol. 1983 Jul;46(1):50–54. doi: 10.1128/aem.46.1.50-54.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Brady L., Brzozowski A. M., Derewenda Z. S., Dodson E., Dodson G., Tolley S., Turkenburg J. P., Christiansen L., Huge-Jensen B., Norskov L. A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature. 1990 Feb 22;343(6260):767–770. doi: 10.1038/343767a0. [DOI] [PubMed] [Google Scholar]
  33. Braus-Stromeyer S. A., Hermann R., Cook A. M., Leisinger T. Dichloromethane as the sole carbon source for an acetogenic mixed culture and isolation of a fermentative, dichloromethane-degrading bacterium. Appl Environ Microbiol. 1993 Nov;59(11):3790–3797. doi: 10.1128/aem.59.11.3790-3797.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Brenner V., Hernandez B. S., Focht D. D. Variation in chlorobenzoate catabolism by Pseudomonas putida P111 as a consequence of genetic alterations. Appl Environ Microbiol. 1993 Sep;59(9):2790–2794. doi: 10.1128/aem.59.9.2790-2794.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Brunner W., Staub D., Leisinger T. Bacterial degradation of dichloromethane. Appl Environ Microbiol. 1980 Nov;40(5):950–958. doi: 10.1128/aem.40.5.950-958.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Bryant F. O., Hale D. D., Rogers J. E. Regiospecific dechlorination of pentachlorophenol by dichlorophenol-adapted microorganisms in freshwater, anaerobic sediment slurries. Appl Environ Microbiol. 1991 Aug;57(8):2293–2301. doi: 10.1128/aem.57.8.2293-2301.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Bull A. T., Holt G., Hardman D. J. Environmental pollution policies in light of biotechnological assessment: Organisation for Economic Cooperation, United Kingdom, and European Economic Council perspectives. Basic Life Sci. 1988;45:351–371. doi: 10.1007/978-1-4899-0824-7_24. [DOI] [PubMed] [Google Scholar]
  38. Castro C. E., Bartnicki E. W. Biodehalogenation. Epoxiation of halohydrins, epoxide opening, and transhalogenation by a Flavobacterium sp. Biochemistry. 1968 Sep;7(9):3213–3218. doi: 10.1021/bi00849a025. [DOI] [PubMed] [Google Scholar]
  39. Castro C. E., Bartnicki E. W. Conformational isomerism and effective redox geometry in the oxidation of heme proteins by alkyl halides, cytochrome c, and cytochrome oxidase. Biochemistry. 1975 Feb 11;14(3):498–503. doi: 10.1021/bi00674a006. [DOI] [PubMed] [Google Scholar]
  40. Castro C. E., Wade R. S., Belser N. O. Biodehalogenation: reactions of cytochrome P-450 with polyhalomethanes. Biochemistry. 1985 Jan 1;24(1):204–210. doi: 10.1021/bi00322a029. [DOI] [PubMed] [Google Scholar]
  41. Chang K. H., Liang P. H., Beck W., Scholten J. D., Dunaway-Mariano D. Isolation and characterization of the three polypeptide components of 4-chlorobenzoate dehalogenase from Pseudomonas sp. strain CBS-3. Biochemistry. 1992 Jun 23;31(24):5605–5610. doi: 10.1021/bi00139a025. [DOI] [PubMed] [Google Scholar]
  42. Chapman P. J. Constructing microbial strains for degradation of halogenated aromatic hydrocarbons. Basic Life Sci. 1988;45:81–95. doi: 10.1007/978-1-4899-0824-7_5. [DOI] [PubMed] [Google Scholar]
  43. Chaudhry G. R., Chapalamadugu S. Biodegradation of halogenated organic compounds. Microbiol Rev. 1991 Mar;55(1):59–79. doi: 10.1128/mr.55.1.59-79.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Chu J. P., Kirsch E. J. Metabolism of pentachlorophenol by an axenic bacterial culture. Appl Microbiol. 1972 May;23(5):1033–1035. doi: 10.1128/am.23.5.1033-1035.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Colby J., Stirling D. I., Dalton H. The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath). Its ability to oxygenate n-alkanes, n-alkenes, ethers, and alicyclic, aromatic and heterocyclic compounds. Biochem J. 1977 Aug 1;165(2):395–402. doi: 10.1042/bj1650395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Cook A. M., Grossenbacher H., Hütter R. Bacterial degradation of N-cyclopropylmelamine. The steps to ring cleavage. Biochem J. 1984 Sep 1;222(2):315–320. doi: 10.1042/bj2220315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Copley S. D., Crooks G. P. Enzymic Dehalogenation of 4-Chlorobenzoyl Coenzyme A in Acinetobacter sp. Strain 4-CB1. Appl Environ Microbiol. 1992 Apr;58(4):1385–1387. doi: 10.1128/aem.58.4.1385-1387.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Criddle C. S., DeWitt J. T., Grbić-Galić D., McCarty P. L. Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions. Appl Environ Microbiol. 1990 Nov;56(11):3240–3246. doi: 10.1128/aem.56.11.3240-3246.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Criddle C. S., DeWitt J. T., McCarty P. L. Reductive dehalogenation of carbon tetrachloride by Escherichia coli K-12. Appl Environ Microbiol. 1990 Nov;56(11):3247–3254. doi: 10.1128/aem.56.11.3247-3254.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. DeWeerd K. A., Concannon F., Suflita J. M. Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei. Appl Environ Microbiol. 1991 Jul;57(7):1929–1934. doi: 10.1128/aem.57.7.1929-1934.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Deweerd K. A., Suflita J. M. Anaerobic Aryl Reductive Dehalogenation of Halobenzoates by Cell Extracts of "Desulfomonile tiedjei". Appl Environ Microbiol. 1990 Oct;56(10):2999–3005. doi: 10.1128/aem.56.10.2999-3005.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Di Ilio C., Aceto A., Piccolomini R., Allocati N., Faraone A., Cellini L., Ravagnan G., Federici G. Purification and characterization of three forms of glutathione transferase from Proteus mirabilis. Biochem J. 1988 Nov 1;255(3):971–975. doi: 10.1042/bj2550971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. DiStefano T. D., Gossett J. M., Zinder S. H. Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Appl Environ Microbiol. 1991 Aug;57(8):2287–2292. doi: 10.1128/aem.57.8.2287-2292.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Dijkstra B. W., Drenth J., Kalk K. H. Active site and catalytic mechanism of phospholipase A2. Nature. 1981 Feb 12;289(5798):604–606. doi: 10.1038/289604a0. [DOI] [PubMed] [Google Scholar]
  55. Dolfing J. Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1. Arch Microbiol. 1990;153(3):264–266. doi: 10.1007/BF00249079. [DOI] [PubMed] [Google Scholar]
  56. Dolfing J., Tiedje J. M. Growth yield increase linked to reductive dechlorination in a defined 3-chlorobenzoate degrading methanogenic coculture. Arch Microbiol. 1987;149(2):102–105. doi: 10.1007/BF00425073. [DOI] [PubMed] [Google Scholar]
  57. Dolfing J., Tiedje J. M. Influence of substituents on reductive dehalogenation of 3-chlorobenzoate analogs. Appl Environ Microbiol. 1991 Mar;57(3):820–824. doi: 10.1128/aem.57.3.820-824.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Dorn E., Knackmuss H. J. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem J. 1978 Jul 15;174(1):85–94. doi: 10.1042/bj1740085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Dorn E., Knackmuss H. J. Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem J. 1978 Jul 15;174(1):73–84. doi: 10.1042/bj1740073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Duxbury J. M., Tiedje J. M., Alexander M., Dawson J. E. 2,4-D metabolism: enzymatic conversion of chloromaleylacetic acid to succinic acid. J Agric Food Chem. 1970 Mar-Apr;18(2):199–201. doi: 10.1021/jf60168a029. [DOI] [PubMed] [Google Scholar]
  61. Edgehill R. U., Finn R. K. Microbial treatment of soil to remove pentachlorophenol. Appl Environ Microbiol. 1983 Mar;45(3):1122–1125. doi: 10.1128/aem.45.3.1122-1125.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Egli C., Tschan T., Scholtz R., Cook A. M., Leisinger T. Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii. Appl Environ Microbiol. 1988 Nov;54(11):2819–2824. doi: 10.1128/aem.54.11.2819-2824.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Elsner A., Löffler F., Miyashita K., Müller R., Lingens F. Resolution of 4-chlorobenzoate dehalogenase from Pseudomonas sp. strain CBS3 into three components. Appl Environ Microbiol. 1991 Jan;57(1):324–326. doi: 10.1128/aem.57.1.324-326.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Elsner A., Muller R., Lingens F. Separate cloning and expression analysis of two protein components of 4-chlorobenzoate dehalogenase from Pseudomonas sp. C8S3. J Gen Microbiol. 1991 Mar;137(3):477–481. doi: 10.1099/00221287-137-3-477. [DOI] [PubMed] [Google Scholar]
  65. Engesser K. H., Schmidt E., Knackmuss H. J. Adaptation of Alcaligenes eutrophus B9 and Pseudomonas sp. B13 to 2-Fluorobenzoate as Growth Substrate. Appl Environ Microbiol. 1980 Jan;39(1):68–73. doi: 10.1128/aem.39.1.68-73.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Engesser K. H., Schulte P. Degradation of 2-bromo-, 2-chloro- and 2-fluorobenzoate by Pseudomonas putida CLB 250. FEMS Microbiol Lett. 1989 Jul 15;51(1):143–147. doi: 10.1016/0378-1097(89)90497-7. [DOI] [PubMed] [Google Scholar]
  67. Ensley B. D., Kurisko P. R. A gas lift bioreactor for removal of contaminants from the vapor phase. Appl Environ Microbiol. 1994 Jan;60(1):285–290. doi: 10.1128/aem.60.1.285-290.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Erickson B. D., Mondello F. J. Enhanced biodegradation of polychlorinated biphenyls after site-directed mutagenesis of a biphenyl dioxygenase gene. Appl Environ Microbiol. 1993 Nov;59(11):3858–3862. doi: 10.1128/aem.59.11.3858-3862.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Evans W. C., Fuchs G. Anaerobic degradation of aromatic compounds. Annu Rev Microbiol. 1988;42:289–317. doi: 10.1146/annurev.mi.42.100188.001445. [DOI] [PubMed] [Google Scholar]
  70. Evans W. C., Smith B. S., Fernley H. N., Davies J. I. Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem J. 1971 May;122(4):543–551. doi: 10.1042/bj1220543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Fathepure B. Z., Boyd S. A. Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM. Appl Environ Microbiol. 1988 Dec;54(12):2976–2980. doi: 10.1128/aem.54.12.2976-2980.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Fathepure B. Z., Nengu J. P., Boyd S. A. Anaerobic bacteria that dechlorinate perchloroethene. Appl Environ Microbiol. 1987 Nov;53(11):2671–2674. doi: 10.1128/aem.53.11.2671-2674.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Fathepure B. Z., Tiedje J. M., Boyd S. A. Reductive dechlorination of hexachlorobenzene to tri- and dichlorobenzenes in anaerobic sewage sludge. Appl Environ Microbiol. 1988 Feb;54(2):327–330. doi: 10.1128/aem.54.2.327-330.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Fathepure B. Z., Vogel T. M. Complete degradation of polychlorinated hydrocarbons by a two-stage biofilm reactor. Appl Environ Microbiol. 1991 Dec;57(12):3418–3422. doi: 10.1128/aem.57.12.3418-3422.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Fernández-Valverde M., Reglero A., Martinez-Blanco H., Luengo J. M. Purification of Pseudomonas putida acyl coenzyme A ligase active with a range of aliphatic and aromatic substrates. Appl Environ Microbiol. 1993 Apr;59(4):1149–1154. doi: 10.1128/aem.59.4.1149-1154.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Fetzner S., Müller R., Lingens F. Degradation of 2-chlorobenzoate by Pseudomonas cepacia 2CBS. Biol Chem Hoppe Seyler. 1989 Nov;370(11):1173–1182. doi: 10.1515/bchm3.1989.370.2.1173. [DOI] [PubMed] [Google Scholar]
  77. Fetzner S., Müller R., Lingens F. Purification and some properties of 2-halobenzoate 1,2-dioxygenase, a two-component enzyme system from Pseudomonas cepacia 2CBS. J Bacteriol. 1992 Jan;174(1):279–290. doi: 10.1128/jb.174.1.279-290.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Finn R. K. Use of specialized microbial strains in the treatment of industrial waste and in soil decontamination. Experientia. 1983 Nov 15;39(11):1231–1236. doi: 10.1007/BF01990360. [DOI] [PubMed] [Google Scholar]
  79. Focht D. D., Alexander M. DDT metabolites and analogs: ring fission by Hydrogenomonas. Science. 1970 Oct 2;170(3953):91–92. doi: 10.1126/science.170.3953.91. [DOI] [PubMed] [Google Scholar]
  80. Focht D. D., Brunner W. Kinetics of biphenyl and polychlorinated biphenyl metabolism in soil. Appl Environ Microbiol. 1985 Oct;50(4):1058–1063. doi: 10.1128/aem.50.4.1058-1063.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Focht D. D., Shelton D. Growth kinetics of Pseudomonas alcaligenes C-0 relative to inoculation and 3-chlorobenzoate metabolism in soil. Appl Environ Microbiol. 1987 Aug;53(8):1846–1849. doi: 10.1128/aem.53.8.1846-1849.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Fogel M. M., Taddeo A. R., Fogel S. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture. Appl Environ Microbiol. 1986 Apr;51(4):720–724. doi: 10.1128/aem.51.4.720-724.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Folsom B. R., Chapman P. J. Performance characterization of a model bioreactor for the biodegradation of trichloroethylene by Pseudomonas cepacia G4. Appl Environ Microbiol. 1991 Jun;57(6):1602–1608. doi: 10.1128/aem.57.6.1602-1608.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Folsom B. R., Chapman P. J., Pritchard P. H. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl Environ Microbiol. 1990 May;56(5):1279–1285. doi: 10.1128/aem.56.5.1279-1285.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Fowden L. The occurrence and metabolism of carbon--halogen compounds. Proc R Soc Lond B Biol Sci. 1968 Aug 13;171(1022):5–18. doi: 10.1098/rspb.1968.0052. [DOI] [PubMed] [Google Scholar]
  86. Fox B. G., Borneman J. G., Wackett L. P., Lipscomb J. D. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry. 1990 Jul 10;29(27):6419–6427. doi: 10.1021/bi00479a013. [DOI] [PubMed] [Google Scholar]
  87. Franken S. M., Rozeboom H. J., Kalk K. H., Dijkstra B. W. Crystal structure of haloalkane dehalogenase: an enzyme to detoxify halogenated alkanes. EMBO J. 1991 Jun;10(6):1297–1302. doi: 10.1002/j.1460-2075.1991.tb07647.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Freedman D. L., Gossett J. M. Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol. 1989 Sep;55(9):2144–2151. doi: 10.1128/aem.55.9.2144-2151.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Frick T. D., Crawford R. L., Martinson M., Chresand T., Bateson G. Microbiological cleanup of groundwater contaminated by pentachlorophenol. Basic Life Sci. 1988;45:173–191. doi: 10.1007/978-1-4899-0824-7_11. [DOI] [PubMed] [Google Scholar]
  90. Fulthorpe R. R., Wyndham R. C. Involvement of a chlorobenzoate-catabolic transposon, Tn5271, in community adaptation to chlorobiphenyl, chloroaniline, and 2,4-dichlorophenoxyacetic acid in a freshwater ecosystem. Appl Environ Microbiol. 1992 Jan;58(1):314–325. doi: 10.1128/aem.58.1.314-325.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Fulthorpe R. R., Wyndham R. C. Transfer and Expression of the Catabolic Plasmid pBRC60 in Wild Bacterial Recipients in a Freshwater Ecosystem. Appl Environ Microbiol. 1991 May;57(5):1546–1553. doi: 10.1128/aem.57.5.1546-1553.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. GOLDMAN P. THE ENZYMATIC CLEAVAGE OF THE CARBON-FLUORINE BOND IN FLUOROACETATE. J Biol Chem. 1965 Aug;240:3434–3438. [PubMed] [Google Scholar]
  93. Geissler J. F., Harwood C. S., Gibson J. Purification and properties of benzoate-coenzyme A ligase, a Rhodopseudomonas palustris enzyme involved in the anaerobic degradation of benzoate. J Bacteriol. 1988 Apr;170(4):1709–1714. doi: 10.1128/jb.170.4.1709-1714.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Genthner B. R., Price W. A., Pritchard P. H. Anaerobic Degradation of Chloroaromatic Compounds in Aquatic Sediments under a Variety of Enrichment Conditions. Appl Environ Microbiol. 1989 Jun;55(6):1466–1471. doi: 10.1128/aem.55.6.1466-1471.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Genthner B. R., Price W. A., Pritchard P. H. Characterization of anaerobic dechlorinating consortia derived from aquatic sediments. Appl Environ Microbiol. 1989 Jun;55(6):1472–1476. doi: 10.1128/aem.55.6.1472-1476.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Gibson S. A., Suflita J. M. Anaerobic biodegradation of 2,4,5-trichlorophenoxyacetic Acid in samples from a methanogenic aquifer: stimulation by short-chain organic acids and alcohols. Appl Environ Microbiol. 1990 Jun;56(6):1825–1832. doi: 10.1128/aem.56.6.1825-1832.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Gibson S. A., Suflita J. M. Extrapolation of biodegradation results to groundwater aquifers: reductive dehalogenation of aromatic compounds. Appl Environ Microbiol. 1986 Oct;52(4):681–688. doi: 10.1128/aem.52.4.681-688.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Goldman P., Milne G. W., Keister D. B. Carbon-halogen bond cleavage. 3. Studies on bacterial halidohrolases. J Biol Chem. 1968 Jan 25;243(2):428–434. [PubMed] [Google Scholar]
  99. Goldstein R. M., Mallory L. M., Alexander M. Reasons for possible failure of inoculation to enhance biodegradation. Appl Environ Microbiol. 1985 Oct;50(4):977–983. doi: 10.1128/aem.50.4.977-983.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Golovleva L. A., Pertsova R. N., Evtushenko L. I., Baskunov B. P. Degradation of 2,4,5-trichlorophenoxyacetic acid by a Nocardioides simplex culture. Biodegradation. 1990;1(4):263–271. doi: 10.1007/BF00119763. [DOI] [PubMed] [Google Scholar]
  101. Golovleva L. A., Zaborina O., Pertsova R., Baskunov B., Schurukhin Y., Kuzmin S. Degradation of polychlorinated phenols by Streptomyces rochei 303. Biodegradation. 1991;2(3):201–208. doi: 10.1007/BF00124494. [DOI] [PubMed] [Google Scholar]
  102. Green J., Dalton H. Substrate specificity of soluble methane monooxygenase. Mechanistic implications. J Biol Chem. 1989 Oct 25;264(30):17698–17703. [PubMed] [Google Scholar]
  103. Griffith G. D., Cole J. R., Quensen J. F., 3rd, Tiedje J. M. Specific deuteration of dichlorobenzoate during reductive dehalogenation by Desulfomonile tiedjei in D2O. Appl Environ Microbiol. 1992 Jan;58(1):409–411. doi: 10.1128/aem.58.1.409-411.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Grossenbacher H., Horn C., Cook A. M., Hütter R. 2-Chloro-4-amino-1,3,5-triazine-6(5H)-one: a new intermediate in the biodegradation of chlorinated s-triazines. Appl Environ Microbiol. 1984 Aug;48(2):451–453. doi: 10.1128/aem.48.2.451-453.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Grove G., Zarlengo R. P., Timmerman K. P., Li N. Q., Tam M. F., Tu C. P. Characterization and heterospecific expression of cDNA clones of genes in the maize GSH S-transferase multigene family. Nucleic Acids Res. 1988 Jan 25;16(2):425–438. doi: 10.1093/nar/16.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Gschwend P. M., Macfarlane J. K., Newman K. A. Volatile halogenated organic compounds released to seawater from temperate marine macroalgae. Science. 1985 Mar 1;227(4690):1033–1035. doi: 10.1126/science.227.4690.1033. [DOI] [PubMed] [Google Scholar]
  107. Gälli R., Leisinger T. Plasmid analysis and cloning of the dichloromethane-utilization genes of Methylobacterium sp. DM4. J Gen Microbiol. 1988 Apr;134(4):943–952. doi: 10.1099/00221287-134-4-943. [DOI] [PubMed] [Google Scholar]
  108. Gälli R., McCarty P. L. Biotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium sp. Appl Environ Microbiol. 1989 Apr;55(4):837–844. doi: 10.1128/aem.55.4.837-844.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Haider K., Jagnow G., Kohnen R., Lim S. U. Abbau chlorierter Benzole, Phenole und Cyclohexan-Derivate durch Benzol und Phenol verwertende Bodenbakterien unter aeroben Bedingungen. Arch Microbiol. 1974 Mar 7;96(3):183–200. doi: 10.1007/BF00590175. [DOI] [PubMed] [Google Scholar]
  110. Haigler B. E., Nishino S. F., Spain J. C. Degradation of 1,2-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol. 1988 Feb;54(2):294–301. doi: 10.1128/aem.54.2.294-301.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Harayama S., Rekik M., Timmis K. N. Genetic analysis of a relaxed substrate specificity aromatic ring dioxygenase, toluate 1,2-dioxygenase, encoded by TOL plasmid pWW0 of Pseudomonas putida. Mol Gen Genet. 1986 Feb;202(2):226–234. doi: 10.1007/BF00331641. [DOI] [PubMed] [Google Scholar]
  112. Hardman D. J. Biotransformation of halogenated compounds. Crit Rev Biotechnol. 1991;11(1):1–40. doi: 10.3109/07388559109069182. [DOI] [PubMed] [Google Scholar]
  113. Hardman D. J., Gowland P. C., Slater J. H. Large plasmids from soil bacteria enriched on halogenated alkanoic acids. Appl Environ Microbiol. 1986 Jan;51(1):44–51. doi: 10.1128/aem.51.1.44-51.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Harker A. R., Kim Y. Trichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134. Appl Environ Microbiol. 1990 Apr;56(4):1179–1181. doi: 10.1128/aem.56.4.1179-1181.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Hartmann J., Reineke W., Knackmuss H. J. Metabolism of 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate by a pseudomonad. Appl Environ Microbiol. 1979 Mar;37(3):421–428. doi: 10.1128/aem.37.3.421-428.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Hartmans S., Jansen M. W., van der Werf M. J., de Bont J. A. Bacterial metabolism of 3-chloroacrylic acid. J Gen Microbiol. 1991 Aug;137(8):2025–2032. doi: 10.1099/00221287-137-8-2025. [DOI] [PubMed] [Google Scholar]
  117. Hartmans S., de Bont J. A., Harder W. Microbial metabolism of short-chain unsaturated hydrocarbons. FEMS Microbiol Rev. 1989 Sep;5(3):235–264. doi: 10.1016/0168-6445(89)90034-x. [DOI] [PubMed] [Google Scholar]
  118. Harwood C. S., Gibson J. Uptake of benzoate by Rhodopseudomonas palustris grown anaerobically in light. J Bacteriol. 1986 Feb;165(2):504–509. doi: 10.1128/jb.165.2.504-509.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Haugland R. A., Schlemm D. J., Lyons R. P., 3rd, Sferra P. R., Chakrabarty A. M. Degradation of the chlorinated phenoxyacetate herbicides 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid by pure and mixed bacterial cultures. Appl Environ Microbiol. 1990 May;56(5):1357–1362. doi: 10.1128/aem.56.5.1357-1362.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Heitkamp M. A., Cerniglia C. E. Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl Environ Microbiol. 1989 Aug;55(8):1968–1973. doi: 10.1128/aem.55.8.1968-1973.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Hendriksen H. V., Larsen S., Ahring B. K. Influence of a supplemental carbon source on anaerobic dechlorination of pentachlorophenol in granular sludge. Appl Environ Microbiol. 1992 Jan;58(1):365–370. doi: 10.1128/aem.58.1.365-370.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Heritage A. D., MacRae I. C. Degradation of lindane by cell-free preparations of Clostridium sphenoides. Appl Environ Microbiol. 1977 Aug;34(2):222–224. doi: 10.1128/aem.34.2.222-224.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Hernandez B. S., Higson F. K., Kondrat R., Focht D. D. Metabolism of and inhibition by chlorobenzoates in Pseudomonas putida P111. Appl Environ Microbiol. 1991 Nov;57(11):3361–3366. doi: 10.1128/aem.57.11.3361-3366.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Hickey W. J., Brenner V., Focht D. D. Mineralization of 2-chloro- and 2,5-dichlorobiphenyl by Pseudomonas sp. strain UCR2. FEMS Microbiol Lett. 1992 Nov 1;77(1-3):175–180. doi: 10.1016/0378-1097(92)90151-d. [DOI] [PubMed] [Google Scholar]
  125. Hickey W. J., Focht D. D. Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2. Appl Environ Microbiol. 1990 Dec;56(12):3842–3850. doi: 10.1128/aem.56.12.3842-3850.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Hickey W. J., Searles D. B., Focht D. D. Enhanced mineralization of polychlorinated biphenyls in soil inoculated with chlorobenzoate-degrading bacteria. Appl Environ Microbiol. 1993 Apr;59(4):1194–1200. doi: 10.1128/aem.59.4.1194-1200.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Higgins I. J., Hammond R. C., Sariaslani F. S., Best D., Davies M. M., Tryhorn S. E., Taylor F. Biotransformation of hydrocarbons and related compounds by whole organism suspensions of methane-grown methylosinus trichosporium OB 3b. Biochem Biophys Res Commun. 1979 Jul 27;89(2):671–677. doi: 10.1016/0006-291x(79)90682-x. [DOI] [PubMed] [Google Scholar]
  128. Higson F. K., Focht D. D. Degradation of 2-bromobenzoic acid by a strain of Pseudomonas aeruginosa. Appl Environ Microbiol. 1990 Jun;56(6):1615–1619. doi: 10.1128/aem.56.6.1615-1619.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Holliger C., Kengen S. W., Schraa G., Stams A. J., Zehnder A. J. Methyl-coenzyme M reductase of Methanobacterium thermoautotrophicum delta H catalyzes the reductive dechlorination of 1,2-dichloroethane to ethylene and chloroethane. J Bacteriol. 1992 Jul;174(13):4435–4443. doi: 10.1128/jb.174.13.4435-4443.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Holliger C., Schraa G., Stams A. J., Zehnder A. J. Enrichment and properties of an anaerobic mixed culture reductively dechlorinating 1,2,3-trichlorobenzene to 1,3-dichlorobenzene. Appl Environ Microbiol. 1992 May;58(5):1636–1644. doi: 10.1128/aem.58.5.1636-1644.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Holliger C., Schraa G., Stams A. J., Zehnder A. J. Reductive dechlorination of 1,2-dichloroethane and chloroethane by cell suspensions of methanogenic bacteria. Biodegradation. 1990;1(4):253–261. doi: 10.1007/BF00119762. [DOI] [PubMed] [Google Scholar]
  132. Holliger C., Schraa G., Stupperich E., Stams A. J., Zehnder A. J. Evidence for the involvement of corrinoids and factor F430 in the reductive dechlorination of 1,2-dichloroethane by Methanosarcina barkeri. J Bacteriol. 1992 Jul;174(13):4427–4434. doi: 10.1128/jb.174.13.4427-4434.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Holmstead R. L. Studies of the degradation of Mirex with an iron(II) porphyrin model system. J Agric Food Chem. 1976 May-Jun;24(3):620–624. doi: 10.1021/jf60205a024. [DOI] [PubMed] [Google Scholar]
  134. Hopkins G. D., Semprini L., McCarty P. L. Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms. Appl Environ Microbiol. 1993 Jul;59(7):2277–2285. doi: 10.1128/aem.59.7.2277-2285.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Husain M., Entsch B., Ballou D. P., Massey V., Chapman P. J. Fluoride elimination from substrates in hydroxylation reactions catalyzed by p-hydroxybenzoate hydroxylase. J Biol Chem. 1980 May 10;255(9):4189–4197. [PubMed] [Google Scholar]
  136. Häggblom M. M., Apajalahti J. H., Salkinoja-Salonen M. S. Hydroxylation and dechlorination of chlorinated guaiacols and syringols by Rhodococcus chlorophenolicus. Appl Environ Microbiol. 1988 Mar;54(3):683–687. doi: 10.1128/aem.54.3.683-687.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Häggblom M. M., Janke D., Salkinoja-Salonen M. S. Hydroxylation and Dechlorination of Tetrachlorohydroquinone by Rhodococcus sp. Strain CP-2 Cell Extracts. Appl Environ Microbiol. 1989 Feb;55(2):516–519. doi: 10.1128/aem.55.2.516-519.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. Häggblom M. M. Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol Rev. 1992 Sep;9(1):29–71. doi: 10.1111/j.1574-6968.1992.tb05823.x. [DOI] [PubMed] [Google Scholar]
  139. Häggblom M. M., Nohynek L. J., Salkinoja-Salonen M. S. Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains. Appl Environ Microbiol. 1988 Dec;54(12):3043–3052. doi: 10.1128/aem.54.12.3043-3052.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Häggblom M. M., Rivera M. D., Young L. Y. Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids. Appl Environ Microbiol. 1993 Apr;59(4):1162–1167. doi: 10.1128/aem.59.4.1162-1167.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Häggblom M. M., Young L. Y. Chlorophenol degradation coupled to sulfate reduction. Appl Environ Microbiol. 1990 Nov;56(11):3255–3260. doi: 10.1128/aem.56.11.3255-3260.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Imai R., Nagata Y., Fukuda M., Takagi M., Yano K. Molecular cloning of a Pseudomonas paucimobilis gene encoding a 17-kilodalton polypeptide that eliminates HCl molecules from gamma-hexachlorocyclohexane. J Bacteriol. 1991 Nov;173(21):6811–6819. doi: 10.1128/jb.173.21.6811-6819.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Jacobsen C. S., Pedersen J. C. Mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) in soil inoculated with Pseudomonas cepacia DBO1(pRO101), Alcaligenes eutrophus AEO106(pRO101) and Alcaligenes eutrophus JMP134(pJP4): effects of inoculation level and substrate concentration. Biodegradation. 1991;2(4):253–263. doi: 10.1007/BF00114557. [DOI] [PubMed] [Google Scholar]
  144. Jagnow G., Haider K., Ellwardt P. C. Anaerobic dechlorination and degradation of hexachlorocyclohexane isomers by anaerobic and facultative anaerobic bacteria. Arch Microbiol. 1977 Dec 15;115(3):285–292. doi: 10.1007/BF00446454. [DOI] [PubMed] [Google Scholar]
  145. Janssen D. B., Gerritse J., Brackman J., Kalk C., Jager D., Witholt B. Purification and characterization of a bacterial dehalogenase with activity toward halogenated alkanes, alcohols and ethers. Eur J Biochem. 1988 Jan 15;171(1-2):67–72. doi: 10.1111/j.1432-1033.1988.tb13759.x. [DOI] [PubMed] [Google Scholar]
  146. Janssen D. B., Jager D., Witholt B. Degradation of n-haloalkanes and alpha, omega-dihaloalkanes by wild-type and mutants of Acinetobacter sp. strain GJ70. Appl Environ Microbiol. 1987 Mar;53(3):561–566. doi: 10.1128/aem.53.3.561-566.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  147. Janssen D. B., Pries F., van der Ploeg J., Kazemier B., Terpstra P., Witholt B. Cloning of 1,2-dichloroethane degradation genes of Xanthobacter autotrophicus GJ10 and expression and sequencing of the dhlA gene. J Bacteriol. 1989 Dec;171(12):6791–6799. doi: 10.1128/jb.171.12.6791-6799.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Janssen D. B., Scheper A., Dijkhuizen L., Witholt B. Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10. Appl Environ Microbiol. 1985 Mar;49(3):673–677. doi: 10.1128/aem.49.3.673-677.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Jones D. H., Barth P. T., Byrom D., Thomas C. M. Nucleotide sequence of the structural gene encoding a 2-haloalkanoic acid dehalogenase of Pseudomonas putida strain AJ1 and purification of the encoded protein. J Gen Microbiol. 1992 Apr;138(4):675–683. doi: 10.1099/00221287-138-4-675. [DOI] [PubMed] [Google Scholar]
  150. Joshi D. K., Gold M. H. Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol. 1993 Jun;59(6):1779–1785. doi: 10.1128/aem.59.6.1779-1785.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Jutzi K., Cook A. M., Hütter R. The degradative pathway of the s-triazine melamine. The steps to ring cleavage. Biochem J. 1982 Dec 15;208(3):679–684. doi: 10.1042/bj2080679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Karns J. S., Kilbane J. J., Duttagupta S., Chakrabarty A. M. Metabolism of Halophenols by 2,4,5-trichlorophenoxyacetic acid-degrading Pseudomonas cepacia. Appl Environ Microbiol. 1983 Nov;46(5):1176–1181. doi: 10.1128/aem.46.5.1176-1181.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Kaschabek S. R., Reineke W. Maleylacetate reductase of Pseudomonas sp. strain B13: dechlorination of chloromaleylacetates, metabolites in the degradation of chloroaromatic compounds. Arch Microbiol. 1992;158(6):412–417. doi: 10.1007/BF00276301. [DOI] [PubMed] [Google Scholar]
  154. Kawasaki H., Takao M., Koiso A., Tonomura K. Genetic Rearrangement of Plasmids: In Vivo Recombination between a Dehalogenation Plasmid and Multiple-Resistance Plasmid RP4 in Pseudomonas sp. Appl Environ Microbiol. 1985 Jun;49(6):1544–1546. doi: 10.1128/aem.49.6.1544-1546.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  155. Kawasaki H., Toyama T., Maeda T., Nishino H., Tonomura K. Cloning and sequence analysis of a plasmid-encoded 2-haloacid dehalogenase gene from Pseudomonas putida No. 109. Biosci Biotechnol Biochem. 1994 Jan;58(1):160–163. doi: 10.1271/bbb.58.160. [DOI] [PubMed] [Google Scholar]
  156. Kawasaki H., Tsuda K., Matsushita I., Tonomura K. Lack of homology between two haloacetate dehalogenase genes encoded on a plasmid from Moraxella sp. strain B. J Gen Microbiol. 1992 Jul;138(7):1317–1323. doi: 10.1099/00221287-138-7-1317. [DOI] [PubMed] [Google Scholar]
  157. Kersten P. J., Chapman P. J., Dagley S. Enzymatic release of halogens or methanol from some substituted protocatechuic acids. J Bacteriol. 1985 May;162(2):693–697. doi: 10.1128/jb.162.2.693-697.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Keuning S., Janssen D. B., Witholt B. Purification and characterization of hydrolytic haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. J Bacteriol. 1985 Aug;163(2):635–639. doi: 10.1128/jb.163.2.635-639.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Khalifa S., Holmstead R. L., Casida J. E. Toxaphene degradation by iron(II) protoporphyrin systems. J Agric Food Chem. 1976 Mar-Apr;24(2):277–282. doi: 10.1021/jf60204a009. [DOI] [PubMed] [Google Scholar]
  160. Kilbane J. J., Chatterjee D. K., Chakrabarty A. M. Detoxification of 2,4,5-trichlorophenoxyacetic acid from contaminated soil by Pseudomonas cepacia. Appl Environ Microbiol. 1983 May;45(5):1697–1700. doi: 10.1128/aem.45.5.1697-1700.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Kilbane J. J., Chatterjee D. K., Karns J. S., Kellogg S. T., Chakrabarty A. M. Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia. Appl Environ Microbiol. 1982 Jul;44(1):72–78. doi: 10.1128/aem.44.1.72-78.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. King G. M. Dehalogenation in marine sediments containing natural sources of halophenols. Appl Environ Microbiol. 1988 Dec;54(12):3079–3085. doi: 10.1128/aem.54.12.3079-3085.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Kingsbury D. T. Balancing regulatory control, scientific knowledge, and public understanding. Basic Life Sci. 1988;45:341–350. doi: 10.1007/978-1-4899-0824-7_23. [DOI] [PubMed] [Google Scholar]
  164. Kirk T. K., Farrell R. L. Enzymatic "combustion": the microbial degradation of lignin. Annu Rev Microbiol. 1987;41:465–505. doi: 10.1146/annurev.mi.41.100187.002341. [DOI] [PubMed] [Google Scholar]
  165. Kirkpatrick D., Biggs S. R., Conway B., Finn C. M., Hawkins D. R., Honda T., Ishida M., Powell G. P. Metabolism of N-(2,3-dichlorophenyl)-3,4,5,6-tetrachlorophthalamic acid (techlofthalam) in paddy soil and rice. J Agric Food Chem. 1981 Nov-Dec;29(6):1149–1153. doi: 10.1021/jf00108a012. [DOI] [PubMed] [Google Scholar]
  166. Kiyohara H., Hatta T., Ogawa Y., Kakuda T., Yokoyama H., Takizawa N. Isolation of Pseudomonas pickettii strains that degrade 2,4,6-trichlorophenol and their dechlorination of chlorophenols. Appl Environ Microbiol. 1992 Apr;58(4):1276–1283. doi: 10.1128/aem.58.4.1276-1283.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Klages U., Krauss S., Lingens F. 2-Haloacid dehalogenase from a 4-chlorobenzoate-degrading Pseudomonas spec. CBS 3. Hoppe Seylers Z Physiol Chem. 1983 May;364(5):529–535. doi: 10.1515/bchm2.1983.364.1.529. [DOI] [PubMed] [Google Scholar]
  168. Klecka G. M., Gibson D. T. Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl Environ Microbiol. 1981 May;41(5):1159–1165. doi: 10.1128/aem.41.5.1159-1165.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Koh S. C., Bowman J. P., Sayler G. S. Soluble Methane Monooxygenase Production and Trichloroethylene Degradation by a Type I Methanotroph, Methylomonas methanica 68-1. Appl Environ Microbiol. 1993 Apr;59(4):960–967. doi: 10.1128/aem.59.4.960-967.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Kohler-Staub D., Kohler H. P. Microbial degradation of beta-chlorinated four-carbon aliphatic acids. J Bacteriol. 1989 Mar;171(3):1428–1434. doi: 10.1128/jb.171.3.1428-1434.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Kohler-Staub D., Leisinger T. Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2. J Bacteriol. 1985 May;162(2):676–681. doi: 10.1128/jb.162.2.676-681.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Kohring G. W., Rogers J. E., Wiegel J. Anaerobic biodegradation of 2,4-dichlorophenol in freshwater lake sediments at different temperatures. Appl Environ Microbiol. 1989 Feb;55(2):348–353. doi: 10.1128/aem.55.2.348-353.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Kohring G. W., Zhang X. M., Wiegel J. Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediments in the presence of sulfate. Appl Environ Microbiol. 1989 Oct;55(10):2735–2737. doi: 10.1128/aem.55.10.2735-2737.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Krone U. E., Laufer K., Thauer R. K., Hogenkamp H. P. Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated C1 hydrocarbons in methanogenic bacteria. Biochemistry. 1989 Dec 26;28(26):10061–10065. doi: 10.1021/bi00452a027. [DOI] [PubMed] [Google Scholar]
  175. Krone U. E., Thauer R. K. Dehalogenation of trichlorofluoromethane (CFC-11) by Methanosarcina barkeri. FEMS Microbiol Lett. 1992 Jan 1;69(2):201–204. doi: 10.1016/0378-1097(92)90629-3. [DOI] [PubMed] [Google Scholar]
  176. Krone U. E., Thauer R. K., Hogenkamp H. P., Steinbach K. Reductive formation of carbon monoxide from CCl4 and FREONs 11, 12, and 13 catalyzed by corrinoids. Biochemistry. 1991 Mar 12;30(10):2713–2719. doi: 10.1021/bi00224a020. [DOI] [PubMed] [Google Scholar]
  177. Kuhm A. E., Schlömann M., Knackmuss H. J., Pieper D. H. Purification and characterization of dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP 134. Biochem J. 1990 Mar 15;266(3):877–883. [PMC free article] [PubMed] [Google Scholar]
  178. Kuhn E. P., Townsend G. T., Suflita J. M. Effect of sulfate and organic carbon supplements on reductive dehalogenation of chloroanilines in anaerobic aquifer slurries. Appl Environ Microbiol. 1990 Sep;56(9):2630–2637. doi: 10.1128/aem.56.9.2630-2637.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Kästner M. Reductive dechlorination of Tri- and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions. Appl Environ Microbiol. 1991 Jul;57(7):2039–2046. doi: 10.1128/aem.57.7.2039-2046.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. LIPKE H., KEARNS C. W. DDT dehydrochlorinase. I. Isolation, chemical properties, and spectrophotometric assay. J Biol Chem. 1959 Aug;234(8):2123–2128. [PubMed] [Google Scholar]
  181. LIPKE H., KEARNS C. W. DDT dehydrochlorinase. II. Substrate and cofactor specificity. J Biol Chem. 1959 Aug;234(8):2129–2132. [PubMed] [Google Scholar]
  182. La Roche S. D., Leisinger T. Identification of dcmR, the regulatory gene governing expression of dichloromethane dehalogenase in Methylobacterium sp. strain DM4. J Bacteriol. 1991 Nov;173(21):6714–6721. doi: 10.1128/jb.173.21.6714-6721.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. La Roche S. D., Leisinger T. Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene, a member of the glutathione S-transferase supergene family. J Bacteriol. 1990 Jan;172(1):164–171. doi: 10.1128/jb.172.1.164-171.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Larsen S., Hendriksen H. V., Ahring B. K. Potential for thermophilic (50 degrees C) anaerobic dechlorination of pentachlorophenol in different ecosystems. Appl Environ Microbiol. 1991 Jul;57(7):2085–2090. doi: 10.1128/aem.57.7.2085-2090.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Layton A. C., Sanseverino J., Wallace W., Corcoran C., Sayler G. S. Evidence for 4-chlorobenzoic acid dehalogenation mediated by plasmids related to pSS50. Appl Environ Microbiol. 1992 Jan;58(1):399–402. doi: 10.1128/aem.58.1.399-402.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Lewis T. A., Crawford R. L. Physiological factors affecting carbon tetrachloride dehalogenation by the denitrifying bacterium Pseudomonas sp. strain KC. Appl Environ Microbiol. 1993 May;59(5):1635–1641. doi: 10.1128/aem.59.5.1635-1641.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Li D. Y., Eberspächer J., Wagner B., Kuntzer J., Lingens F. Degradation of 2,4,6-trichlorophenol by Azotobacter sp. strain GP1. Appl Environ Microbiol. 1991 Jul;57(7):1920–1928. doi: 10.1128/aem.57.7.1920-1928.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Li S., Wackett L. P. Trichloroethylene oxidation by toluene dioxygenase. Biochem Biophys Res Commun. 1992 May 29;185(1):443–451. doi: 10.1016/s0006-291x(05)81005-8. [DOI] [PubMed] [Google Scholar]
  189. Liao D. I., Remington S. J. Structure of wheat serine carboxypeptidase II at 3.5-A resolution. A new class of serine proteinase. J Biol Chem. 1990 Apr 25;265(12):6528–6531. doi: 10.2210/pdb2sc2/pdb. [DOI] [PubMed] [Google Scholar]
  190. Linkfield T. G., Tiedje J. M. Characterization of the requirements and substrates for reductive dehalogenation by strain DCB-1. J Ind Microbiol. 1990 Jan;5(1):9–15. doi: 10.1007/BF01569601. [DOI] [PubMed] [Google Scholar]
  191. Little C. D., Palumbo A. V., Herbes S. E., Lidstrom M. E., Tyndall R. L., Gilmer P. J. Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl Environ Microbiol. 1988 Apr;54(4):951–956. doi: 10.1128/aem.54.4.951-956.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Little M., Williams P. A. A bacterial halidohydrolase. Its purification, some properties and its modification by specific amino acid reagents. Eur J Biochem. 1971 Jul 15;21(1):99–109. doi: 10.1111/j.1432-1033.1971.tb01445.x. [DOI] [PubMed] [Google Scholar]
  193. Logan M. S., Blocki F. A., Stimpfl K. J., Wackett L. P. Haloacetonitriles are low K1 inhibitors of bacterial dichloromethane dehalogenases. Biochem Biophys Res Commun. 1993 Dec 15;197(2):853–858. doi: 10.1006/bbrc.1993.2557. [DOI] [PubMed] [Google Scholar]
  194. Lovelock J. E. NAtural halocarbons in the air and in the sea. Nature. 1975 Jul 17;256(5514):193–194. doi: 10.1038/256193a0. [DOI] [PubMed] [Google Scholar]
  195. Lowe S. E., Jain M. K., Zeikus J. G. Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol Rev. 1993 Jun;57(2):451–509. doi: 10.1128/mr.57.2.451-509.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Löffler F., Müller R. Identification of 4-chlorobenzoyl-coenzyme A as intermediate in the dehalogenation catalyzed by 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS3. FEBS Lett. 1991 Sep 23;290(1-2):224–226. doi: 10.1016/0014-5793(91)81265-a. [DOI] [PubMed] [Google Scholar]
  197. Löffler F., Müller R., Lingens F. Dehalogenation of 4-chlorobenzoate by 4-chlorobenzoate dehalogenase from pseudomonas sp. CBS3: an ATP/coenzyme A dependent reaction. Biochem Biophys Res Commun. 1991 May 15;176(3):1106–1111. doi: 10.1016/0006-291x(91)90398-q. [DOI] [PubMed] [Google Scholar]
  198. Löffler F., Müller R., Lingens F. Purification and properties of 4-halobenzoate-coenzyme A ligase from Pseudomonas sp. CBS3. Biol Chem Hoppe Seyler. 1992 Oct;373(10):1001–1007. doi: 10.1515/bchm3.1992.373.2.1001. [DOI] [PubMed] [Google Scholar]
  199. MacRae I. C., Raghu K., Bautista E. M. Anaerobic degradation of the insecticide lindane by Clostridium sp. Nature. 1969 Mar 1;221(5183):859–860. doi: 10.1038/221859a0. [DOI] [PubMed] [Google Scholar]
  200. Madsen T., Aamand H. Anaerobic transformation and toxicity of trichlorophenols in a stable enrichment culture. Appl Environ Microbiol. 1992 Feb;58(2):557–561. doi: 10.1128/aem.58.2.557-561.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Madsen T., Aamand J. Effects of sulfuroxy anions on degradation of pentachlorophenol by a methanogenic enrichment culture. Appl Environ Microbiol. 1991 Sep;57(9):2453–2458. doi: 10.1128/aem.57.9.2453-2458.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Madsen T., Licht D. Isolation and characterization of an anaerobic chlorophenol-transforming bacterium. Appl Environ Microbiol. 1992 Sep;58(9):2874–2878. doi: 10.1128/aem.58.9.2874-2878.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Mannervik B., Alin P., Guthenberg C., Jensson H., Tahir M. K., Warholm M., Jörnvall H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7202–7206. doi: 10.1073/pnas.82.21.7202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Marks T. S., Allpress J. D., Maule A. Dehalogenation of lindane by a variety of porphyrins and corrins. Appl Environ Microbiol. 1989 May;55(5):1258–1261. doi: 10.1128/aem.55.5.1258-1261.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Marks T. S., Wait R., Smith A. R., Quirk A. V. The origin of the oxygen incorporated during the dehalogenation/hydroxylation of 4-chlorobenzoate by an Arthrobacter sp. Biochem Biophys Res Commun. 1984 Oct 30;124(2):669–674. doi: 10.1016/0006-291x(84)91607-3. [DOI] [PubMed] [Google Scholar]
  206. Markus A., Klages U., Krauss S., Lingens F. Oxidation and dehalogenation of 4-chlorophenylacetate by a two-component enzyme system from Pseudomonas sp. strain CBS3. J Bacteriol. 1984 Nov;160(2):618–621. doi: 10.1128/jb.160.2.618-621.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  207. Markus A., Krekel D., Lingens F. Purification and some properties of component A of the 4-chlorophenylacetate 3,4-dioxygenase from Pseudomonas species strain CBS. J Biol Chem. 1986 Sep 25;261(27):12883–12888. [PubMed] [Google Scholar]
  208. Marletta M. A., Cheung Y. F., Walsh C. Stereochemical studies on the hydration of monofluorofumarate and 2,3-difluorofumarate by fumarase. Biochemistry. 1982 May 25;21(11):2637–2644. doi: 10.1021/bi00540a010. [DOI] [PubMed] [Google Scholar]
  209. Martinez-Blanco H., Reglero A., Luengo J. M. Carbon catabolite regulation of phenylacetyl-CoA ligase from Pseudomonas putida. Biochem Biophys Res Commun. 1990 Mar 30;167(3):891–897. doi: 10.1016/0006-291x(90)90607-o. [DOI] [PubMed] [Google Scholar]
  210. Martínez-Blanco H., Reglero A., Rodriguez-Aparicio L. B., Luengo J. M. Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida. A specific enzyme for the catabolism of phenylacetic acid. J Biol Chem. 1990 Apr 25;265(12):7084–7090. [PubMed] [Google Scholar]
  211. Merkel S. M., Eberhard A. E., Gibson J., Harwood C. S. Involvement of coenzyme A thioesters in anaerobic metabolism of 4-hydroxybenzoate by Rhodopseudomonas palustris. J Bacteriol. 1989 Jan;171(1):1–7. doi: 10.1128/jb.171.1.1-7.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Meyer D. J., Coles B., Pemble S. E., Gilmore K. S., Fraser G. M., Ketterer B. Theta, a new class of glutathione transferases purified from rat and man. Biochem J. 1991 Mar 1;274(Pt 2):409–414. doi: 10.1042/bj2740409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  213. Miguez C. B., Greer C. W., Ingram J. M. Degradation of mono- and dichlorobenzoic acid isomers by two natural isolates of Alcaligenes denitrificans. Arch Microbiol. 1990;154(2):139–143. doi: 10.1007/BF00423323. [DOI] [PubMed] [Google Scholar]
  214. Mikesell M. D., Boyd S. A. Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Appl Environ Microbiol. 1986 Oct;52(4):861–865. doi: 10.1128/aem.52.4.861-865.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Mikesell M. D., Boyd S. A. Dechlorination of chloroform by methanosarcina strains. Appl Environ Microbiol. 1990 Apr;56(4):1198–1201. doi: 10.1128/aem.56.4.1198-1201.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  216. Milne G. W., Goldman P., Holtzman J. L. The metabolism of 2-fluorobenzoic acid. II. Studies with 18-O2. J Biol Chem. 1968 Oct 25;243(20):5374–5376. [PubMed] [Google Scholar]
  217. Mires M. H., Alexander C. H. The prophylactic treatment tuberculosis. Del Med J. 1972 Jul;44(7):187–190. [PubMed] [Google Scholar]
  218. Mohamed M el-S, Fuchs G. Purification and characterization of phenylacetate-coenzyme A ligase from a denitrifying Pseudomonas sp., an enzyme involved in the anaerobic degradation of phenylacetate. Arch Microbiol. 1993;159(6):554–562. doi: 10.1007/BF00249035. [DOI] [PubMed] [Google Scholar]
  219. Mohamed M el-S, Seyfried B., Tschech A., Fuchs G. Anaerobic oxidation of phenylacetate and 4-hydroxyphenylacetate to benzoyl-coenzyme A and CO2 in denitrifying Pseudomonas sp. Evidence for an alpha-oxidation mechanism. Arch Microbiol. 1993;159(6):563–573. doi: 10.1007/BF00249036. [DOI] [PubMed] [Google Scholar]
  220. Mohn W. W., Kennedy K. J. Limited degradation of chlorophenols by anaerobic sludge granules. Appl Environ Microbiol. 1992 Jul;58(7):2131–2136. doi: 10.1128/aem.58.7.2131-2136.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  221. Mohn W. W., Kennedy K. J. Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1. Appl Environ Microbiol. 1992 Apr;58(4):1367–1370. doi: 10.1128/aem.58.4.1367-1370.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Mohn W. W., Tiedje J. M. Microbial reductive dehalogenation. Microbiol Rev. 1992 Sep;56(3):482–507. doi: 10.1128/mr.56.3.482-507.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Mohn W. W., Tiedje J. M. Strain DCB-1 conserves energy for growth from reductive dechlorination coupled to formate oxidation. Arch Microbiol. 1990;153(3):267–271. doi: 10.1007/BF00249080. [DOI] [PubMed] [Google Scholar]
  224. Mokross H., Schmidt E., Reineke W. Degradation of 3-chlorobiphenyl by in vivo constructed hybrid pseudomonads. FEMS Microbiol Lett. 1990 Sep 1;59(1-2):179–185. doi: 10.1016/0378-1097(90)90053-s. [DOI] [PubMed] [Google Scholar]
  225. Morgan P., Watkinson R. J. Microbiological methods for the cleanup of soil and ground water contaminated with halogenated organic compounds. FEMS Microbiol Rev. 1989 Dec;5(4):277–299. doi: 10.1111/j.1574-6968.1989.tb03401.x. [DOI] [PubMed] [Google Scholar]
  226. Motosugi K., Esaki N., Soda K. Bacterial assimilation of D- and L-2-chloropropionates and occurrence of a new dehalogenase. Arch Microbiol. 1982 May;131(3):179–183. doi: 10.1007/BF00405875. [DOI] [PubMed] [Google Scholar]
  227. Motosugi K., Esaki N., Soda K. Purification and properties of a new enzyme, DL-2-haloacid dehalogenase, from Pseudomonas sp. J Bacteriol. 1982 May;150(2):522–527. doi: 10.1128/jb.150.2.522-527.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Murdiyatmo U., Asmara W., Tsang J. S., Baines A. J., Bull A. T., Hardman D. J. Molecular biology of the 2-haloacid halidohydrolase IVa from Pseudomonas cepacia MBA4. Biochem J. 1992 May 15;284(Pt 1):87–93. doi: 10.1042/bj2840087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Mörsberger F. M., Müller R., Otto M. K., Lingens F., Kulbe K. D. Purification and characterization of 2-halocarboxylic acid dehalogenase II from Pseudomonas spec. CBS 3. Biol Chem Hoppe Seyler. 1991 Oct;372(10):915–922. doi: 10.1515/bchm3.1991.372.2.915. [DOI] [PubMed] [Google Scholar]
  230. Müller R., Oltmanns R. H., Lingens F. Enzymatic dehalogenation of 4-chlorobenzoate by extracts from Arthrobacter sp. SU DSM 20407. Biol Chem Hoppe Seyler. 1988 Jul;369(7):567–571. doi: 10.1515/bchm3.1988.369.2.567. [DOI] [PubMed] [Google Scholar]
  231. Müller R., Thiele J., Klages U., Lingens F. Incorporation of [18O]water into 4-hydroxybenzoic acid in the reaction of 4-chlorobenzoate dehalogenase from pseudomonas spec. CBS 3. Biochem Biophys Res Commun. 1984 Oct 15;124(1):178–182. doi: 10.1016/0006-291x(84)90933-1. [DOI] [PubMed] [Google Scholar]
  232. Nagata Y., Nariya T., Ohtomo R., Fukuda M., Yano K., Takagi M. Cloning and sequencing of a dehalogenase gene encoding an enzyme with hydrolase activity involved in the degradation of gamma-hexachlorocyclohexane in Pseudomonas paucimobilis. J Bacteriol. 1993 Oct;175(20):6403–6410. doi: 10.1128/jb.175.20.6403-6410.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Nakamura T., Nagasawa T., Yu F., Watanabe I., Yamada H. A new catalytic function of halohydrin hydrogen-halide-lyase, synthesis of beta-hydroxynitriles from epoxides and cyanide. Biochem Biophys Res Commun. 1991 Oct 15;180(1):124–130. doi: 10.1016/s0006-291x(05)81264-1. [DOI] [PubMed] [Google Scholar]
  234. Nakamura T., Nagasawa T., Yu F., Watanabe I., Yamada H. Resolution and some properties of enzymes involved in enantioselective transformation of 1,3-dichloro-2-propanol to (R)-3-chloro-1,2-propanediol by Corynebacterium sp. strain N-1074. J Bacteriol. 1992 Dec;174(23):7613–7619. doi: 10.1128/jb.174.23.7613-7619.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  235. Nakamura T., Yu F., Mizunashi W., Watanabe I. Production of (R)-3-Chloro-1,2-Propanediol from Prochiral 1,3-Dichloro-2-Propanol by Corynebacterium sp. Strain N-1074. Appl Environ Microbiol. 1993 Jan;59(1):227–230. doi: 10.1128/aem.59.1.227-230.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  236. Nakatsu C. H., Wyndham R. C. Cloning and expression of the transposable chlorobenzoate-3,4-dioxygenase genes of Alcaligenes sp. strain BR60. Appl Environ Microbiol. 1993 Nov;59(11):3625–3633. doi: 10.1128/aem.59.11.3625-3633.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  237. Nakatsu C., Ng J., Singh R., Straus N., Wyndham C. Chlorobenzoate catabolic transposon Tn5271 is a composite class I element with flanking class II insertion sequences. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8312–8316. doi: 10.1073/pnas.88.19.8312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Neidle E. L., Hartnett C., Ornston L. N., Bairoch A., Rekik M., Harayama S. Nucleotide sequences of the Acinetobacter calcoaceticus benABC genes for benzoate 1,2-dioxygenase reveal evolutionary relationships among multicomponent oxygenases. J Bacteriol. 1991 Sep;173(17):5385–5395. doi: 10.1128/jb.173.17.5385-5395.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Neilson A. H., Allard A. S., Lindgren C., Remberger M. Transformations of chloroguaiacols, chloroveratroles, and chlorocatechols by stable consortia of anaerobic bacteria. Appl Environ Microbiol. 1987 Oct;53(10):2511–2519. doi: 10.1128/aem.53.10.2511-2519.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Neilson A. H. The biodegradation of halogenated organic compounds. J Appl Bacteriol. 1990 Oct;69(4):445–470. doi: 10.1111/j.1365-2672.1990.tb01536.x. [DOI] [PubMed] [Google Scholar]
  241. Nelson M. J., Montgomery S. O., Mahaffey W. R., Pritchard P. H. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl Environ Microbiol. 1987 May;53(5):949–954. doi: 10.1128/aem.53.5.949-954.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  242. Nelson M. J., Montgomery S. O., Pritchard P. H. Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Appl Environ Microbiol. 1988 Feb;54(2):604–606. doi: 10.1128/aem.54.2.604-606.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  243. Nelson M. J., Pritchard P. H., Bourquin A. W. Preliminary development of a bench-scale treatment system for aerobic degradation of trichloroethylene. Basic Life Sci. 1988;45:203–209. doi: 10.1007/978-1-4899-0824-7_13. [DOI] [PubMed] [Google Scholar]
  244. Newman L. M., Wackett L. P. Fate of 2,2,2-trichloroacetaldehyde (chloral hydrate) produced during trichloroethylene oxidation by methanotrophs. Appl Environ Microbiol. 1991 Aug;57(8):2399–2402. doi: 10.1128/aem.57.8.2399-2402.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Nies L., Vogel T. M. Identification of the proton source for the microbial reductive dechlorination of 2,3,4,5,6-pentachlorobiphenyl. Appl Environ Microbiol. 1991 Sep;57(9):2771–2774. doi: 10.1128/aem.57.9.2771-2774.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. O'Reilly K. T., Crawford R. L. Degradation of pentachlorophenol by polyurethane-immobilized Flavobacterium cells. Appl Environ Microbiol. 1989 Sep;55(9):2113–2118. doi: 10.1128/aem.55.9.2113-2118.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  247. Ohisa N., Kurihara N., Nakajima M. ATP synthesis associated with the conversion of hexachlorocyclohexane related compounds. Arch Microbiol. 1982 Jun;131(4):330–333. doi: 10.1007/BF00411180. [DOI] [PubMed] [Google Scholar]
  248. Ohisa N., Yamaguchi M., Kurihara N. Lindane degradation by cell-free extracts of Clostridium rectum. Arch Microbiol. 1980 Apr;125(3):221–225. doi: 10.1007/BF00446880. [DOI] [PubMed] [Google Scholar]
  249. Oldenhuis R., Vink R. L., Janssen D. B., Witholt B. Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl Environ Microbiol. 1989 Nov;55(11):2819–2826. doi: 10.1128/aem.55.11.2819-2826.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  250. Omori T., Alexander M. Bacterial and spontaneous dehalogenation of organic compounds. Appl Environ Microbiol. 1978 Mar;35(3):512–516. doi: 10.1128/aem.35.3.512-516.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  251. Omori T., Alexander M. Bacterial dehalogenation of halogenated alkanes and fatty acids. Appl Environ Microbiol. 1978 May;35(5):867–871. doi: 10.1128/aem.35.5.867-871.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  252. Orser C. S., Dutton J., Lange C., Jablonski P., Xun L., Hargis M. Characterization of a Flavobacterium glutathione S-transferase gene involved reductive dechlorination. J Bacteriol. 1993 May;175(9):2640–2644. doi: 10.1128/jb.175.9.2640-2644.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  253. Orser C. S., Lange C. C., Xun L., Zahrt T. C., Schneider B. J. Cloning, sequence analysis, and expression of the Flavobacterium pentachlorophenol-4-monooxygenase gene in Escherichia coli. J Bacteriol. 1993 Jan;175(2):411–416. doi: 10.1128/jb.175.2.411-416.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. PETTY M. A. An introduction to the origin and biochemistry of microbial halometabolites. Bacteriol Rev. 1961 Jun;25:111–130. doi: 10.1128/br.25.2.111-130.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  255. Parsons H. G., O'Loughlin E. V., Forbes D., Cooper D., Gall D. G. Supplemental calories improve essential fatty acid deficiency in cystic fibrosis patients. Pediatr Res. 1988 Sep;24(3):353–356. doi: 10.1203/00006450-198809000-00016. [DOI] [PubMed] [Google Scholar]
  256. Pasti M. B., Pometto A. L., 3rd, Nuti M. P., Crawford D. L. Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut. Appl Environ Microbiol. 1990 Jul;56(7):2213–2218. doi: 10.1128/aem.56.7.2213-2218.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  257. Patel R. N., Hou C. T., Laskin A. I., Felix A. Microbial Oxidation of Hydrocarbons: Properties of a Soluble Methane Monooxygenase from a Facultative Methane-Utilizing Organism, Methylobacterium sp. Strain CRL-26. Appl Environ Microbiol. 1982 Nov;44(5):1130–1137. doi: 10.1128/aem.44.5.1130-1137.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  258. Pathak D., Ngai K. L., Ollis D. X-ray crystallographic structure of dienelactone hydrolase at 2.8 A. J Mol Biol. 1988 Nov 20;204(2):435–445. doi: 10.1016/0022-2836(88)90587-6. [DOI] [PubMed] [Google Scholar]
  259. Pathak D., Ollis D. Refined structure of dienelactone hydrolase at 1.8 A. J Mol Biol. 1990 Jul 20;214(2):497–525. doi: 10.1016/0022-2836(90)90196-s. [DOI] [PubMed] [Google Scholar]
  260. Pavlostathis S. G., Ping Z. A. Transformation of trichloroethylene by sulfate-reducing cultures enriched from a contaminated subsurface soil. Appl Microbiol Biotechnol. 1991 Dec;36(3):416–420. doi: 10.1007/BF00208167. [DOI] [PubMed] [Google Scholar]
  261. Phelps T. J., Niedzielski J. J., Schram R. M., Herbes S. E., White D. C. Biodegradation of trichloroethylene in continuous-recycle expanded-bed bioreactors. Appl Environ Microbiol. 1990 Jun;56(6):1702–1709. doi: 10.1128/aem.56.6.1702-1709.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  262. Picardal F. W., Arnold R. G., Couch H., Little A. M., Smith M. E. Involvement of cytochromes in the anaerobic biotransformation of tetrachloromethane by Shewanella putrefaciens 200. Appl Environ Microbiol. 1993 Nov;59(11):3763–3770. doi: 10.1128/aem.59.11.3763-3770.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  263. Pipke R., Wagner-Döbler I., Timmis K. N., Dwyer D. F. Survival and function of a genetically engineered Pseudomonad in aquatic sediment microcosms. Appl Environ Microbiol. 1992 Apr;58(4):1259–1265. doi: 10.1128/aem.58.4.1259-1265.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  264. Pries F., Kingma J., Pentenga M., van Pouderoyen G., Jeronimus-Stratingh C. M., Bruins A. P., Janssen D. B. Site-directed mutagenesis and oxygen isotope incorporation studies of the nucleophilic aspartate of haloalkane dehalogenase. Biochemistry. 1994 Feb 8;33(5):1242–1247. doi: 10.1021/bi00171a026. [DOI] [PubMed] [Google Scholar]
  265. Quensen J. F., 3rd, Tiedje J. M., Boyd S. A. Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments. Science. 1988 Nov 4;242(4879):752–754. doi: 10.1126/science.242.4879.752. [DOI] [PubMed] [Google Scholar]
  266. Radehaus P. M., Schmidt S. K. Characterization of a novel Pseudomonas sp. that mineralizes high concentrations of pentachlorophenol. Appl Environ Microbiol. 1992 Sep;58(9):2879–2885. doi: 10.1128/aem.58.9.2879-2885.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  267. Ramachandra M., Crawford D. L., Hertel G. Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol. 1988 Dec;54(12):3057–3063. doi: 10.1128/aem.54.12.3057-3063.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  268. Ramanand K., Balba M. T., Duffy J. Reductive dehalogenation of chlorinated benzenes and toluenes under methanogenic conditions. Appl Environ Microbiol. 1993 Oct;59(10):3266–3272. doi: 10.1128/aem.59.10.3266-3272.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  269. Ramanand K., Nagarajan A., Suflita J. M. Reductive dechlorination of the nitrogen heterocyclic herbicide picloram. Appl Environ Microbiol. 1993 Jul;59(7):2251–2256. doi: 10.1128/aem.59.7.2251-2256.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  270. Ramos J. L., Wasserfallen A., Rose K., Timmis K. N. Redesigning metabolic routes: manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. Science. 1987 Jan 30;235(4788):593–596. doi: 10.1126/science.3468623. [DOI] [PubMed] [Google Scholar]
  271. Rasche M. E., Hicks R. E., Hyman M. R., Arp D. J. Oxidation of monohalogenated ethanes and n-chlorinated alkanes by whole cells of Nitrosomonas europaea. J Bacteriol. 1990 Sep;172(9):5368–5373. doi: 10.1128/jb.172.9.5368-5373.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  272. Read R. J., James M. N. Refined crystal structure of Streptomyces griseus trypsin at 1.7 A resolution. J Mol Biol. 1988 Apr 5;200(3):523–551. doi: 10.1016/0022-2836(88)90541-4. [DOI] [PubMed] [Google Scholar]
  273. Rees D. C., Lewis M., Lipscomb W. N. Refined crystal structure of carboxypeptidase A at 1.54 A resolution. J Mol Biol. 1983 Aug 5;168(2):367–387. doi: 10.1016/s0022-2836(83)80024-2. [DOI] [PubMed] [Google Scholar]
  274. Reineke W., Knackmuss H. J. Microbial degradation of haloaromatics. Annu Rev Microbiol. 1988;42:263–287. doi: 10.1146/annurev.mi.42.100188.001403. [DOI] [PubMed] [Google Scholar]
  275. Reineke W., Knackmuss H. J. Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzene-degrading bacterium. Appl Environ Microbiol. 1984 Feb;47(2):395–402. doi: 10.1128/aem.47.2.395-402.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  276. Renganathan V. Possible Involvement of Toluene-2,3-Dioxygenase in Defluorination of 3-Fluoro-Substituted Benzenes by Toluene-Degrading Pseudomonas sp. Strain T-12. Appl Environ Microbiol. 1989 Feb;55(2):330–334. doi: 10.1128/aem.55.2.330-334.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  277. Rojo F., Pieper D. H., Engesser K. H., Knackmuss H. J., Timmis K. N. Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics. Science. 1987 Dec 4;238(4832):1395–1398. doi: 10.1126/science.3479842. [DOI] [PubMed] [Google Scholar]
  278. Romanov V., Hausinger R. P. Pseudomonas aeruginosa 142 uses a three-component ortho-halobenzoate 1,2-dioxygenase for metabolism of 2,4-dichloro- and 2-chlorobenzoate. J Bacteriol. 1994 Jun;176(11):3368–3374. doi: 10.1128/jb.176.11.3368-3374.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  279. Rozeboom H. J., Kingma J., Janssen D. B., Dijkstra B. W. Crystallization of haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. J Mol Biol. 1988 Apr 5;200(3):611–612. doi: 10.1016/0022-2836(88)90548-7. [DOI] [PubMed] [Google Scholar]
  280. Ruisinger S., Klages U., Lingens F. Abbau der 4-chlorbenzoesäure durch eine Arthrobacter-Species. Arch Microbiol. 1976 Nov 2;110(23):253–256. doi: 10.1007/BF00690235. [DOI] [PubMed] [Google Scholar]
  281. Saber D. L., Crawford R. L. Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl Environ Microbiol. 1985 Dec;50(6):1512–1518. doi: 10.1128/aem.50.6.1512-1518.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  282. Sahasrabudhe A. V., Modi V. V. Degradation of isomeric monochlorobenzoates and 2,4-dichlorophenoxyacetic acid by a constructed Pseudomonas sp. Appl Microbiol Biotechnol. 1991 Jan;34(4):556–557. doi: 10.1007/BF00180588. [DOI] [PubMed] [Google Scholar]
  283. Sahu S. K., Patnaik K. K., Sharmila M., Sethunathan N. Degradation of Alpha-, Beta-, and Gamma-Hexachlorocyclohexane by a Soil Bacterium under Aerobic Conditions. Appl Environ Microbiol. 1990 Nov;56(11):3620–3622. doi: 10.1128/aem.56.11.3620-3622.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  284. Sallis P. J., Armfield S. J., Bull A. T., Hardman D. J. Isolation and characterization of a haloalkane halidohydrolase from Rhodococcus erythropolis Y2. J Gen Microbiol. 1990 Jan;136(1):115–120. doi: 10.1099/00221287-136-1-115. [DOI] [PubMed] [Google Scholar]
  285. Sander P., Wittich R. M., Fortnagel P., Wilkes H., Francke W. Degradation of 1,2,4-trichloro- and 1,2,4,5-tetrachlorobenzene by pseudomonas strains. Appl Environ Microbiol. 1991 May;57(5):1430–1440. doi: 10.1128/aem.57.5.1430-1440.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  286. Sangodkar U. M., Chapman P. J., Chakrabarty A. M. Cloning, physical mapping and expression of chromosomal genes specifying degradation of the herbicide 2,4,5-T by Pseudomonas cepacia AC1100. Gene. 1988 Nov 30;71(2):267–277. doi: 10.1016/0378-1119(88)90043-1. [DOI] [PubMed] [Google Scholar]
  287. Sariaslani F. S. Microbial enzymes for oxidation of organic molecules. Crit Rev Biotechnol. 1989;9(3):171–257. doi: 10.3109/07388558909036736. [DOI] [PubMed] [Google Scholar]
  288. Savard P., Charest H., Sylvestre M., Shareck F., Scholten J. D., Mariano D. D. Expression of the 4-chlorobenzoate dehalogenase genes from Pseudomonas sp.-CBS3 in Escherichia coli and identification of the gene translation products. Can J Microbiol. 1992 Oct;38(10):1074–1083. doi: 10.1139/m92-176. [DOI] [PubMed] [Google Scholar]
  289. Savard P., Péloquin L., Sylvestre M. Cloning of Pseudomonas sp. strain CBS3 genes specifying dehalogenation of 4-chlorobenzoate. J Bacteriol. 1986 Oct;168(1):81–85. doi: 10.1128/jb.168.1.81-85.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  290. Schenk T., Müller R., Lingens F. Mechanism of enzymatic dehalogenation of pentachlorophenol by Arthrobacter sp. strain ATCC 33790. J Bacteriol. 1990 Dec;172(12):7272–7274. doi: 10.1128/jb.172.12.7272-7274.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  291. Schenk T., Müller R., Mörsberger F., Otto M. K., Lingens F. Enzymatic dehalogenation of pentachlorophenol by extracts from Arthrobacter sp. strain ATCC 33790. J Bacteriol. 1989 Oct;171(10):5487–5491. doi: 10.1128/jb.171.10.5487-5491.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  292. Schennen U., Braun K., Knackmuss H. J. Anaerobic degradation of 2-fluorobenzoate by benzoate-degrading, denitrifying bacteria. J Bacteriol. 1985 Jan;161(1):321–325. doi: 10.1128/jb.161.1.321-325.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  293. Schlömann M., Fischer P., Schmidt E., Knackmuss H. J. Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate. J Bacteriol. 1990 Sep;172(9):5119–5129. doi: 10.1128/jb.172.9.5119-5129.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  294. Schlömann M., Ngai K. L., Ornston L. N., Knackmuss H. J. Dienelactone hydrolase from Pseudomonas cepacia. J Bacteriol. 1993 May;175(10):2994–3001. doi: 10.1128/jb.175.10.2994-3001.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  295. Schmidt E., Knackmuss H. J. Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Biochem J. 1980 Oct 15;192(1):339–347. doi: 10.1042/bj1920339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  296. Schmidt E., Remberg G., Knackmuss H. J. Chemical structure and biodegradability of halogenated aromatic compounds. Halogenated muconic acids as intermediates. Biochem J. 1980 Oct 15;192(1):331–337. doi: 10.1042/bj1920331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  297. Schmitz A., Gartemann K. H., Fiedler J., Grund E., Eichenlaub R. Cloning and sequence analysis of genes for dehalogenation of 4-chlorobenzoate from Arthrobacter sp. strain SU. Appl Environ Microbiol. 1992 Dec;58(12):4068–4071. doi: 10.1128/aem.58.12.4068-4071.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  298. Schneider B., Müller R., Frank R., Lingens F. Complete nucleotide sequences and comparison of the structural genes of two 2-haloalkanoic acid dehalogenases from Pseudomonas sp. strain CBS3. J Bacteriol. 1991 Feb;173(4):1530–1535. doi: 10.1128/jb.173.4.1530-1535.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  299. Schneider B., Müller R., Frank R., Lingens F. Site-directed mutagenesis of the 2-haloalkanoic acid dehalogenase I gene from Pseudomonas sp. strain CBS3 and its effect on catalytic activity. Biol Chem Hoppe Seyler. 1993 Jul;374(7):489–496. doi: 10.1515/bchm3.1993.374.7-12.489. [DOI] [PubMed] [Google Scholar]
  300. Scholten J. D., Chang K. H., Babbitt P. C., Charest H., Sylvestre M., Dunaway-Mariano D. Novel enzymic hydrolytic dehalogenation of a chlorinated aromatic. Science. 1991 Jul 12;253(5016):182–185. doi: 10.1126/science.1853203. [DOI] [PubMed] [Google Scholar]
  301. Scholtz R., Leisinger T., Suter F., Cook A. M. Characterization of 1-chlorohexane halidohydrolase, a dehalogenase of wide substrate range from an Arthrobacter sp. J Bacteriol. 1987 Nov;169(11):5016–5021. doi: 10.1128/jb.169.11.5016-5021.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  302. Scholtz R., Messi F., Leisinger T., Cook A. M. Three dehalogenases and physiological restraints in the biodegradation of haloalkanes by Arthrobacter sp. strain HA1. Appl Environ Microbiol. 1988 Dec;54(12):3034–3038. doi: 10.1128/aem.54.12.3034-3038.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  303. Scholtz R., Wackett L. P., Egli C., Cook A. M., Leisinger T. Dichloromethane dehalogenase with improved catalytic activity isolated from a fast-growing dichloromethane-utilizing bacterium. J Bacteriol. 1988 Dec;170(12):5698–5704. doi: 10.1128/jb.170.12.5698-5704.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  304. Scholz P. M., Kedem J., Sideman S., Beyar R., Weiss H. R. Effect of hyper- and hypovolaemia on regional myocardial oxygen consumption. Cardiovasc Res. 1990 Feb;24(2):81–86. doi: 10.1093/cvr/24.2.81. [DOI] [PubMed] [Google Scholar]
  305. Schraa G., Boone M. L., Jetten M. S., van Neerven A. R., Colberg P. J., Zehnder A. J. Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175. Appl Environ Microbiol. 1986 Dec;52(6):1374–1381. doi: 10.1128/aem.52.6.1374-1381.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  306. Schrag J. D., Li Y. G., Wu S., Cygler M. Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum. Nature. 1991 Jun 27;351(6329):761–764. doi: 10.1038/351761a0. [DOI] [PubMed] [Google Scholar]
  307. Schweizer D., Markus A., Seez M., Ruf H. H., Lingens F. Purification and some properties of component B of the 4-chlorophenylacetate 3,4-dioxygenase from Pseudomonas species strain CBS 3. J Biol Chem. 1987 Jul 5;262(19):9340–9346. [PubMed] [Google Scholar]
  308. Seech A. G., Trevors J. T., Bulman T. L. Biodegradation of pentachlorophenol in soil: the response to physical, chemical, and biological treatments. Can J Microbiol. 1991 Jun;37(6):440–444. doi: 10.1139/m91-072. [DOI] [PubMed] [Google Scholar]
  309. Seibert V., Stadler-Fritzsche K., Schlömann M. Purification and characterization of maleylacetate reductase from Alcaligenes eutrophus JMP134(pJP4). J Bacteriol. 1993 Nov;175(21):6745–6754. doi: 10.1128/jb.175.21.6745-6754.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  310. Senior E., Bull A. T., Slater J. H. Enzyme evolution in a microbial community growing on the herbicide Dalapon. Nature. 1976 Oct 7;263(5577):476–479. doi: 10.1038/263476a0. [DOI] [PubMed] [Google Scholar]
  311. Shelton D. R., Tiedje J. M. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic Acid. Appl Environ Microbiol. 1984 Oct;48(4):840–848. doi: 10.1128/aem.48.4.840-848.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  312. Shields M. S., Hooper S. W., Sayler G. S. Plasmid-mediated mineralization of 4-chlorobiphenyl. J Bacteriol. 1985 Sep;163(3):882–889. doi: 10.1128/jb.163.3.882-889.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  313. Shields M. S., Montgomery S. O., Chapman P. J., Cuskey S. M., Pritchard P. H. Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium g4. Appl Environ Microbiol. 1989 Jun;55(6):1624–1629. doi: 10.1128/aem.55.6.1624-1629.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  314. Shields M. S., Montgomery S. O., Cuskey S. M., Chapman P. J., Pritchard P. H. Mutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene. Appl Environ Microbiol. 1991 Jul;57(7):1935–1941. doi: 10.1128/aem.57.7.1935-1941.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  315. Shimao M., Onishi S., Mizumori S., Kato N., Sakazawa C. Degradation of 4-Chlorobenzoate by Facultatively Alkalophilic Arthrobacter sp. Strain SB8. Appl Environ Microbiol. 1989 Feb;55(2):478–482. doi: 10.1128/aem.55.2.478-482.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  316. Shochat E., Hermoni I., Cohen Z., Abeliovich A., Belkin S. Bromoalkane-degrading Pseudomonas strains. Appl Environ Microbiol. 1993 May;59(5):1403–1409. doi: 10.1128/aem.59.5.1403-1409.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  317. Short K. A., Doyle J. D., King R. J., Seidler R. J., Stotzky G., Olsen R. H. Effects of 2,4-dichlorophenol, a metabolite of a genetically engineered bacterium, and 2,4-dichlorophenoxyacetate on some microorganism-mediated ecological processes in soil. Appl Environ Microbiol. 1991 Feb;57(2):412–418. doi: 10.1128/aem.57.2.412-418.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  318. Siuda J. F., DeBernardis J. F. Naturally occurring halogenated organic compounds. Lloydia. 1973 Jun;36(2):107–143. [PubMed] [Google Scholar]
  319. Slater J. H., Weightman A. J., Hall B. G. Dehalogenase genes of Pseudomonas putida PP3 on chromosomally located transposable elements. Mol Biol Evol. 1985 Nov;2(6):557–567. doi: 10.1093/oxfordjournals.molbev.a040366. [DOI] [PubMed] [Google Scholar]
  320. Smith J. M., Harrison K., Colby J. Purification and characterization of D-2-haloacid dehalogenase from Pseudomonas putida strain AJ1/23. J Gen Microbiol. 1990 May;136(5):881–886. doi: 10.1099/00221287-136-5-881. [DOI] [PubMed] [Google Scholar]
  321. Smith M. R., van den Tweel W. J., de Bont J. A. Degradation of 3-chloro-2-methylpropionic acid by Xanthobacter sp. CIMW 99. Appl Microbiol Biotechnol. 1991 Nov;36(2):246–251. doi: 10.1007/BF00164429. [DOI] [PubMed] [Google Scholar]
  322. Spain J. C., Nishino S. F. Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol. 1987 May;53(5):1010–1019. doi: 10.1128/aem.53.5.1010-1019.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  323. Springael D., Diels L., Hooyberghs L., Kreps S., Mergeay M. Construction and characterization of heavy metal-resistant haloaromatic-degrading Alcaligenes eutrophus strains. Appl Environ Microbiol. 1993 Jan;59(1):334–339. doi: 10.1128/aem.59.1.334-339.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  324. St John W. D., Sikes D. J. Complex industrial waste sites. Basic Life Sci. 1988;45:237–252. doi: 10.1007/978-1-4899-0824-7_16. [DOI] [PubMed] [Google Scholar]
  325. Stanlake G. J., Finn R. K. Isolation and characterization of a pentachlorophenol-degrading bacterium. Appl Environ Microbiol. 1982 Dec;44(6):1421–1427. doi: 10.1128/aem.44.6.1421-1427.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  326. Steiert J. G., Crawford R. L. Catabolism of pentachlorophenol by a Flavobacterium sp. Biochem Biophys Res Commun. 1986 Dec 15;141(2):825–830. doi: 10.1016/s0006-291x(86)80247-9. [DOI] [PubMed] [Google Scholar]
  327. Stevens T. O., Linkfield T. G., Tiedje J. M. Physiological characterization of strain DCB-1, a unique dehalogenating sulfidogenic bacterium. Appl Environ Microbiol. 1988 Dec;54(12):2938–2943. doi: 10.1128/aem.54.12.2938-2943.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  328. Stinson M. K., Skovronek H. S., Chresand T. J. EPA site demonstration of BioTrol aqueous treatment system. J Air Waste Manage Assoc. 1991 Feb;41(2):228–233. doi: 10.1080/10473289.1991.10466839. [DOI] [PubMed] [Google Scholar]
  329. Storm C. B., Kaufman S. The effect of variation of cofactor and substrate structure on the action of phenylalanine hydroxylase. Biochem Biophys Res Commun. 1968 Sep 6;32(5):788–793. doi: 10.1016/0006-291x(68)90309-4. [DOI] [PubMed] [Google Scholar]
  330. Struijs J., Rogers J. E. Reductive dehalogenation of dichloroanilines by anaerobic microorganisms in fresh and dichlorophenol-acclimated pond sediment. Appl Environ Microbiol. 1989 Oct;55(10):2527–2531. doi: 10.1128/aem.55.10.2527-2531.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  331. Stucki G. Biological decomposition of dichloromethane from a chemical process effluent. Biodegradation. 1990;1(4):221–228. doi: 10.1007/BF00119759. [DOI] [PubMed] [Google Scholar]
  332. Suflita J. M., Horowitz A., Shelton D. R., Tiedje J. M. Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds. Science. 1982 Dec 10;218(4577):1115–1117. doi: 10.1126/science.218.4577.1115. [DOI] [PubMed] [Google Scholar]
  333. Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991 Aug 23;253(5022):872–879. doi: 10.1126/science.1678899. [DOI] [PubMed] [Google Scholar]
  334. Suzuki K., Gomi T., Kaidoh T., Itagaki E. Hydroxylation of o-halogenophenol and o-nitrophenol by salicylate hydroxylase. J Biochem. 1991 Feb;109(2):348–353. [PubMed] [Google Scholar]
  335. Suzuki T. Metabolism of pentachlorophenol by a soil microbe. J Environ Sci Health B. 1977;12(2):113–127. doi: 10.1080/03601237709372057. [DOI] [PubMed] [Google Scholar]
  336. Taraban R. H., Berry D. F., Berry D. A., Walker H. L., Jr Degradation of dicamba by an anaerobic consortium enriched from wetland soil. Appl Environ Microbiol. 1993 Jul;59(7):2332–2334. doi: 10.1128/aem.59.7.2332-2334.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  337. Tardif G., Greer C. W., Labbé D., Lau P. C. Involvement of a large plasmid in the degradation of 1,2-dichloroethane by Xanthobacter autotrophicus. Appl Environ Microbiol. 1991 Jun;57(6):1853–1857. doi: 10.1128/aem.57.6.1853-1857.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  338. Tatara G. M., Dybas M. J., Criddle C. S. Effects of medium and trace metals on kinetics of carbon tetrachloride transformation by Pseudomonas sp. strain KC. Appl Environ Microbiol. 1993 Jul;59(7):2126–2131. doi: 10.1128/aem.59.7.2126-2131.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  339. Thomas A. W., Slater J. H., Weightman A. J. The dehalogenase gene dehI from Pseudomonas putida PP3 is carried on an unusual mobile genetic element designated DEH. J Bacteriol. 1992 Mar;174(6):1932–1940. doi: 10.1128/jb.174.6.1932-1940.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  340. Thomas A. W., Topping A. W., Slater J. H., Weightman A. J. Localization and functional analysis of structural and regulatory dehalogenase genes carried on DEH from Pseudomonas putida PP3. J Bacteriol. 1992 Mar;174(6):1941–1947. doi: 10.1128/jb.174.6.1941-1947.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  341. Timmis K. N., Rojo F., Ramos J. L. Prospects for laboratory engineering of bacteria to degrade pollutants. Basic Life Sci. 1988;45:61–79. doi: 10.1007/978-1-4899-0824-7_4. [DOI] [PubMed] [Google Scholar]
  342. Topp E., Hanson R. S. Degradation of pentachlorophenol by a Flavobacterium species grown in continuous culture under various nutrient limitations. Appl Environ Microbiol. 1990 Feb;56(2):541–544. doi: 10.1128/aem.56.2.541-544.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  343. Topp E., Xun L. Y., Orser C. S. Biodegradation of the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) by purified pentachlorophenol hydroxylase and whole cells of Flavobacterium sp. strain ATCC 39723 is accompanied by cyanogenesis. Appl Environ Microbiol. 1992 Feb;58(2):502–506. doi: 10.1128/aem.58.2.502-506.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  344. Tsien H. C., Brusseau G. A., Hanson R. S., Waclett L. P. Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl Environ Microbiol. 1989 Dec;55(12):3155–3161. doi: 10.1128/aem.55.12.3155-3161.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  345. Tsoi T. V., Zaitsev G. M., Plotnikova E. G., Kosheleva I. A., Boronin A. M. Cloning and expression of the Arthrobacter globiformis KZT1 fcbA gene encoding dehalogenase (4-chlorobenzoate-4-hydroxylase) in Escherichia coli. FEMS Microbiol Lett. 1991 Jun 15;65(2):165–169. doi: 10.1016/0378-1097(91)90298-o. [DOI] [PubMed] [Google Scholar]
  346. Tu C. M. Utilization and degradation of lindane by soil microorganisms. Arch Microbiol. 1976 Jul;108(3):259–263. doi: 10.1007/BF00454850. [DOI] [PubMed] [Google Scholar]
  347. Uotila J. S., Kitunen V. H., Saastamoinen T., Coote T., Häggblom M. M., Salkinoja-Salonen M. S. Characterization of aromatic dehalogenases of Mycobacterium fortuitum CG-2. J Bacteriol. 1992 Sep;174(17):5669–5675. doi: 10.1128/jb.174.17.5669-5675.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  348. Uotila J. S., Salkinoja-Salonen M. S., Apajalahti J. H. Dechlorination of pentachlorophenol by membrane bound enzymes of Rhodococcus chlorophenolicus PCP-I. Biodegradation. 1991;2(1):25–31. doi: 10.1007/BF00122422. [DOI] [PubMed] [Google Scholar]
  349. Vandenbergh P. A., Olsen R. H., Colaruotolo J. F. Isolation and genetic characterization of bacteria that degrade chloroaromatic compounds. Appl Environ Microbiol. 1981 Oct;42(4):737–739. doi: 10.1128/aem.42.4.737-739.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  350. Vannelli T., Hooper A. B. Reductive dehalogenation of the trichloromethyl group of nitrapyrin by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl Environ Microbiol. 1993 Nov;59(11):3597–3601. doi: 10.1128/aem.59.11.3597-3601.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  351. Vannelli T., Logan M., Arciero D. M., Hooper A. B. Degradation of halogenated aliphatic compounds by the ammonia- oxidizing bacterium Nitrosomonas europaea. Appl Environ Microbiol. 1990 Apr;56(4):1169–1171. doi: 10.1128/aem.56.4.1169-1171.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  352. Verschueren K. H., Franken S. M., Rozeboom H. J., Kalk K. H., Dijkstra B. W. Refined X-ray structures of haloalkane dehalogenase at pH 6.2 and pH 8.2 and implications for the reaction mechanism. J Mol Biol. 1993 Aug 5;232(3):856–872. doi: 10.1006/jmbi.1993.1436. [DOI] [PubMed] [Google Scholar]
  353. Verschueren K. H., Seljée F., Rozeboom H. J., Kalk K. H., Dijkstra B. W. Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature. 1993 Jun 24;363(6431):693–698. doi: 10.1038/363693a0. [DOI] [PubMed] [Google Scholar]
  354. Vitovski S. Phenylacetate-coenzyme A ligase is induced during growth on phenylacetic acid in different bacteria of several genera. FEMS Microbiol Lett. 1993 Mar 15;108(1):1–5. doi: 10.1016/0378-1097(93)90477-j. [DOI] [PubMed] [Google Scholar]
  355. Vogel T. M., McCarty P. L. Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl Environ Microbiol. 1985 May;49(5):1080–1083. doi: 10.1128/aem.49.5.1080-1083.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  356. Vollmer M. D., Stadler-Fritzsche K., Schlömann M. Conversion of 2-chloromaleylacetate in Alcaligenes eutrophus JMP134. Arch Microbiol. 1993;159(2):182–188. doi: 10.1007/BF00250280. [DOI] [PubMed] [Google Scholar]
  357. Wackett L. P., Brusseau G. A., Householder S. R., Hanson R. S. Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Appl Environ Microbiol. 1989 Nov;55(11):2960–2964. doi: 10.1128/aem.55.11.2960-2964.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  358. Wackett L. P., Gibson D. T. Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1. Appl Environ Microbiol. 1988 Jul;54(7):1703–1708. doi: 10.1128/aem.54.7.1703-1708.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  359. Wackett L. P., Householder S. R. Toxicity of Trichloroethylene to Pseudomonas putida F1 Is Mediated by Toluene Dioxygenase. Appl Environ Microbiol. 1989 Oct;55(10):2723–2725. doi: 10.1128/aem.55.10.2723-2725.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  360. Wade R. S., Castro C. E. Oxidation of heme proteins by alkyl halides. J Am Chem Soc. 1973 Jan 10;95(1):231–234. doi: 10.1021/ja00782a041. [DOI] [PubMed] [Google Scholar]
  361. Wade R. S., Castro C. E. Oxidation of iron (II) porphyrins by alkyl halides. J Am Chem Soc. 1973 Jan 10;95(1):226–230. doi: 10.1021/ja00782a040. [DOI] [PubMed] [Google Scholar]
  362. Wagner-Döbler I., Pipke R., Timmis K. N., Dwyer D. F. Evaluation of aquatic sediment microcosms and their use in assessing possible effects of introduced microorganisms on ecosystem parameters. Appl Environ Microbiol. 1992 Apr;58(4):1249–1258. doi: 10.1128/aem.58.4.1249-1258.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  363. Wang Z. M., Bleakley B. H., Crawford D. L., Hertel G., Rafii F. Cloning and expression of a lignin peroxidase gene from Streptomyces viridosporus in Streptomyces lividans. J Biotechnol. 1990 Feb;13(2-3):131–144. doi: 10.1016/0168-1656(90)90099-w. [DOI] [PubMed] [Google Scholar]
  364. Watt J. C., Wroniewicz V. S., Ioli D. F. Environmental concerns associated with the design of genetic engineering facilities. Basic Life Sci. 1988;45:307–322. doi: 10.1007/978-1-4899-0824-7_21. [DOI] [PubMed] [Google Scholar]
  365. Wedemeyer G. Dechlorination of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane by Aerobacter aerogenes. I. Metabolic products. Appl Microbiol. 1967 May;15(3):569–574. doi: 10.1128/am.15.3.569-574.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  366. Weightman A. J., Weightman A. L., Slater J. H. Stereospecificity of 2-monochloropropionate dehalogenation by the two dehalogenases of Pseudomonas putida PP3: evidence for two different dehalogenation mechanisms. J Gen Microbiol. 1982 Aug;128(8):1755–1762. doi: 10.1099/00221287-128-8-1755. [DOI] [PubMed] [Google Scholar]
  367. Wilson J. T., Wilson B. H. Biotransformation of trichloroethylene in soil. Appl Environ Microbiol. 1985 Jan;49(1):242–243. doi: 10.1128/aem.49.1.242-243.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  368. Winkler F. K., D'Arcy A., Hunziker W. Structure of human pancreatic lipase. Nature. 1990 Feb 22;343(6260):771–774. doi: 10.1038/343771a0. [DOI] [PubMed] [Google Scholar]
  369. Wood J. M., Kennedy F. S., Wolfe R. S. The reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B 12. Biochemistry. 1968 May;7(5):1707–1713. doi: 10.1021/bi00845a013. [DOI] [PubMed] [Google Scholar]
  370. Wu W. M., Bhatnagar L., Zeikus J. G. Performance of anaerobic granules for degradation of pentachlorophenol. Appl Environ Microbiol. 1993 Feb;59(2):389–397. doi: 10.1128/aem.59.2.389-397.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  371. Wubbolts M. G., Timmis K. N. Biotransformation of substituted benzoates to the corresponding cis-diols by an engineered strain of Pseudomonas oleovorans producing the TOL plasmid-specified enzyme toluate-1,2-dioxygenase. Appl Environ Microbiol. 1990 Feb;56(2):569–571. doi: 10.1128/aem.56.2.569-571.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  372. Wuosmaa A. M., Hager L. P. Methyl chloride transferase: a carbocation route for biosynthesis of halometabolites. Science. 1990 Jul 13;249(4965):160–162. doi: 10.1126/science.2371563. [DOI] [PubMed] [Google Scholar]
  373. Wyndham R. C., Nakatsu C., Peel M., Cashore A., Ng J., Szilagyi F. Distribution of the catabolic transposon Tn5271 in a groundwater bioremediation system. Appl Environ Microbiol. 1994 Jan;60(1):86–93. doi: 10.1128/aem.60.1.86-93.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  374. Wyndham R. C., Singh R. K., Straus N. A. Catabolic instability, plasmid gene deletion and recombination in Alcaligenes sp. BR60. Arch Microbiol. 1988;150(3):237–243. doi: 10.1007/BF00407786. [DOI] [PubMed] [Google Scholar]
  375. Wyndham R. C., Straus N. A. Chlorobenzoate catabolism and interactions between Alcaligenes and Pseudomonas species from Bloody Run Creek. Arch Microbiol. 1988;150(3):230–236. doi: 10.1007/BF00407785. [DOI] [PubMed] [Google Scholar]
  376. Xun L. Y., Orser C. S. Purification of a Flavobacterium pentachlorophenol-induced periplasmic protein (PcpA) and nucleotide sequence of the corresponding gene (pcpA). J Bacteriol. 1991 May;173(9):2920–2926. doi: 10.1128/jb.173.9.2920-2926.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  377. Xun L., Orser C. S. Purification and properties of pentachlorophenol hydroxylase, a flavoprotein from Flavobacterium sp. strain ATCC 39723. J Bacteriol. 1991 Jul;173(14):4447–4453. doi: 10.1128/jb.173.14.4447-4453.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  378. Xun L., Topp E., Orser C. S. Confirmation of oxidative dehalogenation of pentachlorophenol by a Flavobacterium pentachlorophenol hydroxylase. J Bacteriol. 1992 Sep;174(17):5745–5747. doi: 10.1128/jb.174.17.5745-5747.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  379. Xun L., Topp E., Orser C. S. Diverse substrate range of a Flavobacterium pentachlorophenol hydroxylase and reaction stoichiometries. J Bacteriol. 1992 May;174(9):2898–2902. doi: 10.1128/jb.174.9.2898-2902.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  380. Xun L., Topp E., Orser C. S. Glutathione is the reducing agent for the reductive dehalogenation of tetrachloro-p-hydroquinone by extracts from a Flavobacterium sp. Biochem Biophys Res Commun. 1992 Jan 15;182(1):361–366. doi: 10.1016/s0006-291x(05)80153-6. [DOI] [PubMed] [Google Scholar]
  381. Xun L., Topp E., Orser C. S. Purification and characterization of a tetrachloro-p-hydroquinone reductive dehalogenase from a Flavobacterium sp. J Bacteriol. 1992 Dec;174(24):8003–8007. doi: 10.1128/jb.174.24.8003-8007.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  382. Yamaguchi M., Fujisawa H. Characterization of NADH-cytochrome c reductase, a component of benzoate 1,2-dioxygenase system from Pseudomonas arvilla c-1. J Biol Chem. 1978 Dec 25;253(24):8848–8853. [PubMed] [Google Scholar]
  383. Yamaguchi M., Fujisawa H. Purification and characterization of an oxygenase component in benzoate 1,2-dioxygenase system from Pseudomonas arvilla C-1. J Biol Chem. 1980 Jun 10;255(11):5058–5063. [PubMed] [Google Scholar]
  384. Yamaguchi M., Fujisawa H. Subunit structure of oxygenase component in benzoate-1,2-dioxygenase system from Pseudomonas arvilla C-1. J Biol Chem. 1982 Nov 10;257(21):12497–12502. [PubMed] [Google Scholar]
  385. Yokota T., Omori T., Kodama T. Purification and properties of haloalkane dehalogenase from Corynebacterium sp. strain m15-3. J Bacteriol. 1987 Sep;169(9):4049–4054. doi: 10.1128/jb.169.9.4049-4054.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  386. You I. S., Bartha R. Stimulation of 3,4-dichloroaniline mineralization by aniline. Appl Environ Microbiol. 1982 Sep;44(3):678–681. doi: 10.1128/aem.44.3.678-681.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  387. Zaitsev G. M., Tsoi T. V., Grishenkov V. G., Plotnikova E. G., Boronin A. M. Genetic control of degradation of chlorinated benzoic acids in Arthrobacter globiformis, Corynebacterium sepedonicum and Pseudomonas cepacia strains. FEMS Microbiol Lett. 1991 Jun 15;65(2):171–176. doi: 10.1016/0378-1097(91)90299-p. [DOI] [PubMed] [Google Scholar]
  388. Zhang X., Wiegel J. Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments. Appl Environ Microbiol. 1990 Apr;56(4):1119–1127. doi: 10.1128/aem.56.4.1119-1127.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  389. Zoro J. A., Hunter J. M., Eglinton G., Ware G. C. Degradation of p,p'-DDT in reducing environments. Nature. 1974 Jan 25;247(5438):235–237. doi: 10.1038/247235a0. [DOI] [PubMed] [Google Scholar]
  390. Zylstra G. J., Wackett L. P., Gibson D. T. Trichloroethylene degradation by Escherichia coli containing the cloned Pseudomonas putida F1 toluene dioxygenase genes. Appl Environ Microbiol. 1989 Dec;55(12):3162–3166. doi: 10.1128/aem.55.12.3162-3166.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  391. de Bont J. A., Vorage M. J., Hartmans S., van den Tweel W. J. Microbial degradation of 1,3-dichlorobenzene. Appl Environ Microbiol. 1986 Oct;52(4):677–680. doi: 10.1128/aem.52.4.677-680.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  392. de Bruin W. P., Kotterman M. J., Posthumus M. A., Schraa G., Zehnder A. J. Complete biological reductive transformation of tetrachloroethene to ethane. Appl Environ Microbiol. 1992 Jun;58(6):1996–2000. doi: 10.1128/aem.58.6.1996-2000.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  393. de Jong E., Cazemier A. E., Field J. A., de Bont J. A. Physiological Role of Chlorinated Aryl Alcohols Biosynthesized De Novo by the White Rot Fungus Bjerkandera sp. Strain BOS55. Appl Environ Microbiol. 1994 Jan;60(1):271–277. doi: 10.1128/aem.60.1.271-277.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  394. de Jong E., Field J. A., Spinnler H. E., Wijnberg J. B., de Bont J. A. Significant biogenesis of chlorinated aromatics by fungi in natural environments. Appl Environ Microbiol. 1994 Jan;60(1):264–270. doi: 10.1128/aem.60.1.264-270.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  395. van Hylckama Vlieg J. E., Janssen D. B. Bacterial degradation of 3-chloroacrylic acid and the characterization of cis- and trans-specific dehalogenases. Biodegradation. 1991;2(3):139–150. doi: 10.1007/BF00124488. [DOI] [PubMed] [Google Scholar]
  396. van den Tweel W. J., Kok J. B., de Bont J. A. Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iodobenzoate by Alcaligenes denitrificans NTB-1. Appl Environ Microbiol. 1987 Apr;53(4):810–815. doi: 10.1128/aem.53.4.810-815.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  397. van den Wijngaard A. J., Prins J., Smal A. J., Janssen D. B. Degradation of 2-Chloroethylvinylether by Ancylobacter aquaticus AD25 and AD27. Appl Environ Microbiol. 1993 Sep;59(9):2777–2783. doi: 10.1128/aem.59.9.2777-2783.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  398. van den Wijngaard A. J., Reuvekamp P. T., Janssen D. B. Purification and characterization of haloalcohol dehalogenase from Arthrobacter sp. strain AD2. J Bacteriol. 1991 Jan;173(1):124–129. doi: 10.1128/jb.173.1.124-129.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  399. van den Wijngaard A. J., van der Kamp K. W., van der Ploeg J., Pries F., Kazemier B., Janssen D. B. Degradation of 1,2-dichloroethane by Ancylobacter aquaticus and other facultative methylotrophs. Appl Environ Microbiol. 1992 Mar;58(3):976–983. doi: 10.1128/aem.58.3.976-983.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  400. van den Wijngaard A. J., van der Kleij R. G., Doornweerd R. E., Janssen D. B. Influence of organic nutrients and cocultures on the competitive behavior of 1,2-dichloroethane-degrading bacteria. Appl Environ Microbiol. 1993 Oct;59(10):3400–3405. doi: 10.1128/aem.59.10.3400-3405.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  401. van der Meer J. R., Eggen R. I., Zehnder A. J., de Vos W. M. Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. J Bacteriol. 1991 Apr;173(8):2425–2434. doi: 10.1128/jb.173.8.2425-2434.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  402. van der Meer J. R., Zehnder A. J., de Vos W. M. Identification of a novel composite transposable element, Tn5280, carrying chlorobenzene dioxygenase genes of Pseudomonas sp. strain P51. J Bacteriol. 1991 Nov;173(22):7077–7083. doi: 10.1128/jb.173.22.7077-7083.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  403. van der Meer J. R., de Vos W. M., Harayama S., Zehnder A. J. Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiol Rev. 1992 Dec;56(4):677–694. doi: 10.1128/mr.56.4.677-694.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  404. van der Meer J. R., van Neerven A. R., de Vries E. J., de Vos W. M., Zehnder A. J. Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichloro-, 1,4-dichloro-, and 1,2,4-trichlorobenzene of Pseudomonas sp. strain P51. J Bacteriol. 1991 Jan;173(1):6–15. doi: 10.1128/jb.173.1.6-15.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  405. van der Ploeg J., van Hall G., Janssen D. B. Characterization of the haloacid dehalogenase from Xanthobacter autotrophicus GJ10 and sequencing of the dhlB gene. J Bacteriol. 1991 Dec;173(24):7925–7933. doi: 10.1128/jb.173.24.7925-7933.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  406. van der Waarde J. J., Kok R., Janssen D. B. Degradation of 2-chloroallylalcohol by a Pseudomonas sp. Appl Environ Microbiol. 1993 Feb;59(2):528–535. doi: 10.1128/aem.59.2.528-535.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES