Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1985 Mar;49(1):71–80. doi: 10.1128/mr.49.1.71-80.1985

Structure and organization of genes for transfer ribonucleic acid in Bacillus subtilis.

B S Vold
PMCID: PMC373018  PMID: 2580221

Full text

PDF
71

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bleyman M., Kondo M., Hecht N., Woese C. Transcriptional mapping: functional organization of the ribosomal and transfer ribonucleic acid cistrons in the Bacillus subtilis genome. J Bacteriol. 1969 Aug;99(2):535–543. doi: 10.1128/jb.99.2.535-543.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Butler E. T., Chamberlin M. J. Bacteriophage SP6-specific RNA polymerase. I. Isolation and characterization of the enzyme. J Biol Chem. 1982 May 25;257(10):5772–5778. [PubMed] [Google Scholar]
  3. Campen R. K., Duester G. L., Holmes W. M., Young J. M. Organization of transfer ribonucleic acid genes in the Escherichia coli chromosome. J Bacteriol. 1980 Dec;144(3):1083–1093. doi: 10.1128/jb.144.3.1083-1093.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cooley L., Appel B., Söll D. Post-transcriptional nucleotide addition is responsible for the formation of the 5' terminus of histidine tRNA. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6475–6479. doi: 10.1073/pnas.79.21.6475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crick F. H. Codon--anticodon pairing: the wobble hypothesis. J Mol Biol. 1966 Aug;19(2):548–555. doi: 10.1016/s0022-2836(66)80022-0. [DOI] [PubMed] [Google Scholar]
  6. Dabbs E. R. A pair of Bacillus subtilis ribosomal protein genes mapping outside the principal ribosomal protein cluster. J Bacteriol. 1983 Nov;156(2):966–969. doi: 10.1128/jb.156.2.966-969.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deutscher M. P., Foulds J., McClain W. H. Transfer ribonucleic acid nucleotidyl-transferase plays an essential role in the normal growth of Escherichia coli and in the biosynthesis of some bacteriophage T4 transfer ribonucleic acids. J Biol Chem. 1974 Oct 25;249(20):6696–6699. [PubMed] [Google Scholar]
  8. Doi R. H. Multiple RNA polymerase holoenzymes exert transcriptional specificity in Bacillus subtilis. Arch Biochem Biophys. 1982 Apr 1;214(2):772–781. doi: 10.1016/0003-9861(82)90084-4. [DOI] [PubMed] [Google Scholar]
  9. Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T. A., Wolfe R. S., Balch W. E., Tanner R. S., Magrum L. J. The phylogeny of prokaryotes. Science. 1980 Jul 25;209(4455):457–463. doi: 10.1126/science.6771870. [DOI] [PubMed] [Google Scholar]
  10. Fukada K., Abelson J. DNA sequence of a T4 transfer RNA gene cluster. J Mol Biol. 1980 May 25;139(3):377–391. doi: 10.1016/0022-2836(80)90136-9. [DOI] [PubMed] [Google Scholar]
  11. Garen A. Sense and nonsense in the genetic code. Three exceptional triplets can serve as both chain-terminating signals and amino acid codons. Science. 1968 Apr 12;160(3824):149–159. doi: 10.1126/science.160.3824.149. [DOI] [PubMed] [Google Scholar]
  12. Green C. J., Vold B. S. Sequence analysis of a cluster of twenty-one tRNA genes in Bacillus subtilis. Nucleic Acids Res. 1983 Aug 25;11(16):5763–5774. doi: 10.1093/nar/11.16.5763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Green M. R., Maniatis T., Melton D. A. Human beta-globin pre-mRNA synthesized in vitro is accurately spliced in Xenopus oocyte nuclei. Cell. 1983 Mar;32(3):681–694. doi: 10.1016/0092-8674(83)90054-5. [DOI] [PubMed] [Google Scholar]
  14. Guerrier-Takada C., McClain W. H., Altman S. Cleavage of tRNA precursors by the RNA subunit of E. coli ribonuclease P (M1 RNA) is influenced by 3'-proximal CCA in the substrates. Cell. 1984 Aug;38(1):219–224. doi: 10.1016/0092-8674(84)90543-9. [DOI] [PubMed] [Google Scholar]
  15. Henner D. J., Steinberg W. Genetic location of the Bacillus subtilis sup-3 suppressor mutation. J Bacteriol. 1979 Aug;139(2):668–670. doi: 10.1128/jb.139.2.668-670.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Henner D. J., Steinberg W. Transfer ribonucleic acid synthesis during sporulation and spore outgrowth in Bacillus subtilis studied by two-dimensional polyacrylamide gel electrophoresis. J Bacteriol. 1979 Nov;140(2):555–566. doi: 10.1128/jb.140.2.555-566.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol. 1981 Feb 15;146(1):1–21. doi: 10.1016/0022-2836(81)90363-6. [DOI] [PubMed] [Google Scholar]
  18. Ikemura T. Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J Mol Biol. 1982 Jul 15;158(4):573–597. doi: 10.1016/0022-2836(82)90250-9. [DOI] [PubMed] [Google Scholar]
  19. Jeng Y. H., Doi R. H. New transfer ribonucleic acid species during sporulation of Bacillus subtilis. J Bacteriol. 1975 Mar;121(3):950–958. doi: 10.1128/jb.121.3.950-958.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Johnson W. C., Moran C. P., Jr, Losick R. Two RNA polymerase sigma factors from Bacillus subtilis discriminate between overlapping promoters for a developmentally regulated gene. Nature. 1983 Apr 28;302(5911):800–804. doi: 10.1038/302800a0. [DOI] [PubMed] [Google Scholar]
  21. Kaine B. P., Gupta R., Woese C. R. Putative introns in tRNA genes of prokaryotes. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3309–3312. doi: 10.1073/pnas.80.11.3309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kashdan M. A., Dudock B. S. The gene for a spinach chloroplast isoleucine tRNA has a methionine anticodon. J Biol Chem. 1982 Oct 10;257(19):11191–11194. [PubMed] [Google Scholar]
  23. Kuchino Y., Watanabe S., Harada F., Nishimura S. Primary structure of AUA-specific isoleucine transfer ribonucleic acid from Escherichia coli. Biochemistry. 1980 May 13;19(10):2085–2089. doi: 10.1021/bi00551a013. [DOI] [PubMed] [Google Scholar]
  24. Kuntz M., Weil J. H., Steinmetz A. Nucleotide sequence of a 2 kbp BamH I fragment of Vicia faba chloroplast DNA containing the genes for threonine, glutamic acid and tyrosine transfer RNAs. Nucleic Acids Res. 1984 Jun 25;12(12):5037–5047. doi: 10.1093/nar/12.12.5037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lazzarini R. A. Differences in lysine-sRNA from spore and vegetative cells of Bacillus subtillis. Proc Natl Acad Sci U S A. 1966 Jul;56(1):185–190. doi: 10.1073/pnas.56.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lipsky R. H., Rosenthal R., Zahler S. A. Defective specialized SP beta transducing bacteriophages of Bacillus subtilis that carry the sup-3 or sup-44 gene. J Bacteriol. 1981 Dec;148(3):1012–1015. doi: 10.1128/jb.148.3.1012-1015.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Loughney K., Lund E., Dahlberg J. E. tRNA genes are found between 16S and 23S rRNA genes in Bacillus subtilis. Nucleic Acids Res. 1982 Mar 11;10(5):1607–1624. doi: 10.1093/nar/10.5.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Menichi B., Arnold H. H., Heyman T., Dirheimer G., Keith G. Primary structure of Bacillus subtilis tRNAsTyr. Biochem Biophys Res Commun. 1980 Jul 16;95(1):461–467. doi: 10.1016/0006-291x(80)90760-3. [DOI] [PubMed] [Google Scholar]
  29. Moran C. P., Jr, Lang N., Banner C. D., Haldenwang W. G., Losick R. Promoter for a developmentally regulated gene in Bacillus subtilis. Cell. 1981 Sep;25(3):783–791. doi: 10.1016/0092-8674(81)90186-0. [DOI] [PubMed] [Google Scholar]
  30. Nakajima N., Ozeki H., Shimura Y. Organization and structure of an E. coli tRNA operon containing seven tRNA genes. Cell. 1981 Jan;23(1):239–249. doi: 10.1016/0092-8674(81)90288-9. [DOI] [PubMed] [Google Scholar]
  31. Ogasawara N., Moriya S., Yoshikawa H. Structure and organization of rRNA operons in the region of the replication origin of the Bacillus subtilis chromosome. Nucleic Acids Res. 1983 Sep 24;11(18):6301–6318. doi: 10.1093/nar/11.18.6301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Oishi M., Oishi A., Sueoka N. Location of genetic loci of soluble RNA on Bacillus subtilis chromosome. Proc Natl Acad Sci U S A. 1966 May;55(5):1095–1103. doi: 10.1073/pnas.55.5.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Palleschi C., Francisci S., Zennaro E., Frontali L. Expression of the clustered mitochondrial tRNA genes in Saccharomyces cerevisiae: transcription and processing of transcripts. EMBO J. 1984 Jun;3(6):1389–1395. doi: 10.1002/j.1460-2075.1984.tb01982.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Piggot P. J., Coote J. G. Genetic aspects of bacterial endospore formation. Bacteriol Rev. 1976 Dec;40(4):908–962. doi: 10.1128/br.40.4.908-962.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rogers M. J., Steinmetz A. A., Walker R. T. A Spiroplasma tRNA gene cluster. Isr J Med Sci. 1984 Sep;20(9):768–772. [PubMed] [Google Scholar]
  36. Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet. 1979;13:319–353. doi: 10.1146/annurev.ge.13.120179.001535. [DOI] [PubMed] [Google Scholar]
  37. Rossi J. J., Landy A. Structure and organization of the two tRNATyr gene clusters on the E. coli chromosome. Cell. 1979 Mar;16(3):523–534. doi: 10.1016/0092-8674(79)90027-8. [DOI] [PubMed] [Google Scholar]
  38. Schwartz I., Klotsky R. A., Elseviers D., Gallagher P. J., Krauskopf M., Siddiqui M. A., Wong J. F., Roe B. A. Molecular cloning and sequencing of pheU, a gene for Escherichia coli tRNAPhe. Nucleic Acids Res. 1983 Jul 11;11(13):4379–4389. doi: 10.1093/nar/11.13.4379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Smith I., Dubnau D., Morrell P., Marmur J. Chromosomal location of DNA base sequences complementary to transfer RNA and to 5 s, 16 s and 23 s ribosomal RNA in Bacillus subtilis. J Mol Biol. 1968 Apr 14;33(1):123–140. doi: 10.1016/0022-2836(68)90285-4. [DOI] [PubMed] [Google Scholar]
  40. Sprinzl M., Gauss D. H. Compilation of sequences of tRNA genes. Nucleic Acids Res. 1984;12 (Suppl):r59–131. doi: 10.1093/nar/12.suppl.r59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sprinzl M., Gauss D. H. Compilation of tRNA sequences. Nucleic Acids Res. 1984;12 (Suppl):r1–57. [PMC free article] [PubMed] [Google Scholar]
  42. Stewart G. C., Bott K. F. DNA sequence of the tandem ribosomal RNA promoter for B. subtilis operon rrnB. Nucleic Acids Res. 1983 Sep 24;11(18):6289–6300. doi: 10.1093/nar/11.18.6289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stewart G. C., Wilson F. E., Bott K. F. Detailed physical mapping of the ribosomal RNA genes of Bacillus subtilis. Gene. 1982 Sep;19(2):153–162. doi: 10.1016/0378-1119(82)90001-4. [DOI] [PubMed] [Google Scholar]
  44. Travers A. A. Promoter sequence for stringent control of bacterial ribonucleic acid synthesis. J Bacteriol. 1980 Feb;141(2):973–976. doi: 10.1128/jb.141.2.973-976.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vold B. S. Analysis of isoaccepting transfer ribonucleic acid species of Bacillus subtilis: chromatographic differences between transfer ribonucleic acids from spores and cells in exponential growth. J Bacteriol. 1973 Feb;113(2):825–833. doi: 10.1128/jb.113.2.825-833.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vold B. S., Keith D. E., Jr, Buck M., McCloskey J. A., Pang H. Lysine tRNAs from Bacillus subtilis 168: structural analysis. Nucleic Acids Res. 1982 May 25;10(10):3125–3132. doi: 10.1093/nar/10.10.3125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Walker R. T., Chelton E. T., Kilpatrick M. W., Rogers M. J., Simmons J. The nucleotide sequence of the 5S rRNA from Spiroplasma species BC3 and Mycoplasma mycoides sp. capri PG3. Nucleic Acids Res. 1982 Oct 25;10(20):6363–6367. doi: 10.1093/nar/10.20.6363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wawrousek E. F., Hansen J. N. Structure and organization of a cluster of sic tRNA genes in the space between tandem ribosomal RNA gene sets in Bacillus subtilis. J Biol Chem. 1983 Jan 10;258(1):291–298. [PubMed] [Google Scholar]
  49. Wawrousek E. F., Narasimhan N., Hansen J. N. Two large clusters with thirty-seven transfer RNA genes adjacent to ribosomal RNA gene sets in Bacillus subtilis. Sequence and organization of trrnD and trrnE gene clusters. J Biol Chem. 1984 Mar 25;259(6):3694–3702. [PubMed] [Google Scholar]
  50. Yamada Y., Ishikura H. Nucleotide sequence of non-initiator methionine tRNA from Bacillus subtilis. Nucleic Acids Res. 1980 Oct 10;8(19):4517–4520. doi: 10.1093/nar/8.19.4517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yamada Y., Kuchino Y., Ishikura H. Nucleotide sequence of initiator tRNA from Bacillus subtilis. J Biochem. 1980 May;87(5):1261–1269. doi: 10.1093/oxfordjournals.jbchem.a132863. [DOI] [PubMed] [Google Scholar]
  52. Yamada Y., Ohki M., Ishikura H. The nucleotide sequence of Bacillus subtilis tRNA genes. Nucleic Acids Res. 1983 May 25;11(10):3037–3045. doi: 10.1093/nar/11.10.3037. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES