Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Microbiological Reviews logoLink to Microbiological Reviews
. 1985 Jun;49(2):158–179. doi: 10.1128/mr.49.2.158-179.1985

Revised genetic linkage map of Bacillus subtilis.

P J Piggot, J A Hoch
PMCID: PMC373028  PMID: 2989674

Full text

PDF
158

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANAGNOSTOPOULOS C., CRAWFORD I. P. Transformation studies on the linkage of markers in the tryptophan pathway in Bacillus subtilis. Proc Natl Acad Sci U S A. 1961 Mar 15;47:378–390. doi: 10.1073/pnas.47.3.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams A., Oishi M. Genetic properties of arsenate sensitive mutants of Bacillus subtilis 168. Mol Gen Genet. 1972;118(4):295–310. doi: 10.1007/BF00333565. [DOI] [PubMed] [Google Scholar]
  3. Adams A. Transformation and transduction of a large deletion mutation in Bacillus subtilis. Mol Gen Genet. 1972;118(4):311–320. doi: 10.1007/BF00333566. [DOI] [PubMed] [Google Scholar]
  4. Adams A. Transposition of the arsenate resistance locus of Bacillus subtilis strains 23 and 168. Genetics. 1973 Jun;74(2):197–213. doi: 10.1093/genetics/74.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Aharonowitz Y., Ron E. Z. A temperature sensitive mutant in Bacillus subtilis with an altered elongation factor G. Mol Gen Genet. 1972;119(2):131–138. doi: 10.1007/BF00269132. [DOI] [PubMed] [Google Scholar]
  6. Albertini A. M., Baldi M. L., Ferrari E., Isnenghi E., Zambelli M. T., Galizzi A. Mutants of Bacillus subtilis affected in spore outgrowth. J Gen Microbiol. 1979 Feb;110(2):351–363. doi: 10.1099/00221287-110-2-351. [DOI] [PubMed] [Google Scholar]
  7. Albertini A. M., Galizzi A. Mutant of Bacillus subtilis with a temperature-sensitive lesion in ribonucleic acid synthesis during germination. J Bacteriol. 1975 Oct;124(1):14–25. doi: 10.1128/jb.124.1.14-25.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Alff-Steinberger C. Evidence for a coding pattern on the non-coding strand of the E. coli genome. Nucleic Acids Res. 1984 Mar 12;12(5):2235–2241. doi: 10.1093/nar/12.5.2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Anagnostopoulos C., Schneider-Champagne A. M. Déterminisme génétique de l'exigence en thymine chez certains mutants de Bacillus subtilis. C R Acad Sci Hebd Seances Acad Sci D. 1966 Mar 14;262(11):1311–1314. [PubMed] [Google Scholar]
  10. Andersen J. J., Ganesan A. T. Temperature-sensitive deoxyribonucleic acid replication in a dnaC mutant of Bacillus subtilis. J Bacteriol. 1975 Jan;121(1):173–183. doi: 10.1128/jb.121.1.173-183.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Anderson L. M., Henkin T. M., Chambliss G. H., Bott K. F. New chloramphenicol resistance locus in Bacillus subtilis. J Bacteriol. 1984 Apr;158(1):386–388. doi: 10.1128/jb.158.1.386-388.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Attolini C., Mazza G., Fortunato A., Ciarrocchi G., Mastromei G., Riva S., Falaschi A. On the identity of dnaP and dnaF genes of Bacillus subtilis. Mol Gen Genet. 1976 Oct 18;148(1):9–17. doi: 10.1007/BF00268540. [DOI] [PubMed] [Google Scholar]
  13. BARAT M., ANAGNOSTOPOULOS C., SCHNEIDER A. M. LINKAGE RELATIONSHIPS OF GENES CONTROLLING ISOLEUCINE, VALINE, AND LEUCINE BIOSYNTHESIS IN BACILLUS SUBTILIS. J Bacteriol. 1965 Aug;90:357–369. doi: 10.1128/jb.90.2.357-369.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Balassa G., Milhaud P., Raulet E., Silva M. T., Sousa J. C. A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores. J Gen Microbiol. 1979 Feb;110(2):365–379. doi: 10.1099/00221287-110-2-365. [DOI] [PubMed] [Google Scholar]
  15. Balassa G., Milhaud P., Sousa J. C., Silva M. T. Decadent sporulation mutants of Bacillus subtilis. J Gen Microbiol. 1979 Feb;110(2):381–392. doi: 10.1099/00221287-110-2-381. [DOI] [PubMed] [Google Scholar]
  16. Baumberg S., Mountain A. Bacillus subtilis 168 mutants resistant to arginine hydroxamate in the presence of ornithine or citrulline. J Gen Microbiol. 1984 May;130(5):1247–1252. doi: 10.1099/00221287-130-5-1247. [DOI] [PubMed] [Google Scholar]
  17. Bazzicalupo M., Parisi B., Pirali G., Polsinelli M., Sala F. Genetic and biochemical characterization of a ribosomal mutant of Bacillus subtilis resistant to sporangiomycin. Antimicrob Agents Chemother. 1975 Dec;8(6):651–656. doi: 10.1128/aac.8.6.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Berek I., Miczák A., Ivánovics G. Mapping the delta-aminolaevulinic acid dehydrase and porphobilinogen deaminase loci in Bacillus subtilis. Mol Gen Genet. 1974;132(3):233–239. doi: 10.1007/BF00269396. [DOI] [PubMed] [Google Scholar]
  19. Bishop P. E., Brown L. R. Ethidium bromide-resistant mutant of Bacillus subtilis. J Bacteriol. 1973 Sep;115(3):1077–1083. doi: 10.1128/jb.115.3.1077-1083.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Bohin J. P., Lubochinsky B. Alcohol-resistant sporulation mutants of Bacillus subtilis. J Bacteriol. 1982 May;150(2):944–955. doi: 10.1128/jb.150.2.944-955.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Borenstein S., Ephrati-Elizur E. Spontaneous release of DNA in sequential genetic order by Bacillus subtilis. J Mol Biol. 1969 Oct 14;45(1):137–152. doi: 10.1016/0022-2836(69)90216-2. [DOI] [PubMed] [Google Scholar]
  22. Bott K. F., Reysset G., Gregoire J., Islert D., Aubert J. P. Characterization of glutamine requiring mutants of Bacillus subtilis. Biochem Biophys Res Commun. 1977 Dec 7;79(3):996–1003. doi: 10.1016/0006-291x(77)91208-6. [DOI] [PubMed] [Google Scholar]
  23. Boudreaux D. P., Eisenstadt E., Iijima T., Freese E. Biochemical and genetic characterization of an auxotroph of Bacillus subtilis altered in the Acyl-CoA:acyl-carrier-protein transacylase. Eur J Biochem. 1981 Mar 16;115(1):175–181. doi: 10.1111/j.1432-1033.1981.tb06214.x. [DOI] [PubMed] [Google Scholar]
  24. Bouvier J., Stragier P., Bonamy C., Szulmajster J. Nucleotide sequence of the spo0B gene of Bacillus subtilis and regulation of its expression. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7012–7016. doi: 10.1073/pnas.81.22.7012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Boylan R. J., Mendelson N. H., Brooks D., Young F. E. Regulation of the bacterial cell wall: analysis of a mutant of Bacillus subtilis defective in biosynthesis of teichoic acid. J Bacteriol. 1972 Apr;110(1):281–290. doi: 10.1128/jb.110.1.281-290.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Bramucci M. G., Keggins K. M., Lovett P. S. Bacteriophage PMB12 conversion of the sporulation defect in RNA polymerase mutants of Bacillus subtilis. J Virol. 1977 Oct;24(1):194–200. doi: 10.1128/jvi.24.1.194-200.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Bresler S. E., Perumov D. A., Skvortsova A. P., Chernik T. P., Shevchenko T. N. Issledovanie operona biosinteza riboflavina u Bacillus subtilis. Soobshchenie iii. lokalizatsiia markerov gruppy ribC otnositel'no gruppy stsepleniia strukturnykh genov. Genetika. 1975;11(5):95–100. [PubMed] [Google Scholar]
  28. Bron S., Murray K. Restriction and modification in B. subtilis. Nucleotide sequence recognised by restriction endonuclease R. Bsu R from strain R. Mol Gen Genet. 1975 Dec 30;143(1):25–33. doi: 10.1007/BF00269417. [DOI] [PubMed] [Google Scholar]
  29. Buxton R. S. A heat-sensitive lysis mutant of Bacillus subtilis 168 with a low activity of pyruvate carboxylase. J Gen Microbiol. 1978 Apr;105(2):175–185. doi: 10.1099/00221287-105-2-175. [DOI] [PubMed] [Google Scholar]
  30. Buxton R. S. Prophage mutation causing heat inducibility of defective Bacillus subtilis bacteriophage PBSX. J Virol. 1976 Oct;20(1):22–28. doi: 10.1128/jvi.20.1.22-28.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Buxton R. S. Selection of Bacillus subtilis 168 mutants with deletions of the PBSX prophage. J Gen Virol. 1980 Feb;46(2):427–437. doi: 10.1099/0022-1317-46-2-427. [DOI] [PubMed] [Google Scholar]
  32. Callister H., Wake R. G. Characterization and mapping of temperature-sensitive division initiation mutations of Bacillus subtilis. J Bacteriol. 1981 Feb;145(2):1042–1051. doi: 10.1128/jb.145.2.1042-1051.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Cannon J. G., Bott K. F. Mutation affecting expression of spectinomycin resistance in Bacillus subtilis. J Bacteriol. 1980 Jan;141(1):409–412. doi: 10.1128/jb.141.1.409-412.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Cannon J. G., Bott K. F. Spectinomycin-resistant mutants of Bacillus subtilis with altered sporulation properties. Mol Gen Genet. 1979 Jul 13;174(2):149–162. doi: 10.1007/BF00268352. [DOI] [PubMed] [Google Scholar]
  35. Canosi U., Siccardi A. G., Falaschi A., Mazza G. Effect of deoxyribonucleic acid replication inhibitors on bacterial recombination. J Bacteriol. 1976 Apr;126(1):108–121. doi: 10.1128/jb.126.1.108-121.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Carrascosa J. L., García J. A., Salas M. A protein similar to Escherichia coli gro EL is present in Bacillus subtilis. J Mol Biol. 1982 Jul 15;158(4):731–737. doi: 10.1016/0022-2836(82)90257-1. [DOI] [PubMed] [Google Scholar]
  37. Chalumeau H., Delobbe A., Gay P. Biochemical and genetic study of D-glucitol transport and catabolism in Bacillus subtilis. J Bacteriol. 1978 Jun;134(3):920–928. doi: 10.1128/jb.134.3.920-928.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Chasin L. A., Magasanik B. Induction and repression of the histidine-degrading enzymes of Bacillus subtilis. J Biol Chem. 1968 Oct 10;243(19):5165–5178. [PubMed] [Google Scholar]
  39. Chaudhry G. R., Halpern Y. S., Saunders C., Vasantha N., Schmidt B. J., Freese E. Mapping of the glucose dehydrogenase gene in Bacillus subtilis. J Bacteriol. 1984 Nov;160(2):607–611. doi: 10.1128/jb.160.2.607-611.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Coats J. H., Nester E. W. Regulation reversal mutation: characterization of end product-activated mutants of Bacillus subtilis. J Biol Chem. 1967 Nov 10;242(21):4948–4955. [PubMed] [Google Scholar]
  41. Coote J. G. Sporulation in Bacillus subtilis. Characterization of oligosporogenous mutants and comparison of their phenotypes with those of asporogenous mutants. J Gen Microbiol. 1972 Jun;71(1):1–15. doi: 10.1099/00221287-71-1-1. [DOI] [PubMed] [Google Scholar]
  42. Copeland J. C., Marmur J. Identification of conserved genetic functions in Bacillus by use of temperature-sensitive mutants. Bacteriol Rev. 1968 Dec;32(4 Pt 1):302–312. [PMC free article] [PubMed] [Google Scholar]
  43. Cozzarelli N. R., Low R. L. Mutational alteration of Bacillus subtilis DNA polymerase 3 to hydroxyphenylazopyrimidine resistance: polymerase 3 is necessary for DNA replication. Biochem Biophys Res Commun. 1973 Mar 5;51(1):151–157. doi: 10.1016/0006-291x(73)90521-4. [DOI] [PubMed] [Google Scholar]
  44. Dabbs E. R. A pair of Bacillus subtilis ribosomal protein genes mapping outside the principal ribosomal protein cluster. J Bacteriol. 1983 Nov;156(2):966–969. doi: 10.1128/jb.156.2.966-969.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Dabbs E. R. Arrangement of loci within the principal cluster of ribosomal protein genes of Bacillus subtilis. Mol Gen Genet. 1983;192(1-2):124–130. doi: 10.1007/BF00327657. [DOI] [PubMed] [Google Scholar]
  46. Dabbs E. R. Mapping of the genes for Bacillus subtilis ribosomal proteins S6 and S16: comparison of the chromosomal distribution of ribosomal protein genes in this bacterium with the distribution in Escherichia coli. Mol Gen Genet. 1983;192(3):386–390. doi: 10.1007/BF00392179. [DOI] [PubMed] [Google Scholar]
  47. Dabbs E. R. Order of ribosomal protein genes in the Rif cluster of Bacillus subtilis is identical to that of Escherichia coli. J Bacteriol. 1984 Aug;159(2):770–772. doi: 10.1128/jb.159.2.770-772.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Dean D. R., Hoch J. A., Aronson A. I. Alteration of the Bacillus subtilis glutamine synthetase results in overproduction of the enzyme. J Bacteriol. 1977 Sep;131(3):981–987. doi: 10.1128/jb.131.3.981-987.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Dubnau D., Cirigliano C. Genetic characterization of recombination-deficient mutants of Bacillus subtilis. J Bacteriol. 1974 Feb;117(2):488–493. doi: 10.1128/jb.117.2.488-493.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Dubnau D., Goldthwaite C., Smith I., Marmur J. Genetic mapping in Bacillus subtilis. J Mol Biol. 1967 Jul 14;27(1):163–185. doi: 10.1016/0022-2836(67)90358-0. [DOI] [PubMed] [Google Scholar]
  51. Dubnau E., Pifko S., Sloma A., Cabane K., Smith I. Conditional mutations in the translational apparatus of Bacillus subtils. Mol Gen Genet. 1976 Aug 10;147(1):1–12. doi: 10.1007/BF00337929. [DOI] [PubMed] [Google Scholar]
  52. Dul M. J., Young F. E. Genetic mapping of a mutant defective in D,L-alanine racemase in Bacillus subtilis 168. J Bacteriol. 1973 Sep;115(3):1212–1214. doi: 10.1128/jb.115.3.1212-1214.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. EPHRATI-ELIZUR E., SRINIVASAN P. R., ZAMENHOF S. Genetic analysis, by means of transformation, of histidine linkage groups in Bacillus subtilis. Proc Natl Acad Sci U S A. 1961 Jan 15;47:56–63. doi: 10.1073/pnas.47.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Endo T., Ishihara H., Freese E. Properties of a Bacillus subtilis mutant able to sporulate continually during growth in synthetic medium. J Gen Microbiol. 1983 Jan;129(1):17–30. doi: 10.1099/00221287-129-1-17. [DOI] [PubMed] [Google Scholar]
  55. Endo T., Uratani B., Freese E. Purine salvage pathways of Bacillus subtilis and effect of guanine on growth of GMP reductase mutants. J Bacteriol. 1983 Jul;155(1):169–179. doi: 10.1128/jb.155.1.169-179.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. FREESE E., PARK S. W., CASHEL M. THE DEVELOPMENTAL SIGNIFICANCE OF ALANINE DEHYDROGENASE IN BACILLUS SUBTILIS. Proc Natl Acad Sci U S A. 1964 Jun;51:1164–1172. doi: 10.1073/pnas.51.6.1164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Fani R., Mastromei G., Polsinelli M., Venema G. Isolation and characterization of Bacillus subtilis mutants altered in competence. J Bacteriol. 1984 Jan;157(1):152–157. doi: 10.1128/jb.157.1.152-157.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Fein J. E., Rogers H. J. Autolytic enzyme-deficient mutants of Bacillus subtilis 168. J Bacteriol. 1976 Sep;127(3):1427–1442. doi: 10.1128/jb.127.3.1427-1442.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Ferrari E., Henner D. J., Hoch J. A. Isolation of Bacillus subtilis genes from a charon 4A library. J Bacteriol. 1981 Apr;146(1):430–432. doi: 10.1128/jb.146.1.430-432.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Ferrari F. A., Nguyen A., Lang D., Hoch J. A. Construction and properties of an integrable plasmid for Bacillus subtilis. J Bacteriol. 1983 Jun;154(3):1513–1515. doi: 10.1128/jb.154.3.1513-1515.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Ferrari F. A., Trach K., Hoch J. A. Sequence analysis of the spo0B locus reveals a polycistronic transcription unit. J Bacteriol. 1985 Feb;161(2):556–562. doi: 10.1128/jb.161.2.556-562.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Fisher S. H., Magasanik B. Synthesis of oxaloacetate in Bacillus subtilis mutants lacking the 2-ketoglutarate dehydrogenase enzymatic complex. J Bacteriol. 1984 Apr;158(1):55–62. doi: 10.1128/jb.158.1.55-62.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Fisher S. H., Sonenshein A. L. Glutamine-requiring mutants of Bacillus subtilis. Biochem Biophys Res Commun. 1977 Dec 7;79(3):987–995. doi: 10.1016/0006-291x(77)91207-4. [DOI] [PubMed] [Google Scholar]
  64. Fort P., Piggot P. J. Nucleotide sequence of sporulation locus spoIIA in Bacillus subtilis. J Gen Microbiol. 1984 Aug;130(8):2147–2153. doi: 10.1099/00221287-130-8-2147. [DOI] [PubMed] [Google Scholar]
  65. Freese E. B., Cole R. M., Klofat W., Freese E. Growth, sporulation, and enzyme defects of glucosamine mutants of Bacillus subtilis. J Bacteriol. 1970 Mar;101(3):1046–1062. doi: 10.1128/jb.101.3.1046-1062.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Fujita Y., Fujita T. Genetic analysis of a pleiotropic deletion mutation (delta igf) in Bacillus subtilis. J Bacteriol. 1983 May;154(2):864–869. doi: 10.1128/jb.154.2.864-869.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Galizzi A., Albertini A. M., Plevani P., Cassani G. Synthesis of RNA and protein in a mutant of Bacillus subtilis temperature sensitive during spore germination. Mol Gen Genet. 1976 Oct 18;148(2):159–164. doi: 10.1007/BF00268380. [DOI] [PubMed] [Google Scholar]
  68. Galizzi A., Gorrini F., Rollier A., Polsinelli M. Mutants of Bacillus subtilis temperature sensitive in the outgrowth phase of spore germination. J Bacteriol. 1973 Mar;113(3):1482–1490. doi: 10.1128/jb.113.3.1482-1490.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Galizzi A., Siccardi A. G., Albertini A. M., Amileni A. R., Meneguzzi G., Polsinelli M. Properties of Bacillus subtilis mutants temperature sensitive in germination. J Bacteriol. 1975 Feb;121(2):450–454. doi: 10.1128/jb.121.2.450-454.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Gallori E., Bazzicalupo M., Parisi B., Pedaggi G., Polsinelli M. Resistance to (L)-azetidin-2-carboxylic acid in Bacillus subtilis. Biochem Biophys Res Commun. 1978 Dec 29;85(4):1518–1525. doi: 10.1016/0006-291x(78)91175-0. [DOI] [PubMed] [Google Scholar]
  71. Gallori E., Fani R. Characterization of D-cycloserine resistant mutants in Bacillus subtilis. Microbiologica. 1983 Jan;6(1):19–26. [PubMed] [Google Scholar]
  72. Gardner A. L., Aronson A. I. Expression of the Bacillus subtilis glutamine synthetase gene in Escherichia coli. J Bacteriol. 1984 Jun;158(3):967–971. doi: 10.1128/jb.158.3.967-971.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Garro A. J., Leffert H., Marmur J. Genetic mapping of a defective bacteriophage on the chromosome of Bacillus subtilis 168. J Virol. 1970 Sep;6(3):340–343. doi: 10.1128/jvi.6.3.340-343.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Garro A. J., Sprouse C., Wetmur J. G. Association of the recombination-deficient phenotype of Bacillus subtilis recC strains with the presence of an SPO2 prophage. J Bacteriol. 1976 Apr;126(1):556–558. doi: 10.1128/jb.126.1.556-558.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Gass K. B., Cozzarelli N. R. Further genetic and enzymological characterization of the three Bacillus subtilis deoxyribonucleic acid polymerases. J Biol Chem. 1973 Nov 25;248(22):7688–7700. [PubMed] [Google Scholar]
  76. Gay P., Chalumeau H., Steinmetz M. Chromosomal localization of gut, fruC, and pfk mutations affecting genes involved in Bacillus subtilis D-glucitol catabolism. J Bacteriol. 1983 Mar;153(3):1133–1137. doi: 10.1128/jb.153.3.1133-1137.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Gay P., Cordier P., Marquet M., Delobbe A. Carbohydrate metabolism and transport in Bacillus subtilis. A study of ctr mutations. Mol Gen Genet. 1973 Mar 19;121(4):355–368. doi: 10.1007/BF00433234. [DOI] [PubMed] [Google Scholar]
  78. Gay P., Delobbe A. Fructose transport in Bacillus subtilis. Eur J Biochem. 1977 Oct 3;79(2):363–373. doi: 10.1111/j.1432-1033.1977.tb11817.x. [DOI] [PubMed] [Google Scholar]
  79. Gilman M. Z., Chamberlin M. J. Developmental and genetic regulation of Bacillus subtilis genes transcribed by sigma 28-RNA polymerase. Cell. 1983 Nov;35(1):285–293. doi: 10.1016/0092-8674(83)90231-3. [DOI] [PubMed] [Google Scholar]
  80. Goldstein B. J., Zahler S. A. Uptake of branched-chain alpha-keto acids in Bacillus subtilis. J Bacteriol. 1976 Jul;127(1):667–670. doi: 10.1128/jb.127.1.667-670.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Goldthwaite C., Dubnau D., Smith I. Genetic mapping of antibiotic resistance in markers Bacillus subtilis. Proc Natl Acad Sci U S A. 1970 Jan;65(1):96–103. doi: 10.1073/pnas.65.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Goldthwaite C., Smith I. Genetic mapping of aminoglycoside and fusidic acid resistant mutations in Bacillus subtilis. Mol Gen Genet. 1972;114(3):181–189. doi: 10.1007/BF01788887. [DOI] [PubMed] [Google Scholar]
  83. Grant G. F., Simon M. I. Synthesis of bacterial flagella. II. PBS1 transduction of flagella-specific markers in Bacillus subtilis. J Bacteriol. 1969 Jul;99(1):116–124. doi: 10.1128/jb.99.1.116-124.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Guespin-Michel J. F. Phenotypic reversion in some early blocked sporulation mutants of Bacillus subtilis. Genetic study of polymyxin resistant partial revertants. Mol Gen Genet. 1971;112(3):243–254. [PubMed] [Google Scholar]
  85. Haldenwang W. G., Banner C. D., Ollington J. F., Losick R., Hoch J. A., O'Connor M. B., Sonenshein A. L. Mapping a cloned gene under sporulation control by inserttion of a drug resistance marker into the Bacillus subtilis chromosome. J Bacteriol. 1980 Apr;142(1):90–98. doi: 10.1128/jb.142.1.90-98.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Halling S. M., Burtis K. C., Doi R. H. Reconstitution studies show that rifampicin resistance is determined by the largest polypeptide of Bacillus subtilis RNA polymerase. J Biol Chem. 1977 Dec 25;252(24):9024–9031. [PubMed] [Google Scholar]
  87. Halling S. M., Burtis K. C., Doi R. H. beta' subunit of bacterial RNA polymerase is responsible for streptolydigin resistance in Bacillus subtilis. Nature. 1978 Apr 27;272(5656):837–839. doi: 10.1038/272837a0. [DOI] [PubMed] [Google Scholar]
  88. Hara H., Yoshikawa H. Asymmetric bidirectional replication of Bacillus subtilis chromosome. Nat New Biol. 1973 Aug 15;244(137):200–203. doi: 10.1038/newbio244200a0. [DOI] [PubMed] [Google Scholar]
  89. Harford N. Genetic analysis of rec mutants of Bacillus subtilis. Evidence for at least six linkage groups. Mol Gen Genet. 1974 Mar 27;129(3):269–274. doi: 10.1007/BF00267919. [DOI] [PubMed] [Google Scholar]
  90. Harford N., Sueoka N. Chromosomal location of antibiotic resistance markers in Bacillus subtilis. J Mol Biol. 1970 Jul 28;51(2):267–286. doi: 10.1016/0022-2836(70)90142-7. [DOI] [PubMed] [Google Scholar]
  91. Harwood C. R., Baumberg S. Arginine hydroxamate-resistant mutants of Bacillus subtilis with altered control of arginine metabolism. J Gen Microbiol. 1977 May;100(1):177–188. doi: 10.1099/00221287-100-1-177. [DOI] [PubMed] [Google Scholar]
  92. Hederstedt L., Magnusson K., Rutberg L. Reconstitution of succinate dehydrogenase in Bacillus subtilis by protoplast fusion. J Bacteriol. 1982 Oct;152(1):157–165. doi: 10.1128/jb.152.1.157-165.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Hemphill H. E., Gage I., Zahler S. A., Korman R. Z. Prophage-mediated production of a bacteriocinlike substance by SP beta lysogens of Bacillus subtilis. Can J Microbiol. 1980 Nov;26(11):1328–1333. doi: 10.1139/m80-220. [DOI] [PubMed] [Google Scholar]
  94. Henkin T. M., Campbell K. M., Chambliss G. H. Spectinomycin dependence in Bacillus subtilis. J Bacteriol. 1979 Mar;137(3):1452–1455. doi: 10.1128/jb.137.3.1452-1455.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Henkin T. M., Chambliss G. H. Genetic analysis of a streptomycin-resistant oligosporogenous Bacillus subtilis mutant. J Bacteriol. 1984 Jan;157(1):202–210. doi: 10.1128/jb.157.1.202-210.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Henkin T. M., Chambliss G. H. Genetic mapping of a mutation causing an alteration in Bacillus subtilis ribosomal protein S4. Mol Gen Genet. 1984;193(2):364–369. doi: 10.1007/BF00330694. [DOI] [PubMed] [Google Scholar]
  97. Henner D. J., Hoch J. A. The Bacillus subtilis chromosome. Microbiol Rev. 1980 Mar;44(1):57–82. doi: 10.1128/mr.44.1.57-82.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Henner D. J., Steinberg W. Genetic location of the Bacillus subtilis sup-3 suppressor mutation. J Bacteriol. 1979 Aug;139(2):668–670. doi: 10.1128/jb.139.2.668-670.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Higerd T. B., Hoch J. A., Spizizen J. Hyperprotease-producing mutants of Bacillus subtilis. J Bacteriol. 1972 Nov;112(2):1026–1028. doi: 10.1128/jb.112.2.1026-1028.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Higerd T. B. Isolation of acetyl esterase mutants of Bacillus subtilis 168. J Bacteriol. 1977 Feb;129(2):973–977. doi: 10.1128/jb.129.2.973-977.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Higo K., Otaka E., Osawa S. Purification and characterization of 30S ribosomal proteins from Bacillus subtilis: correlation to Escherichia coli 30S proteins. Mol Gen Genet. 1982;185(2):239–244. doi: 10.1007/BF00330792. [DOI] [PubMed] [Google Scholar]
  102. Hill S. H. SpoVH and spoVJ--new sporulation loci in Bacillus subtilis 168. J Gen Microbiol. 1983 Feb;129(2):293–302. doi: 10.1099/00221287-129-2-293. [DOI] [PubMed] [Google Scholar]
  103. Hoch J. A., Anagnostopoulos C. Chromosomal location and properties of radiation sensitivity mutations in Bacillus subtilis. J Bacteriol. 1970 Aug;103(2):295–301. doi: 10.1128/jb.103.2.295-301.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Hoch J. A., Coukoulis H. J. Genetics of the alpha-ketoglutarate dehydrogenase complex of Bacillus subtilis. J Bacteriol. 1978 Jan;133(1):265–269. doi: 10.1128/jb.133.1.265-269.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Hoch J. A., Mathews J. L. Chromosomal location of pleiotropic negative sporulation mutations in Bacillus subtilis. Genetics. 1973 Feb;73(2):215–228. doi: 10.1093/genetics/73.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Hoch J. A., Nester E. W. Gene-enzyme relationships of aromatic acid biosynthesis in Bacillus subtilis. J Bacteriol. 1973 Oct;116(1):59–66. doi: 10.1128/jb.116.1.59-66.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Hoch J. A., Trach K., Kawamura F., Saito H. Identification of the transcriptional suppressor sof-1 as an alteration in the spo0A protein. J Bacteriol. 1985 Feb;161(2):552–555. doi: 10.1128/jb.161.2.552-555.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Hoch S. O., Anagnostopoulos C., Crawford I. P. Enzymes of the tryptophan operon of Bacillus subtilis. Biochem Biophys Res Commun. 1969 Jun 27;35(6):838–844. doi: 10.1016/0006-291x(69)90700-1. [DOI] [PubMed] [Google Scholar]
  109. Hoch S. O. Mapping of the 5-methyltryptophan resistance locus in Bacillus subtilis. J Bacteriol. 1974 Jan;117(1):315–317. doi: 10.1128/jb.117.1.315-317.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Hoch S. O., Roth C. W., Crawford I. P., Nester E. W. Control of tryptophan biosynthesis by the methyltryptophan resistance gene in Bacillus subtilis. J Bacteriol. 1971 Jan;105(1):38–45. doi: 10.1128/jb.105.1.38-45.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Hodgson J. A., Lowe P. N., Perham R. N. Wild-type and mutant forms of the pyruvate dehydrogenase multienzyme complex from Bacillus subtilis. Biochem J. 1983 May 1;211(2):463–472. doi: 10.1042/bj2110463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Hranueli D., Piggot P. J., Mandelstam J. Statistical estimate of the total number of operons specific for Bacillus subtilis sporulation. J Bacteriol. 1974 Sep;119(3):684–690. doi: 10.1128/jb.119.3.684-690.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Hulett F. M. Cloning and characterization of the Bacillus licheniformis gene coding for alkaline phosphatase. J Bacteriol. 1984 Jun;158(3):978–982. doi: 10.1128/jb.158.3.978-982.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Hutchison K. W., Halvorson H. O. Cloning of randomly sheared DNA fragments from a phi 105 lysogen of Bacillus subtilis identification of prophage-containing clones. Gene. 1980 Feb;8(3):267–278. doi: 10.1016/0378-1119(80)90004-9. [DOI] [PubMed] [Google Scholar]
  115. Iijima T., Diesterhaft M. D., Freese E. Sodium effect of growth on aspartate and genetic analysis of a Bacillus subtilis mutant with high aspartase activity. J Bacteriol. 1977 Mar;129(3):1440–1447. doi: 10.1128/jb.129.3.1440-1447.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Imada S., Carroll L. E., Sueoka N. Genetic mapping of a group of temperature-sensitive dna initiation mutants in Bacillus subtilis. Genetics. 1980 Apr;94(4):809–823. doi: 10.1093/genetics/94.4.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Inselburg J. W., Eremenko-Volpe T., Greenwald L., Meadow W. L., Marmur J. Physical and genetic mapping of the SPO2 prophage on the chromosome of Bacillus subtilis 168. J Virol. 1969 Jun;3(6):627–628. doi: 10.1128/jvi.3.6.627-628.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Ionesco H., Michel J., Cami B., Schaeffer P. Symposium on bacterial spores: II. Genetics of sporulation in Bacillus subtilis Marburg. J Appl Bacteriol. 1970 Mar;33(1):13–24. doi: 10.1111/j.1365-2672.1970.tb05230.x. [DOI] [PubMed] [Google Scholar]
  119. Ito J., Mildner G., Spizizen J. Early blocked asporogenous mutants of Bacillus subtilis 168. I. Isolation and characterization of mutants resistant to antibiotic(s) produced by sporulating Bacillus subtilis 168. Mol Gen Genet. 1971;112(2):104–109. doi: 10.1007/BF00267488. [DOI] [PubMed] [Google Scholar]
  120. Ito J. Pleiotropic nature of bacteriophage tolerant mutants obtained in early-blocked asporogenous mutants of Bacillus subtilis 168. Mol Gen Genet. 1973 Aug 10;124(2):97–106. doi: 10.1007/BF00265143. [DOI] [PubMed] [Google Scholar]
  121. Itoh T. Amino acid replacement in the protein S5 from a spectinomycin resistant mutant of Bacillus subtilis. Mol Gen Genet. 1976 Feb 27;144(1):39–42. doi: 10.1007/BF00277301. [DOI] [PubMed] [Google Scholar]
  122. Iyer V. N. Mutations determining mitomycin resistance in Bacillus subtilis. J Bacteriol. 1966 Dec;92(6):1663–1669. doi: 10.1128/jb.92.6.1663-1669.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Jenkinson H. F. Altered arrangement of proteins in the spore coat of a germination mutant of Bacillus subtilis. J Gen Microbiol. 1983 Jun;129(6):1945–1958. doi: 10.1099/00221287-129-6-1945. [DOI] [PubMed] [Google Scholar]
  124. Jentsch S. Restriction and modification in Bacillus subtilis: sequence specificities of restriction/modification systems BsuM, BsuE, and BsuF. J Bacteriol. 1983 Nov;156(2):800–808. doi: 10.1128/jb.156.2.800-808.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Kane J. F., Goode R. L., Wainscott J. Multiple mutations in cysA 14 MUTANTS OF Bacillus subtilis. J Bacteriol. 1975 Jan;121(1):204–211. doi: 10.1128/jb.121.1.204-211.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Kane J. F. Regulation of a common amidotransferase subunit. J Bacteriol. 1977 Nov;132(2):419–425. doi: 10.1128/jb.132.2.419-425.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Karamata D., Gross J. D. Isolation and genetic analysis of temperature-sensitive mutants of B. subtilis defective in DNA synthesis. Mol Gen Genet. 1970;108(3):277–287. doi: 10.1007/BF00283358. [DOI] [PubMed] [Google Scholar]
  128. Karamata D., McConnell M., Rogers H. J. Mapping of rod mutants of Bacillus subtilis. J Bacteriol. 1972 Jul;111(1):73–79. doi: 10.1128/jb.111.1.73-79.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Kawamura F., Saito H. Isolation and mapping of a new suppressor mutation of an early sporulation gene spoOF mutation in Bacillus subtilis. Mol Gen Genet. 1983;192(3):330–334. doi: 10.1007/BF00392171. [DOI] [PubMed] [Google Scholar]
  130. Kelly M. S. Physical and mapping properties of distant linkages between genetic markers in transformation of Bacillus subtilis. Mol Gen Genet. 1967;99(4):333–349. doi: 10.1007/BF00330909. [DOI] [PubMed] [Google Scholar]
  131. Kelly M. S. The causes of instability of linkage in transformation of Bacillus subtilis. Mol Gen Genet. 1967;99(4):350–361. doi: 10.1007/BF00330910. [DOI] [PubMed] [Google Scholar]
  132. Kiss I., Berek I., Ivánovics G. Mapping the -aminolaevulinic acid synthetase locus in Bacillus subtilis. J Gen Microbiol. 1971 May;66(2):153–159. doi: 10.1099/00221287-66-2-153. [DOI] [PubMed] [Google Scholar]
  133. Kobayashi H., Kobayashi K., Kobayashi Y. Isolation and characterization of fusidic acid-resistant, sporulation-defective mutants of Bacillus subtilis. J Bacteriol. 1977 Oct;132(1):262–269. doi: 10.1128/jb.132.1.262-269.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Kunst F., Pascal M., Lepesant-Kejzlarova J., Lepesant J. A., Billault A., Dedonder R. Pleiotropic mutations affecting sporulation conditions and the syntheses of extracellular enzymes in Bacillus subtilis 168. Biochimie. 1974;56(11-12):1481–1489. doi: 10.1016/s0300-9084(75)80270-7. [DOI] [PubMed] [Google Scholar]
  135. Kunst F., Steinmetz M., Lepesant J. A., Dedonder R. Presence of a third sucrose hydrolyzing enzyme in Bacillus subtilis: constitutive levanase synthesis by mutants of Bacillus subtilis Marburg 168. Biochimie. 1977;59(3):289–292. [PubMed] [Google Scholar]
  136. Laipis P. J., Ganesan A. T. A deoxyribonucleic acid polymerase I-deficient mutant of Bacillus subtilis. J Biol Chem. 1972 Sep 25;247(18):5867–5871. [PubMed] [Google Scholar]
  137. Lamont I. L., Mandelstam J. Identification of a new sporulation locus, spoIIIF, in Bacillus subtilis. J Gen Microbiol. 1984 May;130(5):1253–1261. doi: 10.1099/00221287-130-5-1253. [DOI] [PubMed] [Google Scholar]
  138. Lampe M. F., Bott K. F. Cloning the gyrA gene of Bacillus subtilis. Nucleic Acids Res. 1984 Aug 10;12(15):6307–6323. doi: 10.1093/nar/12.15.6307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Le Hégarat J. C., Anagnostopoulos C. Purification, subunit structure and properties of two repressible phosphohydrolases of Bacillus subtilis. Eur J Biochem. 1973 Nov 15;39(2):525–539. doi: 10.1111/j.1432-1033.1973.tb03151.x. [DOI] [PubMed] [Google Scholar]
  140. Lepesant-Kejzlarová J., Lepesant J. A., Walle J., Billault A., Dedonder R. Revision of the linkage map of Bacillus subtilis 168: indications for circularity of the chromosome. J Bacteriol. 1975 Mar;121(3):823–834. doi: 10.1128/jb.121.3.823-834.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Lepesant-Kejzlarová J., Walle J., Billault A., Kunst F., Lepesant J. A., Dedonder R. Etablissement de la carte génétique de Bacillus subtilis: réexamen de la localisation du segment chromosomique compris entre les marqueurs sacQ36 et gtaA12. C R Acad Sci Hebd Seances Acad Sci D. 1974 Apr 1;278(14):1911–1914. [PubMed] [Google Scholar]
  142. Lepesant J. A., Billault A., Kejzlarová-Lepesant J., Pascal M., Kunst F., Dedonder R. Identification of the structural gene for sucrase in Bacillus subtilis Marburg. Biochimie. 1974;56(11-12):1465–1470. doi: 10.1016/s0300-9084(75)80268-9. [DOI] [PubMed] [Google Scholar]
  143. Lepesant J. A., Kunst F., Lepesant-Kejzlarová J., Dedonder R. Chromosomal location of mutations affecting sucrose metabolism in Bacillus subtilis Marburg. Mol Gen Genet. 1972;118(2):135–160. doi: 10.1007/BF00267084. [DOI] [PubMed] [Google Scholar]
  144. Lindgren V., Holmgren E., Rutberg L. Bacillus subtilis mutant with temperature-sensitive net synthesis of phosphatidylethanolamine. J Bacteriol. 1977 Nov;132(2):473–484. doi: 10.1128/jb.132.2.473-484.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Lipsky R. H., Rosenthal R., Zahler S. A. Defective specialized SP beta transducing bacteriophages of Bacillus subtilis that carry the sup-3 or sup-44 gene. J Bacteriol. 1981 Dec;148(3):1012–1015. doi: 10.1128/jb.148.3.1012-1015.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Liu H. M., Chak K. F., Piggot P. J. Isolation and characterization of a recombinant plasmid carrying a functional part of the Bacillus subtilis spoIIA locus. J Gen Microbiol. 1982 Nov;128(11):2805–2812. doi: 10.1099/00221287-128-11-2805. [DOI] [PubMed] [Google Scholar]
  147. Lopez M. E., Ferrari F. A., Siccardi A. G., Mazza G., Polsinelli M. New purine markers in Bacillus subtilis. J Bacteriol. 1976 Apr;126(1):533–535. doi: 10.1128/jb.126.1.533-535.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Lotti M., Dabbs E. R., Hasenbank R., Stöffler-Meilicke M., Stöffler G. Characterisation of a mutant from Escherichia coli lacking protein L15 and localisation of protein L15 by immuno-electron microscopy. Mol Gen Genet. 1983;192(3):295–300. doi: 10.1007/BF00392165. [DOI] [PubMed] [Google Scholar]
  149. Love E., D'Ambrosio D., Brown N. C. Mapping of the gene specifying DNA polymerase III of Bacillus subtilis. Mol Gen Genet. 1976 Mar 30;144(3):313–321. doi: 10.1007/BF00341730. [DOI] [PubMed] [Google Scholar]
  150. Love P. E., Yasbin R. E. Genetic characterization of the inducible SOS-like system of Bacillus subtilis. J Bacteriol. 1984 Dec;160(3):910–920. doi: 10.1128/jb.160.3.910-920.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Martinez R. J., Ichiki A. T., Lundh N. P., Tronick S. R. A single amino acid substitution responsible for altered flagellar morphology. J Mol Biol. 1968 Jun 28;34(3):559–564. doi: 10.1016/0022-2836(68)90180-0. [DOI] [PubMed] [Google Scholar]
  152. Matsuzaki S., Kobayashi Y. New mutation affecting the synthesis of some membrane proteins and sporulation in Bacillus subtilis. J Bacteriol. 1984 Jul;159(1):228–232. doi: 10.1128/jb.159.1.228-232.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Maznitsa I. I., Sukhodolets V. V., Ukhabotina L. S. Klonirovanie genov Bacillus subtilis 168, kompensiruiushchikh defekt mutatsii po timidinfosforilaze i uridinfosforilaze v kletkakh Escherichia coli. Genetika. 1983 Jun;19(6):881–887. [PubMed] [Google Scholar]
  154. Mazza G., Fortunato A., Ferrari E., Canosi U., Falaschi A., Polsinelli M. Genetic and enzymic studies on the recombination process in Bacillus subtilis. Mol Gen Genet. 1975;136(1):9–30. doi: 10.1007/BF00275445. [DOI] [PubMed] [Google Scholar]
  155. McEnroe A. S., Taber H. W. Correlation between cytochrome aa3 concentrations and streptomycin accumulation in Bacillus subtilis. Antimicrob Agents Chemother. 1984 Oct;26(4):507–512. doi: 10.1128/aac.26.4.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Meganathan R., Bentley R., Taber H. Identification of Bacillus subtilis men mutants which lack O-succinylbenzoyl-coenzyme A synthetase and dihydroxynaphthoate synthase. J Bacteriol. 1981 Jan;145(1):328–332. doi: 10.1128/jb.145.1.328-332.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Mendelson N. H., Gross J. D. Characterization of a temperature-sensitive mutant of Bacillus subtilis defective in deoxyribonucleic acid replication. J Bacteriol. 1967 Nov;94(5):1603–1608. doi: 10.1128/jb.94.5.1603-1608.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Michel J. F., Cami B. Sélection de mutants de Bacillus subtilis bloqués au début de la sporulation. Nature des mutations sélectionnées. Ann Inst Pasteur (Paris) 1969 Jan;116(1):3–18. [PubMed] [Google Scholar]
  159. Miczák A., Berek I., Ivanovics G. Mapping the uroporphyrinogen decarboxylase, coproporphyrinogen oxidase and ferrochelatase loci in Bacillus subtilis. Mol Gen Genet. 1976 Jul 5;146(1):85–87. doi: 10.1007/BF00267986. [DOI] [PubMed] [Google Scholar]
  160. Miczák A., Prágai B., Berek I. Mapping the uroporphyrinogen III cosynthase locus in Bacillus subtilis. Mol Gen Genet. 1979 Jul 24;174(3):293–295. doi: 10.1007/BF00267802. [DOI] [PubMed] [Google Scholar]
  161. Miki T., Minami Z., Ikeda Y. The genetics of alkaline phosphatase formation in Bacillus subtilis. Genetics. 1965 Nov;52(5):1093–1100. doi: 10.1093/genetics/52.5.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Moir A. Germination properties of a spore coat-defective mutant of Bacillus subtilis. J Bacteriol. 1981 Jun;146(3):1106–1116. doi: 10.1128/jb.146.3.1106-1116.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Moir A., Lafferty E., Smith D. A. Genetics analysis of spore germination mutants of Bacillus subtilis 168: the correlation of phenotype with map location. J Gen Microbiol. 1979 Mar;111(1):165–180. doi: 10.1099/00221287-111-1-165. [DOI] [PubMed] [Google Scholar]
  164. Moir A. The isolation of lambda transducing phages carrying the citG and gerA genes of Bacillus subtilis. J Gen Microbiol. 1983 Feb;129(2):303–310. doi: 10.1099/00221287-129-2-303. [DOI] [PubMed] [Google Scholar]
  165. Monteiro M. J., Sargent M. G., Piggot P. J. Characterization of the replication terminus of the Bacillus subtilis chromosome. J Gen Microbiol. 1984 Sep;130(9):2403–2414. doi: 10.1099/00221287-130-9-2403. [DOI] [PubMed] [Google Scholar]
  166. Moran C. P., Jr, Losick R., Sonenshein A. L. Identification of a sporulation locus in cloned Bacillus subtilis deoxyribonucleic acid. J Bacteriol. 1980 Apr;142(1):331–334. doi: 10.1128/jb.142.1.331-334.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Mountain A., Baumberg S. Map locations of some mutations conferring resistance to arginine hydroxamate in Bacillus subtilis 168. Mol Gen Genet. 1980;178(3):691–701. doi: 10.1007/BF00337880. [DOI] [PubMed] [Google Scholar]
  168. Mountain A., Mann N. H., Munton R. N., Baumberg S. Cloning of a Bacillus subtilis restriction fragment complementing auxotrophic mutants of eight Escherichia coli genes of arginine biosynthesis. Mol Gen Genet. 1984;197(1):82–89. doi: 10.1007/BF00327926. [DOI] [PubMed] [Google Scholar]
  169. Munakata N., Ikeda Y. A mutant of Bacillus subtilis producing ultraviolet-sensitive spores. Biochem Biophys Res Commun. 1968 Nov 8;33(3):469–475. doi: 10.1016/0006-291x(68)90597-4. [DOI] [PubMed] [Google Scholar]
  170. Myoda T. T., Lowther S. V., Funanage V. L., Young F. E. Cloning and mapping of the dihydrofolate reductase gene of Bacillus subtilis. Gene. 1984 Jul-Aug;29(1-2):135–143. doi: 10.1016/0378-1119(84)90174-4. [DOI] [PubMed] [Google Scholar]
  171. Møllgaard H. Deoxyadenosine/deoxycytidine kinase from Bacillus subtilis. Purification, characterization, and physiological function. J Biol Chem. 1980 Sep 10;255(17):8216–8220. [PubMed] [Google Scholar]
  172. Møllgaard H., Neuhard J. Deoxycytidylate deaminase from Bacillus subtilis. Purification, characterization, and physiological function. J Biol Chem. 1978 May 25;253(10):3536–3542. [PubMed] [Google Scholar]
  173. Nasser D., Nester E. W. Aromatic amino acid biosynthesis: gene-enzyme relationships in Bacillus subtilis. J Bacteriol. 1967 Nov;94(5):1706–1714. doi: 10.1128/jb.94.5.1706-1714.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Naumov L. S., Savchenko G. V., Prozorov A. A. Kartirovanie oblasti khromosomy Bacillus subtilis, nesushchei mutatsiiu rec 342 (mutatsiia, snizhaiushchaia aktivnost' ATF-zavisimoi dezoksiribonukleazy) Genetika. 1974 Feb;10(2):126–131. [PubMed] [Google Scholar]
  175. Nester E W, Schafer M, Lederberg J. Gene Linkage in DNA Transfer: A Cluster of Genes Concerned with Aromatic Biosynthesis in Bacillus Subtilis. Genetics. 1963 Apr;48(4):529–551. doi: 10.1093/genetics/48.4.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  176. Nester E. W., Montoya A. L. An enzyme common to histidine and aromatic amino acid biosynthesis in Bacillus subtilis. J Bacteriol. 1976 May;126(2):699–705. doi: 10.1128/jb.126.2.699-705.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Neuhard J., Price A. R., Schack L., Thomassen E. Two thymidylate synthetases in Bacillus subtilis. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1194–1198. doi: 10.1073/pnas.75.3.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Niaudet B., Gay P., Dedonder R. Identification of the structural gene of the PEP-phosphotransferase enzyme I in Bacillus subtilis Marburg. Mol Gen Genet. 1975;136(4):337–349. doi: 10.1007/BF00341718. [DOI] [PubMed] [Google Scholar]
  179. Nomura S., Yamane K., Sasaki T., Yamasaki M., Tamura G., Maruo B. Tunicamycin-resistant mutants and chromosomal locations of mutational sites in Bacillus subtilis. J Bacteriol. 1978 Nov;136(2):818–821. doi: 10.1128/jb.136.2.818-821.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. O'Sullivan A., Sueoka N. Sequential replication of the Bacillus subtilis chromosome. IV. Genetic mapping by density transfer experiment. J Mol Biol. 1967 Jul 28;27(2):349–368. doi: 10.1016/0022-2836(67)90025-3. [DOI] [PubMed] [Google Scholar]
  181. Ordal G. W., Nettleton D. O., Hoch J. A. Genetics of Bacillus subtilis chemotaxis: isolation and mapping of mutations and cloning of chemotaxis genes. J Bacteriol. 1983 Jun;154(3):1088–1097. doi: 10.1128/jb.154.3.1088-1097.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Osawa S. Gene locus of a 30s ribosomal protein S20 of Bacillus subtilis. Mol Gen Genet. 1976 Feb 27;144(1):49–51. doi: 10.1007/BF00277303. [DOI] [PubMed] [Google Scholar]
  183. Osawa S., Takata R., Tanaka K., Tamaki M. Chloramphenicol resistant mutants of Bacillus subtilis. Mol Gen Genet. 1973 Dec 20;127(2):163–173. doi: 10.1007/BF00333664. [DOI] [PubMed] [Google Scholar]
  184. Osawa S., Tokui A., Saito H. Mapping by interspecies transformation experiments of several ribosomal protein genes near the replication origin of Bacillus subtilis chromosome. Mol Gen Genet. 1978 Aug 17;164(2):113–129. doi: 10.1007/BF00267376. [DOI] [PubMed] [Google Scholar]
  185. Pai C. H. Genetics of biotin biosynthesis in Bacillus subtilis. J Bacteriol. 1975 Jan;121(1):1–8. doi: 10.1128/jb.121.1.1-8.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Pestka S., Weiss D., Vince R., Wienen B., Stöffler G., Smith I. Thiostrepton-resistant mutants of Bacillus subtilis: localization of resistance to the 50S subunit. Mol Gen Genet. 1976 Mar 30;144(3):235–241. doi: 10.1007/BF00341721. [DOI] [PubMed] [Google Scholar]
  187. Peterson A. M., Rutberg L. Linked transformation of bacterial and prophage markers in Bacillus subtilis 168 lysogenic for bacteriophage phi 105. J Bacteriol. 1969 Jun;98(3):874–877. doi: 10.1128/jb.98.3.874-877.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Piggot P. J., Buxton R. S. Bacteriophage PBSX-induced deletion mutants of Bacillus subtilis 168 constitutive for alkaline phosphatase. J Gen Microbiol. 1982 Apr;128(4):663–669. doi: 10.1099/00221287-128-4-663. [DOI] [PubMed] [Google Scholar]
  189. Piggot P. J., Coote J. G. Genetic aspects of bacterial endospore formation. Bacteriol Rev. 1976 Dec;40(4):908–962. doi: 10.1128/br.40.4.908-962.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Piggot P. J. Mapping of asporogenous mutations of Bacillus subtilis: a minimum estimate of the number of sporeulation operons. J Bacteriol. 1973 Jun;114(3):1241–1253. doi: 10.1128/jb.114.3.1241-1253.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Piggot P. J. Short communications. Characterization of a cym mutant of Bacillus subtilis. J Gen Microbiol. 1975 Aug;89(2):371–374. doi: 10.1099/00221287-89-2-371. [DOI] [PubMed] [Google Scholar]
  192. Piggot P. J., Taylor S. Y. New types of mutation affecting formation of alkaline phosphatase by Bacillus subtilis in sporulation conditions. J Gen Microbiol. 1977 Sep;102(1):69–80. doi: 10.1099/00221287-102-1-69. [DOI] [PubMed] [Google Scholar]
  193. Poluéktova E. U., Prozorov A. A. Izuchenie sovistv mutanta rec149 Bacillus subtilis s povyshennoi chastotoi induktsii defektnogo faga. Genetika. 1981;17(9):1588–1592. [PubMed] [Google Scholar]
  194. Pooley H. M., Karamata D. Genetic analysis of autolysin-deficient and flagellaless mutants of Bacillus subtilis. J Bacteriol. 1984 Dec;160(3):1123–1129. doi: 10.1128/jb.160.3.1123-1129.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Potvin B. W., Kelleher R. J., Jr, Gooder H. Pyrimidine biosynthetic pathway of Baccillus subtilis. J Bacteriol. 1975 Aug;123(2):604–615. doi: 10.1128/jb.123.2.604-615.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Prasad C., Diesterhaft M., Freese E. Initiation of spore germination in glycolytic mutants of Bacillus subtilis. J Bacteriol. 1972 Apr;110(1):321–328. doi: 10.1128/jb.110.1.321-328.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Price C. W., Gitt M. A., Doi R. H. Isolation and physical mapping of the gene encoding the major sigma factor of Bacillus subtilis RNA polymerase. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4074–4078. doi: 10.1073/pnas.80.13.4074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Price V. L., Gallant J. A. A new relaxed mutant of Bacillus subtilis. J Bacteriol. 1982 Feb;149(2):635–641. doi: 10.1128/jb.149.2.635-641.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Price V. L., Gallant J. A. Bacillus subtilis relG mutant: defect in glucose uptake. J Bacteriol. 1983 Jan;153(1):270–273. doi: 10.1128/jb.153.1.270-273.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Rabinovich P. M., Beburov M. Iu, Linevich Z. K., Stepanov A. I. Amplifikatsiia genov riboflavinovogo operona Bacillus subtilis v kletkakh Escherichia coli. Genetika. 1978 Oct;14(10):1696–1705. [PubMed] [Google Scholar]
  201. Racine F. M., Steinberg W. Genetic location of two mutations affecting the lysyl-transfer ribonucleic acid synthetase of Bacillus subtilis. J Bacteriol. 1974 Oct;120(1):384–389. doi: 10.1128/jb.120.1.384-389.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Rapoport G., Klier A., Billault A., Fargette F., Dedonder R. Construction of a colony bank of E. coli containing hybrid plasmids representative of the Bacillus subtilis 168 genome. Expression of functions harbored by the recombinant plasmids in B. subtilis. Mol Gen Genet. 1979 Oct 3;176(2):239–245. doi: 10.1007/BF00273218. [DOI] [PubMed] [Google Scholar]
  203. Raugei G., Bazzicalupo M., Federici G., Gallori E., Pepino R., Polsinelli M. Effect of a new pyrimidine analog on Bacillus subtilis growth. J Bacteriol. 1981 Feb;145(2):1079–1081. doi: 10.1128/jb.145.2.1079-1081.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  204. Reeve J. N., Mendelson N. H., Coyne S. I., Hallock L. L., Cole R. M. Minicells of Bacillus subtilis. J Bacteriol. 1973 May;114(2):860–873. doi: 10.1128/jb.114.2.860-873.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Reysset G. New class of Bacillus subtilis glutamine-requiring mutants. J Bacteriol. 1981 Nov;148(2):653–658. doi: 10.1128/jb.148.2.653-658.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Rima B. K., Takahashi I. Deoxyribonucleoside-requiring mutants of Bacillus subtilis. J Gen Microbiol. 1978 Jul;107(1):139–145. doi: 10.1099/00221287-107-1-139. [DOI] [PubMed] [Google Scholar]
  207. Rima B. K., Takahashi I. Synthesis of thymidine nucleotides in Bacillus subtilis. Can J Biochem. 1978 Mar;56(3):158–160. doi: 10.1139/o78-027. [DOI] [PubMed] [Google Scholar]
  208. Riva S., Villani G., Mastromei G., Mazza G. Bacillus subtilis mutant temperature sensitive in the synthesis of ribonucleic acid. J Bacteriol. 1976 Aug;127(2):679–690. doi: 10.1128/jb.127.2.679-690.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Riva S., van Sluis C., Mastromei G., Attolini C., Mazza G., Polsinelli M., Falaschi A. A new mutant of Bacillus subtilis altered in the initiation of chromosome replication. Mol Gen Genet. 1975;137(3):185–202. doi: 10.1007/BF00333015. [DOI] [PubMed] [Google Scholar]
  210. Rogolsky M. Genetic mapping of a locus which regulates the production of pigment associated with spores of Bacillus subtilis. J Bacteriol. 1968 Jun;95(6):2426–2427. doi: 10.1128/jb.95.6.2426-2427.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  211. Ron E. Z., de Bethune M. P., Cocito C. G. Mapping of virginiamycin S resistance in Bacillus subtilis. Mol Gen Genet. 1980;180(3):639–640. doi: 10.1007/BF00268073. [DOI] [PubMed] [Google Scholar]
  212. Roncero M. I. Genes controlling xylan utilization by Bacillus subtilis. J Bacteriol. 1983 Oct;156(1):257–263. doi: 10.1128/jb.156.1.257-263.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  213. Rosenbluh A., Banner C. D., Losick R., Fitz-James P. C. Identification of a new developmental locus in Bacillus subtilis by construction of a deletion mutation in a cloned gene under sporulation control. J Bacteriol. 1981 Oct;148(1):341–351. doi: 10.1128/jb.148.1.341-351.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  214. Rutberg B., Hoch J. A. Citric acid cycle: gene-enzyme relationships in Bacillus subtilis. J Bacteriol. 1970 Nov;104(2):826–833. doi: 10.1128/jb.104.2.826-833.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Rutberg L. Mapping of a temperate bacteriophage active on Bacillus subtilis. J Virol. 1969 Jan;3(1):38–44. doi: 10.1128/jvi.3.1.38-44.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  216. Saito H., Shibata T., Ando T. Mapping of genes determining nonpermissiveness and host-specific restriction to bacteriophages in Bacillus subtilis Marburg. Mol Gen Genet. 1979 Feb 26;170(2):117–122. doi: 10.1007/BF00337785. [DOI] [PubMed] [Google Scholar]
  217. Saxe C. L., 3rd, Mendelson N. H. Identification of mutations associated with macrofiber formation in Bacillus subtilis. Genetics. 1984 Aug;107(4):551–561. doi: 10.1093/genetics/107.4.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Schneider A. M., Gaisne M., Anagnostopoulos C. Genetic structure and internal rearrangements of stable merodiploids from Bacillus subtilis strains carrying the trpE26 mutation. Genetics. 1982 Jun;101(2):189–210. doi: 10.1093/genetics/101.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Sekiguchi J., Takada N., Okada H. Genes affecting the productivity of alpha-amylase in Bacillus subtilis Marburg. J Bacteriol. 1975 Feb;121(2):688–694. doi: 10.1128/jb.121.2.688-694.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  220. Sharrock R. A., Leighton T. Intergenic suppressors of temperature-sensitive sporulation in Bacillus subtilis are allele non-specific. Mol Gen Genet. 1981;183(3):532–537. doi: 10.1007/BF00268777. [DOI] [PubMed] [Google Scholar]
  221. Sharrock R. A., Leighton T., Wittmann H. G. Macrolide and aminoglycoside antibiotic resistance mutations in the bacillus subtilis ribosome resulting in temperature-sensitive sporulation. Mol Gen Genet. 1981;183(3):538–543. doi: 10.1007/BF00268778. [DOI] [PubMed] [Google Scholar]
  222. Shibata T., Ikawa S., Komatsu Y., Ando T., Saito H. Introduction of host-controlled modification and restriction systems of Bacillus subtilis IAM1247 into Bacillus subtilis 168. J Bacteriol. 1979 Jul;139(1):308–310. doi: 10.1128/jb.139.1.308-310.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  223. Shimotsu H., Kawamura F., Kobayashi Y., Saito H. Early sporulation gene spo0F: nucleotide sequence and analysis of gene product. Proc Natl Acad Sci U S A. 1983 Feb;80(3):658–662. doi: 10.1073/pnas.80.3.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  224. Siccardi A. G., Lanza E., Nielsen E., Galizzi A., Mazza G. Genetic and physiological studies on the site of action of distamycin A. Antimicrob Agents Chemother. 1975 Sep;8(3):370–376. doi: 10.1128/aac.8.3.370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Siccardi A. G., Ottolenghi S., Fortunato A., Mazza G. Pleiotropic, extragenic suppression of dna mutants in Bacillus subtilis. J Bacteriol. 1976 Oct;128(1):174–181. doi: 10.1128/jb.128.1.174-181.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. Siegel E. C., Marmur J. Temperature-sensitive induction of bacteriophage in Bacillus subtilis 168. J Virol. 1969 Nov;4(5):610–618. doi: 10.1128/jvi.4.5.610-618.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. Smith I., Paress P., Cabane K., Dubnau E. Genetics and physiology of the rel system of Bacillus subtilis. Mol Gen Genet. 1980;178(2):271–279. doi: 10.1007/BF00270472. [DOI] [PubMed] [Google Scholar]
  228. Smith I., Paress P. Genetic and biochemical characterization of kirromycin resistance mutations in Bacillus subtilis. J Bacteriol. 1978 Sep;135(3):1107–1117. doi: 10.1128/jb.135.3.1107-1117.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Smith I., Smith H. Location of the SPO2 attachment site and the bryamycin resistance marker on the Bacillus subtilis chromosome. J Bacteriol. 1973 Jun;114(3):1138–1142. doi: 10.1128/jb.114.3.1138-1142.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  230. Smith I., Weiss D., Pestka S. A micrococcin-resistant mutant of Bacillus subtilis: localization of resistance to the 50s subunit. Mol Gen Genet. 1976 Mar 30;144(3):231–233. doi: 10.1007/BF00341720. [DOI] [PubMed] [Google Scholar]
  231. Sonenshein A. L., Alexander H. B. Initiation of transcription in vitro inhibited by lipiarmycin. J Mol Biol. 1979 Jan 5;127(1):55–72. doi: 10.1016/0022-2836(79)90459-5. [DOI] [PubMed] [Google Scholar]
  232. Sonenshein A. L., Alexander H. B., Rothstein D. M., Fisher S. H. Lipiarmycin-resistant ribonucleic acid polymerase mutants of Bacillus subtilis. J Bacteriol. 1977 Oct;132(1):73–79. doi: 10.1128/jb.132.1.73-79.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  233. Sonenshein A. L., Cami B., Brevet J., Cote R. Isolation and characterization of rifampin-resistant and streptolydigin-resistant mutants of Bacillus subtilis with altered sporulation properties. J Bacteriol. 1974 Oct;120(1):253–265. doi: 10.1128/jb.120.1.253-265.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  234. Staal S. P., Hoch J. A. Conditional dihydrostreptomycin resistance in Bacillus subtilis. J Bacteriol. 1972 Apr;110(1):202–207. doi: 10.1128/jb.110.1.202-207.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  235. Stahl M. L., Ferrari E. Replacement of the Bacillus subtilis subtilisin structural gene with an In vitro-derived deletion mutation. J Bacteriol. 1984 May;158(2):411–418. doi: 10.1128/jb.158.2.411-418.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  236. Steinberg W., Anagnostopoulos C. Biochemical and genetic characterization of a temperature-sensitive, tryptophanyl-transfer ribonucleic acid synthetase mutant of Bacillus subtilis. J Bacteriol. 1971 Jan;105(1):6–19. doi: 10.1128/jb.105.1.6-19.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  237. Steinmetz M., Kunst F., Dedonder R. Mapping of mutations affecting synthesis of exocellular enzymes in Bacillus subtilis. Identity of the sacUh, amyB and pap mutations. Mol Gen Genet. 1976 Nov 17;148(3):281–285. doi: 10.1007/BF00332902. [DOI] [PubMed] [Google Scholar]
  238. Stewart G. C., Bott K. F. DNA sequence of the tandem ribosomal RNA promoter for B. subtilis operon rrnB. Nucleic Acids Res. 1983 Sep 24;11(18):6289–6300. doi: 10.1093/nar/11.18.6289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Stragier P., Bouvier J., Bonamy C., Szulmajster J. A developmental gene product of Bacillus subtilis homologous to the sigma factor of Escherichia coli. Nature. 1984 Nov 22;312(5992):376–378. doi: 10.1038/312376a0. [DOI] [PubMed] [Google Scholar]
  240. Sun D. X., Takahashi I. A catabolite-resistance mutation is localized in the rpo operon of Bacillus subtilis. Can J Microbiol. 1984 Apr;30(4):423–429. doi: 10.1139/m84-063. [DOI] [PubMed] [Google Scholar]
  241. Swanton M., Edlin G. Isolation and characterization of an RNA relaxed mutant of B. subtilis. Biochem Biophys Res Commun. 1972 Jan 31;46(2):583–588. doi: 10.1016/s0006-291x(72)80179-7. [DOI] [PubMed] [Google Scholar]
  242. Taber H. W., Dellers E. A., Lombardo L. R. Menaquinone biosynthesis in Bacillus subtilis: isolation of men mutants and evidence for clustering of men genes. J Bacteriol. 1981 Jan;145(1):321–327. doi: 10.1128/jb.145.1.321-327.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  243. Tanaka K., Tamaki M., Osawa S., Kimura A., Takata R. Erythromycin resistant mutants of Bacillus subtilis. Mol Gen Genet. 1973 Dec 20;127(2):157–161. doi: 10.1007/BF00333663. [DOI] [PubMed] [Google Scholar]
  244. Tipper D. J., Johnson C. W., Ginther C. L., Leighton T., Wittmann H. G. Erythromycin resistant mutations in Bacillus subtilis cause temperature sensitive sporulation. Mol Gen Genet. 1977 Jan 18;150(2):147–159. doi: 10.1007/BF00695395. [DOI] [PubMed] [Google Scholar]
  245. Tominaga A., Kobayashi Y. Kasugamycin-resistant mutants of Bacillus subtilis. J Bacteriol. 1978 Sep;135(3):1149–1150. doi: 10.1128/jb.135.3.1149-1150.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. Trautner T. A., Pawlek B., Bron S., Anagnostopoulos C. Restriction and modification in B. subtilis. Biological aspects. Mol Gen Genet. 1974;131(3):181–191. doi: 10.1007/BF00267958. [DOI] [PubMed] [Google Scholar]
  247. Trowsdale J., Chen S. M., Hoch J. A. Genetic analysis of a class of polymyxin resistant partial revertants of stage O sporulation mutants of Bacillus subtilis: map of the chromosome region near the origin of replication. Mol Gen Genet. 1979 May 23;173(1):61–70. doi: 10.1007/BF00267691. [DOI] [PubMed] [Google Scholar]
  248. Trowsdale J., Sheflett M., Hoch J. A. New cluster of ribosomal genes in Bacillus subtilis with regulatory role in sporulation. Nature. 1978 Mar 9;272(5649):179–181. doi: 10.1038/272179a0. [DOI] [PubMed] [Google Scholar]
  249. Trowsdale J., Smith D. A. Isolation, characterization, and mapping of Bacillus subtilis 168 germination mutants. J Bacteriol. 1975 Jul;123(1):83–95. doi: 10.1128/jb.123.1.83-95.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  250. Uehara H., Yamane K., Maruo B. Thermosensitive, extracellular neutral proteases in Bacillus subtilis: isolation, characterization, and genetics. J Bacteriol. 1979 Aug;139(2):583–590. doi: 10.1128/jb.139.2.583-590.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  251. Van Alstyne D., Simon M. I. Division mutants of Bacillus subtilis: isolation and PBS1 transduction of division-specific markers. J Bacteriol. 1971 Dec;108(3):1366–1379. doi: 10.1128/jb.108.3.1366-1379.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  252. Vapnek D., Greer S. Minor threonine dehydratase encoded within the threonine synthetic region of Bacillus subtilis. J Bacteriol. 1971 Jun;106(3):983–993. doi: 10.1128/jb.106.3.983-993.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  253. Vapnek D., Greer S. Suppression by derepression in threonine dehydratase-deficient mutants of Bacillus subtilis. J Bacteriol. 1971 May;106(2):615–625. doi: 10.1128/jb.106.2.615-625.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  254. Vasantha N., Thompson L. D., Rhodes C., Banner C., Nagle J., Filpula D. Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J Bacteriol. 1984 Sep;159(3):811–819. doi: 10.1128/jb.159.3.811-819.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  255. Vasantha N., Uratani B., Ramaley R. F., Freese E. Isolation of a developmental gene of Bacillus subtilis and its expression in Escherichia coli. Proc Natl Acad Sci U S A. 1983 Feb;80(3):785–789. doi: 10.1073/pnas.80.3.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  256. Vazquez-Ramos J. M., Mandelstam J. Oxolinic acid-resistant mutants of Bacillus subtilis. J Gen Microbiol. 1981 Nov;127(1):1–9. doi: 10.1099/00221287-127-1-1. [DOI] [PubMed] [Google Scholar]
  257. Vold B. S. Structure and organization of genes for transfer ribonucleic acid in Bacillus subtilis. Microbiol Rev. 1985 Mar;49(1):71–80. doi: 10.1128/mr.49.1.71-80.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  258. Walton D. A., Moir A., Morse R., Roberts I., Smith D. A. The isolation of lambda phage carrying DNA from the histidine and isoleucine-valine regions of the Bacillus subtilis chromosome. J Gen Microbiol. 1984 Jun;130(6):1577–1586. doi: 10.1099/00221287-130-6-1577. [DOI] [PubMed] [Google Scholar]
  259. Ward J. B., Jr, Zahler S. A. Genetic studies of leucine biosynthesis in Bacillus subtilis. J Bacteriol. 1973 Nov;116(2):719–726. doi: 10.1128/jb.116.2.719-726.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  260. Ward J. B., Jr, Zahler S. A. Regulation of leucine biosynthesis in Bacillus subtilis. J Bacteriol. 1973 Nov;116(2):727–735. doi: 10.1128/jb.116.2.727-735.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  261. Whiteman P., Marks C., Freese E. The sodium effect of Bacillus subtilis growth on aspartate. J Gen Microbiol. 1980 Aug;119(2):493–504. doi: 10.1099/00221287-119-2-493. [DOI] [PubMed] [Google Scholar]
  262. Whitt D. D., Carlton B. C. Characterization of mutants with single and multiple defects in the tryptophan biosynthetic pathway in Bacillus subtilis. J Bacteriol. 1968 Oct;96(4):1273–1280. doi: 10.1128/jb.96.4.1273-1280.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  263. Wienen B., Ehrlich R., Stöffler-Meilicke M., Stöffler G., Smith I., Weiss D., Vince R., Pestka S. Ribosomal protein alterations in thiostrepton- and Micrococcin-resistant mutants of Bacillus subtilis. J Biol Chem. 1979 Aug 25;254(16):8031–8041. [PubMed] [Google Scholar]
  264. Willecke K., Pardee A. B. Fatty acid-requiring mutant of bacillus subtilis defective in branched chain alpha-keto acid dehydrogenase. J Biol Chem. 1971 Sep 10;246(17):5264–5272. [PubMed] [Google Scholar]
  265. Williams G., Smith I. Chromosomal mutations causing resistance to tetracycline in Bacillus subtilis. Mol Gen Genet. 1979;177(1):23–29. doi: 10.1007/BF00267249. [DOI] [PubMed] [Google Scholar]
  266. Williams M. T., Young F. E. Temperate Bacillus subtilis bacteriophage phi 3T: chromosomal attachment site and comparison with temperate bacteriophages phi 105 and SPO2. J Virol. 1977 Feb;21(2):522–529. doi: 10.1128/jvi.21.2.522-529.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  267. Wilson F. E., Hoch J. A., Bott K. Genetic mapping of a linked cluster of ribosomal ribonucleic acid genes in Bacillus subtilis. J Bacteriol. 1981 Nov;148(2):624–628. doi: 10.1128/jb.148.2.624-628.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  268. Wilson M. C., Farmer J. L., Rothman F. Thymidylate synthesis and aminopterin resistance in Bacillus subtilis. J Bacteriol. 1966 Jul;92(1):186–196. doi: 10.1128/jb.92.1.186-196.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  269. Wong S. L., Price C. W., Goldfarb D. S., Doi R. H. The subtilisin E gene of Bacillus subtilis is transcribed from a sigma 37 promoter in vivo. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1184–1188. doi: 10.1073/pnas.81.4.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  270. Yamane K., Maruo B. Alkaline phosphatase possessing alkaline phosphodiesterase activity and other phosphodiesterases in Bacillus subtilis. J Bacteriol. 1978 Apr;134(1):108–114. doi: 10.1128/jb.134.1.108-114.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  271. Yoneda Y., Maruo B. Mutation of Bacillus subtilis causing hyperproduction of alpha-amylase and protease, and its synergistic effect. J Bacteriol. 1975 Oct;124(1):48–54. doi: 10.1128/jb.124.1.48-54.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  272. Yoshikawa M., Okuyama A., Tanaka N. A third kasugamycin resistance locus, ksgC, affecting ribosomal protein S2 in Escherichia coli K-12. J Bacteriol. 1975 May;122(2):796–797. doi: 10.1128/jb.122.2.796-797.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  273. Young F. E., Smith C., Reilly B. E. Chromosomal location of genes regulating resistance to bacteriophage in Bacillus subtilis. J Bacteriol. 1969 Jun;98(3):1087–1097. doi: 10.1128/jb.98.3.1087-1097.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  274. Young M. Genetic mapping of sporulation operons in Bacillus subtilis using a thermosensitive sporulation mutant. J Bacteriol. 1975 Jun;122(3):1109–1116. doi: 10.1128/jb.122.3.1109-1116.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  275. Yudkin M. D., Turley L. Suppression of asporogeny in Bacillus subtilis. Allele-specific suppression of a mutation in the spoIIA locus. J Gen Microbiol. 1980 Nov;121(1):69–78. doi: 10.1099/00221287-121-1-69. [DOI] [PubMed] [Google Scholar]
  276. Zahler S. A., Korman R. Z., Rosenthal R., Hemphill H. E. Bacillus subtilis bacteriophage SPbeta: localization of the prophage attachment site, and specialized transduction. J Bacteriol. 1977 Jan;129(1):556–558. doi: 10.1128/jb.129.1.556-558.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  277. Zuber P., Losick R. Use of a lacZ fusion to study the role of the spoO genes of Bacillus subtilis in developmental regulation. Cell. 1983 Nov;35(1):275–283. doi: 10.1016/0092-8674(83)90230-1. [DOI] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES