Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1985 Sep;49(3):214–231. doi: 10.1128/mr.49.3.214-231.1985

Binding energy, conformational change, and the mechanism of transmembrane solute movements.

G A Scarborough
PMCID: PMC373034  PMID: 2413342

Full text

PDF
214

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amzel L. M., Pedersen P. L. Proton atpases: structure and mechanism. Annu Rev Biochem. 1983;52:801–824. doi: 10.1146/annurev.bi.52.070183.004101. [DOI] [PubMed] [Google Scholar]
  2. Anderson C. M., Zucker F. H., Steitz T. A. Space-filling models of kinase clefts and conformation changes. Science. 1979 Apr 27;204(4391):375–380. doi: 10.1126/science.220706. [DOI] [PubMed] [Google Scholar]
  3. Bamberg E., Dencher N. A., Fahr A., Heyn M. P. Transmembranous incorporation of photoelectrically active bacteriorhodopsin in planar lipid bilayers. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7502–7506. doi: 10.1073/pnas.78.12.7502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beers M. F., Carty S. E., Johnson R. G., Scarpa A. H+-ATPase and catecholamine transport in chromaffin granules. Ann N Y Acad Sci. 1982;402:116–133. doi: 10.1111/j.1749-6632.1982.tb25736.x. [DOI] [PubMed] [Google Scholar]
  5. Begley G. S., Hansen D. E., Jacobson G. R., Knowles J. R. Stereochemical course of the reactions catalyzed by the bacterial phosphoenolpyruvate:glucose phosphotransferase system. Biochemistry. 1982 Oct 26;21(22):5552–5556. doi: 10.1021/bi00265a026. [DOI] [PubMed] [Google Scholar]
  6. Blaustein M. P. The energetics and kinetics of sodium-calcium exchange in barnacle muscles, squid axons, and mammalian heart: the role of ATP. Soc Gen Physiol Ser. 1984;38:129–147. [PubMed] [Google Scholar]
  7. Boyer P. D., Kohlbrenner W. E., McIntosh D. B., Smith L. T., O'Neal C. C. ATP and ADP modulations of catalysis by F1 and Ca2+, Mg2+-ATPases. Ann N Y Acad Sci. 1982;402:65–83. doi: 10.1111/j.1749-6632.1982.tb25732.x. [DOI] [PubMed] [Google Scholar]
  8. Brey R. N., Rosen B. P. Cation/proton antiport systems in Escherichia coli. Properties of the calcium/proton antiporter. J Biol Chem. 1979 Mar 25;254(6):1957–1963. [PubMed] [Google Scholar]
  9. Brotherus J. R., Møller J. V., Jørgensen P. L. Soluble and active renal Na, K-ATPase with maximum protein molecular mass 170,000 +/- 9,000 daltons; formation of larger units by secondary aggregation. Biochem Biophys Res Commun. 1981 May 15;100(1):146–154. doi: 10.1016/s0006-291x(81)80075-7. [DOI] [PubMed] [Google Scholar]
  10. Bürkler J., Solioz M. The ATP-dependent Ca2+-pumping system of Streptococcus faecium. Ann N Y Acad Sci. 1982;402:422–432. doi: 10.1111/j.1749-6632.1982.tb25758.x. [DOI] [PubMed] [Google Scholar]
  11. Carafoli E., Zurini M., Niggli V., Krebs J. The calcium-transporting ATPase of erythrocytes. Ann N Y Acad Sci. 1982;402:304–328. doi: 10.1111/j.1749-6632.1982.tb25752.x. [DOI] [PubMed] [Google Scholar]
  12. Changeux J. P., Devillers-Thiéry A., Chemouilli P. Acetylcholine receptor: an allosteric protein. Science. 1984 Sep 21;225(4668):1335–1345. doi: 10.1126/science.6382611. [DOI] [PubMed] [Google Scholar]
  13. Citri N. Conformational adaptability in enzymes. Adv Enzymol Relat Areas Mol Biol. 1973;37:397–648. doi: 10.1002/9780470122822.ch7. [DOI] [PubMed] [Google Scholar]
  14. Clarke S. The size and detergent binding of membrane proteins. J Biol Chem. 1975 Jul 25;250(14):5459–5469. [PubMed] [Google Scholar]
  15. Conti-Tronconi B. M., Raftery M. A. The nicotinic cholinergic receptor: correlation of molecular structure with functional properties. Annu Rev Biochem. 1982;51:491–530. doi: 10.1146/annurev.bi.51.070182.002423. [DOI] [PubMed] [Google Scholar]
  16. Crane R. K. Na+ -dependent transport in the intestine and other animal tissues. Fed Proc. 1965 Sep-Oct;24(5):1000–1006. [PubMed] [Google Scholar]
  17. Cross R. L. The mechanism and regulation of ATP synthesis by F1-ATPases. Annu Rev Biochem. 1981;50:681–714. doi: 10.1146/annurev.bi.50.070181.003341. [DOI] [PubMed] [Google Scholar]
  18. Dame J. B., Scarborough G. A. Identification of the phosphorylated intermediate of the Neurospora plasma membrane H+-ATPase as beta-aspartyl phosphate. J Biol Chem. 1981 Oct 25;256(20):10724–10730. [PubMed] [Google Scholar]
  19. Dean W. L., Tanford C. Properties of a delipidated, detergent-activated Ca2+--ATPase. Biochemistry. 1978 May 2;17(9):1683–1690. doi: 10.1021/bi00602a016. [DOI] [PubMed] [Google Scholar]
  20. Dencher N. A., Heyn M. P. Bacteriorhodopsin monomers pump protons. FEBS Lett. 1979 Dec 15;108(2):307–310. doi: 10.1016/0014-5793(79)80552-9. [DOI] [PubMed] [Google Scholar]
  21. Dorset D. L., Engel A., Häner M., Massalski A., Rosenbusch J. P. Two-dimensional crystal packing of matrix porin. A channel forming protein in Escherichia coli outer membranes. J Mol Biol. 1983 Apr 25;165(4):701–710. doi: 10.1016/s0022-2836(83)80275-7. [DOI] [PubMed] [Google Scholar]
  22. Dutton A., Rees E. D., Singer S. J. An experiment eliminating the rotating carrier mechanism for the active transport of Ca ion in sarcoplasmic reticulum membranes. Proc Natl Acad Sci U S A. 1976 May;73(5):1532–1536. doi: 10.1073/pnas.73.5.1532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Dux L., Martonosi A. Ca2+-ATPase membrane crystals in sarcoplasmic reticulum. The effect of trypsin digestion. J Biol Chem. 1983 Aug 25;258(16):10111–10115. [PubMed] [Google Scholar]
  24. Dux L., Martonosi A. Two-dimensional arrays of proteins in sarcoplasmic reticulum and purified Ca2+-ATPase vesicles treated with vanadate. J Biol Chem. 1983 Feb 25;258(4):2599–2603. [PubMed] [Google Scholar]
  25. Eddy A. A. Slip and leak models of gradient-coupled solute transport. Biochem Soc Trans. 1980 Jun;8(3):271–273. doi: 10.1042/bst0080271. [DOI] [PubMed] [Google Scholar]
  26. Eklund H., Nordström B., Zeppezauer E., Söderlund G., Ohlsson I., Boiwe T., Söderberg B. O., Tapia O., Brändén C. I., Akeson A. Three-dimensional structure of horse liver alcohol dehydrogenase at 2-4 A resolution. J Mol Biol. 1976 Mar 25;102(1):27–59. doi: 10.1016/0022-2836(76)90072-3. [DOI] [PubMed] [Google Scholar]
  27. Eklund H., Samma J. P., Wallén L., Brändén C. I., Akeson A., Jones T. A. Structure of a triclinic ternary complex of horse liver alcohol dehydrogenase at 2.9 A resolution. J Mol Biol. 1981 Mar 15;146(4):561–587. doi: 10.1016/0022-2836(81)90047-4. [DOI] [PubMed] [Google Scholar]
  28. Epstein W., Whitelaw V., Hesse J. A K+ transport ATPase in Escherichia coli. J Biol Chem. 1978 Oct 10;253(19):6666–6668. [PubMed] [Google Scholar]
  29. Faller L., Jackson R., Malinowska D., Mukidjam E., Rabon E., Saccomani G., Sachs G., Smolka A. Mechanistic aspects of gastric (H+ + K+)-ATPase. Ann N Y Acad Sci. 1982;402:146–163. doi: 10.1111/j.1749-6632.1982.tb25738.x. [DOI] [PubMed] [Google Scholar]
  30. Feldman R. I., Sigman D. S. The synthesis of ATP by the membrane-bound ATP synthase complex from medium 32Pi under completely uncoupled conditions. J Biol Chem. 1983 Oct 25;258(20):12178–12183. [PubMed] [Google Scholar]
  31. Ferguson S. J., Sorgato M. C. Proton electrochemical gradients and energy-transduction processes. Annu Rev Biochem. 1982;51:185–217. doi: 10.1146/annurev.bi.51.070182.001153. [DOI] [PubMed] [Google Scholar]
  32. Fillingame R. H. The proton-translocating pumps of oxidative phosphorylation. Annu Rev Biochem. 1980;49:1079–1113. doi: 10.1146/annurev.bi.49.070180.005243. [DOI] [PubMed] [Google Scholar]
  33. Forgac M., Cantley L., Wiedenmann B., Altstiel L., Branton D. Clathrin-coated vesicles contain an ATP-dependent proton pump. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1300–1303. doi: 10.1073/pnas.80.5.1300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Fukada H., Sturtevant J. M., Quiocho F. A. Thermodynamics of the binding of L-arabinose and of D-galactose to the L-arabinose-binding protein of Escherichia coli. J Biol Chem. 1983 Nov 10;258(21):13193–13198. [PubMed] [Google Scholar]
  35. Fuller S. D., Capaldi R. A., Henderson R. Structure of cytochrome c oxidase in deoxycholate-drived two-dimensional crystals. J Mol Biol. 1979 Oct 25;134(2):305–327. doi: 10.1016/0022-2836(79)90037-8. [DOI] [PubMed] [Google Scholar]
  36. Futai M., Kanazawa H. Structure and function of proton-translocating adenosine triphosphatase (F0F1): biochemical and molecular biological approaches. Microbiol Rev. 1983 Sep;47(3):285–312. doi: 10.1128/mr.47.3.285-312.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Gabizon R., Schuldiner S. The amine transporter from bovine chromaffin granules. Partial purification. J Biol Chem. 1985 Mar 10;260(5):3001–3005. [PubMed] [Google Scholar]
  38. Garavito R. M., Jenkins J., Jansonius J. N., Karlsson R., Rosenbusch J. P. X-ray diffraction analysis of matrix porin, an integral membrane protein from Escherichia coli outer membranes. J Mol Biol. 1983 Feb 25;164(2):313–327. doi: 10.1016/0022-2836(83)90079-7. [DOI] [PubMed] [Google Scholar]
  39. Gilliland G. L., Quiocho F. A. Structure of the L-arabinose-binding protein from Escherichia coli at 2.4 A resolution. J Mol Biol. 1981 Mar 5;146(3):341–362. doi: 10.1016/0022-2836(81)90392-2. [DOI] [PubMed] [Google Scholar]
  40. Glynn I. M., Karlish S. J. The sodium pump. Annu Rev Physiol. 1975;37:13–55. doi: 10.1146/annurev.ph.37.030175.000305. [DOI] [PubMed] [Google Scholar]
  41. Goffeau A., Slayman C. W. The proton-translocating ATPase of the fungal plasma membrane. Biochim Biophys Acta. 1981 Dec 30;639(3-4):197–223. doi: 10.1016/0304-4173(81)90010-0. [DOI] [PubMed] [Google Scholar]
  42. Grisham C. M. Characterization of ATP binding sites of sheep kidney medulla (Na+ + K+)--ATPase using CrATP. J Inorg Biochem. 1981 Feb;14(1):45–57. doi: 10.1016/s0162-0134(00)80013-6. [DOI] [PubMed] [Google Scholar]
  43. Grisham C. M., Gupta R. K., Barnett R. E., Mildvan A. S. Thallium-205 nuclear relaxation and kinetic studies of sodium and potassium ion-activated adenosine triphosphatase. J Biol Chem. 1974 Nov 10;249(21):6738–6744. [PubMed] [Google Scholar]
  44. Grisham C. M., Mildvan A. S. Magnetic resonance and kinetic studies of the mechanism of membrane-bound sodium and potassium ion- activated adenosine triphosphatase. J Supramol Struct. 1975;3(3):304–313. doi: 10.1002/jss.400030313. [DOI] [PubMed] [Google Scholar]
  45. Harrison S. C. Protein interfaces and intersubunit bonding. The case of tomato bushy stunt virus. Biophys J. 1980 Oct;32(1):139–153. doi: 10.1016/S0006-3495(80)84930-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Hebert H., Jørgensen P. L., Skriver E., Maunsbach A. B. Crystallization patterns of membrane-bound (Na+ +K+)-ATPase. Biochim Biophys Acta. 1982 Aug 12;689(3):571–574. doi: 10.1016/0005-2736(82)90316-9. [DOI] [PubMed] [Google Scholar]
  47. Hesse J. E., Wieczorek L., Altendorf K., Reicin A. S., Dorus E., Epstein W. Sequence homology between two membrane transport ATPases, the Kdp-ATPase of Escherichia coli and the Ca2+-ATPase of sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4746–4750. doi: 10.1073/pnas.81.15.4746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Hopfer U., Groseclose R. The mechanism of Na+-dependent D-glucose transport. J Biol Chem. 1980 May 25;255(10):4453–4462. [PubMed] [Google Scholar]
  49. Hüdig H., Hengstenberg W. The bacterial phosphoenolpyruvate dependent phosphotransferase system (PTS): solubilisation and kinetic parameters of the glucose-specific membrane bound enzyme II component of Streptococcus faecalis. FEBS Lett. 1980 May 19;114(1):103–106. doi: 10.1016/0014-5793(80)80869-6. [DOI] [PubMed] [Google Scholar]
  50. Janin J., Wodak S. J. Structural domains in proteins and their role in the dynamics of protein function. Prog Biophys Mol Biol. 1983;42(1):21–78. doi: 10.1016/0079-6107(83)90003-2. [DOI] [PubMed] [Google Scholar]
  51. Jardetzky O. Simple allosteric model for membrane pumps. Nature. 1966 Aug 27;211(5052):969–970. doi: 10.1038/211969a0. [DOI] [PubMed] [Google Scholar]
  52. Jennings M. L. Oligomeric structure and the anion transport function of human erythrocyte band 3 protein. J Membr Biol. 1984;80(2):105–117. doi: 10.1007/BF01868768. [DOI] [PubMed] [Google Scholar]
  53. Johnson R. G., Pfister D., Carty S. E., Scarpa A. Biological amine transport in chromaffin ghosts. Coupling to the transmembrane proton and potential gradients. J Biol Chem. 1979 Nov 10;254(21):10963–10972. [PubMed] [Google Scholar]
  54. Johnson R. G., Scarpa A. Chemiosmotic coupling and its application to the accumulation of biological amines in secretory granules. Soc Gen Physiol Ser. 1984;38:71–91. [PubMed] [Google Scholar]
  55. Jones M. N., Nickson J. K. Identifying the monosaccharide transport protein in the human erythrocyte membrane. FEBS Lett. 1980 Jun 16;115(1):1–8. doi: 10.1016/0014-5793(80)80713-7. [DOI] [PubMed] [Google Scholar]
  56. Jørgensen P. L. Mechanism of the Na+, K+ pump. Protein structure and conformations of the pure (Na+ +K+)-ATPase. Biochim Biophys Acta. 1982 Aug 11;694(1):27–68. doi: 10.1016/0304-4157(82)90013-2. [DOI] [PubMed] [Google Scholar]
  57. Jørgensen P. L., Skriver E., Hebert H., Maunsbach A. B. Structure of the Na,K pump: crystallization of pure membrane-bound Na,K-ATPase and identification of functional domains of the alpha-subunit. Ann N Y Acad Sci. 1982;402:207–225. doi: 10.1111/j.1749-6632.1982.tb25743.x. [DOI] [PubMed] [Google Scholar]
  58. Kaback H. R. The lac carrier protein in Escherichia coli. J Membr Biol. 1983;76(2):95–112. doi: 10.1007/BF02000610. [DOI] [PubMed] [Google Scholar]
  59. Kaback H. R. The role of the phosphoenolpyruvate-phosphotransferase system in the transport of sugars by isolated membrane preparations of Escherichia coli. J Biol Chem. 1968 Jul 10;243(13):3711–3724. [PubMed] [Google Scholar]
  60. Kagawa Y., Sone N., Hirata H., Yoshida M. Structure and function of H+-ATPase. J Bioenerg Biomembr. 1979 Aug;11(3-4):39–78. doi: 10.1007/BF00743196. [DOI] [PubMed] [Google Scholar]
  61. Kanner B. I., Fishkes H., Maron R., Sharon I., Schuldiner S. Reserpine as a competitive and reversible inhibitor of the catecholamine transporter of bovine chromaffin granules. FEBS Lett. 1979 Apr 1;100(1):175–178. doi: 10.1016/0014-5793(79)81158-8. [DOI] [PubMed] [Google Scholar]
  62. Karplus M., McCammon J. A. Dynamics of proteins: elements and function. Annu Rev Biochem. 1983;52:263–300. doi: 10.1146/annurev.bi.52.070183.001403. [DOI] [PubMed] [Google Scholar]
  63. Kasahara M., Hinkle P. C. Reconstitution and purification of the D-glucose transporter from human erythrocytes. J Biol Chem. 1977 Oct 25;252(20):7384–7390. [PubMed] [Google Scholar]
  64. Khananshvili D., Gromet-Elhanan Z. Evidence that the Mg-dependent low-affinity binding site for ATP and Pi demonstrated on the isolated beta subunit of the F0.F1 ATP synthase is a catalytic site. Proc Natl Acad Sci U S A. 1985 Apr;82(7):1886–1890. doi: 10.1073/pnas.82.7.1886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Kimmich G. A., Carter-Su C. Membrane potentials and the energetics of intestinal Na+-dependent transport systems. Am J Physiol. 1978 Sep;235(3):C73–C81. doi: 10.1152/ajpcell.1978.235.3.C73. [DOI] [PubMed] [Google Scholar]
  66. Klingenberg M. Membrane protein oligomeric structure and transport function. Nature. 1981 Apr 9;290(5806):449–454. doi: 10.1038/290449a0. [DOI] [PubMed] [Google Scholar]
  67. Knowles J. R. Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem. 1980;49:877–919. doi: 10.1146/annurev.bi.49.070180.004305. [DOI] [PubMed] [Google Scholar]
  68. Koshland D. E., Jr, Neet K. E. The catalytic and regulatory properties of enzymes. Annu Rev Biochem. 1968;37:359–410. doi: 10.1146/annurev.bi.37.070168.002043. [DOI] [PubMed] [Google Scholar]
  69. Kozlov I. A., Skulachev V. P. H+-Adenosine triphosphatase and membrane energy coupling. Biochim Biophys Acta. 1977 Jun 21;463(1):29–89. doi: 10.1016/0304-4173(77)90003-9. [DOI] [PubMed] [Google Scholar]
  70. Krulwich T. A. Na+/H+ antiporters. Biochim Biophys Acta. 1983 Dec 30;726(4):245–264. doi: 10.1016/0304-4173(83)90011-3. [DOI] [PubMed] [Google Scholar]
  71. Kyte J. Molecular considerations relevant to the mechanism of active transport. Nature. 1981 Jul 16;292(5820):201–204. doi: 10.1038/292201a0. [DOI] [PubMed] [Google Scholar]
  72. Kyte J. The reactions of sodium and potassium ion-activated adenosine triphosphatase with specific antibodies. Implications for the mechanism of active transport. J Biol Chem. 1974 Jun 10;249(11):3652–3660. [PubMed] [Google Scholar]
  73. LeFevre P. G. A comparison of recent suggestions for the functional organization of red-cell sugar-transport sites based on kinetic observations. Ann N Y Acad Sci. 1975 Dec 30;264:398–413. doi: 10.1111/j.1749-6632.1975.tb31499.x. [DOI] [PubMed] [Google Scholar]
  74. Lienhard G. E. Enzymatic catalysis and transition-state theory. Science. 1973 Apr 15;180(4082):149–154. doi: 10.1126/science.180.4082.149. [DOI] [PubMed] [Google Scholar]
  75. Lowe A. G., Lambert A. Chloride-bicarbonate exchange and related transport processes. Biochim Biophys Acta. 1982 Dec;694(4):353–374. doi: 10.1016/0304-4157(82)90002-8. [DOI] [PubMed] [Google Scholar]
  76. Läuger P. Kinetic properties of ion carriers and channels. J Membr Biol. 1980 Dec 30;57(3):163–78(-RETURN-). doi: 10.1007/BF01869585. [DOI] [PubMed] [Google Scholar]
  77. MITCHELL P. A general theory of membrane transport from studies of bacteria. Nature. 1957 Jul 20;180(4577):134–136. doi: 10.1038/180134a0. [DOI] [PubMed] [Google Scholar]
  78. MITCHELL P., MOYLE J. Group-translocation: a consequence of enzyme-catalysed group-transfer. Nature. 1958 Aug 9;182(4632):372–373. doi: 10.1038/182372a0. [DOI] [PubMed] [Google Scholar]
  79. Maloney P. C. Energy coupling to ATP synthesis by the proton-translocating ATPase. J Membr Biol. 1982;67(1):1–12. doi: 10.1007/BF01868643. [DOI] [PubMed] [Google Scholar]
  80. Mao B., McCammon J. A. Structural study of hinge bending in L-arabinose-binding protein. J Biol Chem. 1984 Apr 25;259(8):4964–4970. [PubMed] [Google Scholar]
  81. Mao B., McCammon J. A. Theoretical study of hinge bending in L-arabinose-binding protein. Internal energy and free energy changes. J Biol Chem. 1983 Oct 25;258(20):12543–12547. [PubMed] [Google Scholar]
  82. Mao B., Pear M. R., McCammon J. A., Quiocho F. A. Hinge-bending in L-arabinose-binding protein. The "Venus's-flytrap" model. J Biol Chem. 1982 Feb 10;257(3):1131–1133. [PubMed] [Google Scholar]
  83. Martin D. W., Tanford C., Reynolds J. A. Monomeric solubilized sarcoplasmic reticulum Ca pump protein: demonstration of Ca binding and dissociation coupled to ATP hydrolysis. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6623–6626. doi: 10.1073/pnas.81.21.6623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Mayer I., Dahms A. S., Riezler W., Klingenberg M. Interaction of fluorescent adenine nucleotide derivatives with the ADP/ATP carrier in mitochondria. 1. Comparison of various 3'-O-ester adenine nucleotide derivatives. Biochemistry. 1984 May 22;23(11):2436–2442. doi: 10.1021/bi00306a018. [DOI] [PubMed] [Google Scholar]
  85. McCammon J. A., Karplus M. Internal motions of antibody molecules. Nature. 1977 Aug 25;268(5622):765–766. doi: 10.1038/268765a0. [DOI] [PubMed] [Google Scholar]
  86. McEnery M. W., Buhle E. L., Jr, Aebi U., Pedersen P. L. Proton ATPase of rat liver mitochondria. Preparation and visualization of a functional complex using the novel zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. J Biol Chem. 1984 Apr 10;259(7):4642–4651. [PubMed] [Google Scholar]
  87. Michalak M., Famulski K., Carafoli E. The Ca2+-pumping ATPase in skeletal muscle sarcolemma. Calmodulin dependence, regulation by cAMP-dependent phosphorylation, and purification. J Biol Chem. 1984 Dec 25;259(24):15540–15547. [PubMed] [Google Scholar]
  88. Michel H. Characterization and crystal packing of three-dimensional bacteriorhodopsin crystals. EMBO J. 1982;1(10):1267–1271. doi: 10.1002/j.1460-2075.1982.tb00023.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Michel H., Oesterhelt D., Henderson R. Orthorhombic two-dimensional crystal form of purple membrane. Proc Natl Acad Sci U S A. 1980 Jan;77(1):338–342. doi: 10.1073/pnas.77.1.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Michel H., Oesterhelt D. Three-dimensional crystals of membrane proteins: bacteriorhodopsin. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1283–1285. doi: 10.1073/pnas.77.3.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Michel H. Three-dimensional crystals of a membrane protein complex. The photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol. 1982 Jul 5;158(3):567–572. doi: 10.1016/0022-2836(82)90216-9. [DOI] [PubMed] [Google Scholar]
  92. Miller D. M., 3rd, Olson J. S., Pflugrath J. W., Quiocho F. A. Rates of ligand binding to periplasmic proteins involved in bacterial transport and chemotaxis. J Biol Chem. 1983 Nov 25;258(22):13665–13672. [PubMed] [Google Scholar]
  93. Misset O., Blaauw M., Postma P. W., Robillard G. T. Bacterial phosphoenolpyruvate-dependent phosphotransferase system. Mechanism of the transmembrane sugar translocation and phosphorylation. Biochemistry. 1983 Dec 20;22(26):6163–6170. doi: 10.1021/bi00295a019. [DOI] [PubMed] [Google Scholar]
  94. Mitchell P. A chemiosmotic molecular mechanism for proton-translocating adenosine triphosphatases. FEBS Lett. 1974 Jul 15;43(2):189–194. doi: 10.1016/0014-5793(74)80997-x. [DOI] [PubMed] [Google Scholar]
  95. Mitchell P. Hypothesis: cation-translocating adenosine triphosphatase models: how direct is the participation of adenosine triphosphate and its hydrolysis products in cation translocation? FEBS Lett. 1973 Jul 15;33(3):267–274. doi: 10.1016/0014-5793(73)80209-1. [DOI] [PubMed] [Google Scholar]
  96. Mitchell P., Koppenol W. H. Chemiosmotic ATPase mechanisms. Ann N Y Acad Sci. 1982;402:584–601. doi: 10.1111/j.1749-6632.1982.tb25785.x. [DOI] [PubMed] [Google Scholar]
  97. Mitchell P., Moyle J. Alternative hypotheses of proton ejection in cytochrome oxidase vesicles. Transmembrane proton pumping or redox-linked deprotonation of phospholipid-cytochrome c complex(es). FEBS Lett. 1983 Jan 24;151(2):167–178. doi: 10.1016/0014-5793(83)80063-5. [DOI] [PubMed] [Google Scholar]
  98. Mitchell P. Proton translocation mechanisms and energy transduction by adenosine triphosphatases: an answer to criticisms. FEBS Lett. 1975 Feb 1;50(2):95–97. doi: 10.1016/0014-5793(75)80465-0. [DOI] [PubMed] [Google Scholar]
  99. Mitchell P. The Ninth Sir Hans Krebs Lecture. Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems. Eur J Biochem. 1979 Mar 15;95(1):1–20. doi: 10.1111/j.1432-1033.1979.tb12934.x. [DOI] [PubMed] [Google Scholar]
  100. Neuhaus J. M. The receptor protein of phage lambda: purification, characterization and preliminary electrical studies in planar lipid bilayers. Ann Microbiol (Paris) 1982 Jan;133A(1):27–32. [PubMed] [Google Scholar]
  101. Newcomer M. E., Gilliland G. L., Quiocho F. A. L-Arabinose-binding protein-sugar complex at 2.4 A resolution. Stereochemistry and evidence for a structural change. J Biol Chem. 1981 Dec 25;256(24):13213–13217. [PubMed] [Google Scholar]
  102. Newcomer M. E., Lewis B. A., Quiocho F. A. The radius of gyration of L-arabinose-binding protein decreases upon binding of ligand. J Biol Chem. 1981 Dec 25;256(24):13218–13222. [PubMed] [Google Scholar]
  103. Ohsumi Y., Anraku Y. Active transport of basic amino acids driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. J Biol Chem. 1981 Mar 10;256(5):2079–2082. [PubMed] [Google Scholar]
  104. Ovchinnikov YuA, Abdulaev N. G., Modyanov N. N. Structural basis of proton-translocating protein function. Annu Rev Biophys Bioeng. 1982;11:445–463. doi: 10.1146/annurev.bb.11.060182.002305. [DOI] [PubMed] [Google Scholar]
  105. Ozawa T., Suzuki H., Tanaka M. Crystallization of part of the mitochondrial electron transfer chain: cytochrome c oxidase--cytochrome c complex. Proc Natl Acad Sci U S A. 1980 Feb;77(2):928–930. doi: 10.1073/pnas.77.2.928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Ozawa T., Tanaka M., Shimomura Y. Crystallization of cytochrome bc1 complex. Proc Natl Acad Sci U S A. 1983 Feb;80(4):921–925. doi: 10.1073/pnas.80.4.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Ozawa T., Tanaka M., Shimomura Y. Crystallization of the middle part of the mitochondrial electron transfer chain: cytochrome bc1-cytochrome c complex. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5084–5086. doi: 10.1073/pnas.77.9.5084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Ozawa T., Tanaka M., Wakabayashi T. Crystallization of mitochondrial cytochrome oxidase. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7175–7179. doi: 10.1073/pnas.79.23.7175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Perret J., Gay P. Kinetic study of a phosphoryl exchange reaction between fructose and fructose 1-phosphate catalyzed by the membrane-bound enzyme II of the phosphoenolpyruvate-fructose 1-phosphotransferase system of Bacillus subtilis. Eur J Biochem. 1979 Dec;102(1):237–246. doi: 10.1111/j.1432-1033.1979.tb06285.x. [DOI] [PubMed] [Google Scholar]
  110. Reeves J. P., Sutko J. L. Sodium-calcium ion exchange in cardiac membrane vesicles. Proc Natl Acad Sci U S A. 1979 Feb;76(2):590–594. doi: 10.1073/pnas.76.2.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Reider E., Wagner E. F., Schweiger M. Control of phosphoenolpyruvate-dependent phosphotransferase-mediated sugar transport in Escherichia coli by energization of the cell membrane. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5529–5533. doi: 10.1073/pnas.76.11.5529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Remington S., Wiegand G., Huber R. Crystallographic refinement and atomic models of two different forms of citrate synthase at 2.7 and 1.7 A resolution. J Mol Biol. 1982 Jun 15;158(1):111–152. doi: 10.1016/0022-2836(82)90452-1. [DOI] [PubMed] [Google Scholar]
  113. Robillard G. T. The enzymology of the bacterial phosphoenolpyruvate-dependent sugar transport systems. Mol Cell Biochem. 1982 Jul 7;46(1):3–24. doi: 10.1007/BF00215577. [DOI] [PubMed] [Google Scholar]
  114. Ross A. H., McConnell H. M. Reconstitution of the erythrocyte anion channel. J Biol Chem. 1978 Jul 10;253(13):4777–4782. [PubMed] [Google Scholar]
  115. Rothstein A., Cabantchik Z. I., Knauf P. Mechanism of anion transport in red blood cells: role of membrane proteins. Fed Proc. 1976 Jan;35(1):3–10. [PubMed] [Google Scholar]
  116. Rothstein A., Knauf P. A., Grinstein S., Shami Y. A model for the action of the anion exchange protein of the red blood cell. Prog Clin Biol Res. 1979;30:483–496. [PubMed] [Google Scholar]
  117. Saier M. H., Jr Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: structural, functional, and evolutionary interrelationships. Bacteriol Rev. 1977 Dec;41(4):856–871. doi: 10.1128/br.41.4.856-871.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Scarborough G. A. Chemiosmotic models for the mechanisms of the cation-motive ATPases. Ann N Y Acad Sci. 1982;402:99–115. doi: 10.1111/j.1749-6632.1982.tb25735.x. [DOI] [PubMed] [Google Scholar]
  119. Schatzmann H. J. The red cell calcium pump. Annu Rev Physiol. 1983;45:303–312. doi: 10.1146/annurev.ph.45.030183.001511. [DOI] [PubMed] [Google Scholar]
  120. Schindler H., Rosenbusch J. P. Matrix protein in planar membranes: clusters of channels in a native environment and their functional reassembly. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2302–2306. doi: 10.1073/pnas.78.4.2302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Schobert B., Lanyi J. K. Halorhodopsin is a light-driven chloride pump. J Biol Chem. 1982 Sep 10;257(17):10306–10313. [PubMed] [Google Scholar]
  122. Schuldiner S., Fishkes H., Kanner B. I. Role of a transmembrane pH gradient in epinephrine transport by chromaffin granule membrane vesicles. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3713–3716. doi: 10.1073/pnas.75.8.3713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Schulz G. E., Schirmer R. H., Sachsenheimer W., Pai E. F. The structure of the flavoenzyme glutathione reductase. Nature. 1978 May 11;273(5658):120–124. doi: 10.1038/273120a0. [DOI] [PubMed] [Google Scholar]
  124. Semenza G., Kessler M., Hosang M., Weber J., Schmidt U. Biochemistry of the Na+, D-glucose cotransporter of the small-intestinal brush-border membrane. The state of the art in 1984. Biochim Biophys Acta. 1984 Sep 3;779(3):343–379. doi: 10.1016/0304-4157(84)90016-9. [DOI] [PubMed] [Google Scholar]
  125. Senior A. E., Wise J. G. The proton-ATPase of bacteria and mitochondria. J Membr Biol. 1983;73(2):105–124. doi: 10.1007/BF01870434. [DOI] [PubMed] [Google Scholar]
  126. Serrano R. Plasma membrane ATPase of fungi and plants as a novel type of proton pump. Curr Top Cell Regul. 1984;23:87–126. doi: 10.1016/b978-0-12-152823-2.50007-6. [DOI] [PubMed] [Google Scholar]
  127. Skriver E., Maunsbach A. B., Jørgensen P. L. Formation of two-dimensional crystals in pure membrane-bound Na+,K+-ATPase. FEBS Lett. 1981 Aug 31;131(2):219–222. doi: 10.1016/0014-5793(81)80371-7. [DOI] [PubMed] [Google Scholar]
  128. Sone N., Hinkle P. C. Proton transport by cytochrome c oxidase from the thermophilic bacterium PS3 reconstituted in liposomes. J Biol Chem. 1982 Nov 10;257(21):12600–12604. [PubMed] [Google Scholar]
  129. Stoeckenius W., Bogomolni R. A. Bacteriorhodopsin and related pigments of halobacteria. Annu Rev Biochem. 1982;51:587–616. doi: 10.1146/annurev.bi.51.070182.003103. [DOI] [PubMed] [Google Scholar]
  130. Stoeckenius W., Lozier R. H., Bogomolni R. A. Bacteriorhodopsin and the purple membrane of halobacteria. Biochim Biophys Acta. 1979 Mar 14;505(3-4):215–278. doi: 10.1016/0304-4173(79)90006-5. [DOI] [PubMed] [Google Scholar]
  131. Stone D. K., Xie X. S., Racker E. An ATP-driven proton pump in clathrin-coated vesicles. J Biol Chem. 1983 Apr 10;258(7):4059–4062. [PubMed] [Google Scholar]
  132. Stroobant P., Dame J. B., Scarborough G. A. The Neurospora plasma membrane Ca2+ pump. Fed Proc. 1980 May 15;39(7):2437–2441. [PubMed] [Google Scholar]
  133. Stroobant P., Scarborough G. A. Active transport of calcium in Neurospora plasma membrane vesicles. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3102–3106. doi: 10.1073/pnas.76.7.3102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Tada M., Yamamoto T., Tonomura Y. Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol Rev. 1978 Jan;58(1):1–79. doi: 10.1152/physrev.1978.58.1.1. [DOI] [PubMed] [Google Scholar]
  135. Tanford C. Mechanism of free energy coupling in active transport. Annu Rev Biochem. 1983;52:379–409. doi: 10.1146/annurev.bi.52.070183.002115. [DOI] [PubMed] [Google Scholar]
  136. Tanford C. Simple model for the chemical potential change of a transported ion in active transport. Proc Natl Acad Sci U S A. 1982 May;79(9):2882–2884. doi: 10.1073/pnas.79.9.2882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Tanford C. Twenty questions concerning the reaction cycle of the sarcoplasmic reticulum calcium pump. CRC Crit Rev Biochem. 1984;17(2):123–151. doi: 10.3109/10409238409113603. [DOI] [PubMed] [Google Scholar]
  138. Thelen M., O'Shea P. S., Petrone G., Azzi A. Proton translocation by a native and subunit III-depleted cytochrome c oxidase reconstituted into phospholipid vesicles. Use of fluorescein-phosphatidylethanolamine as an intravesicular pH indicator. J Biol Chem. 1985 Mar 25;260(6):3626–3631. [PubMed] [Google Scholar]
  139. Vidaver G. A. Inhibition of parallel flux and augmentation of counter flux shown by transport models not involving a mobile carrier. J Theor Biol. 1966 Feb;10(2):301–306. doi: 10.1016/0022-5193(66)90128-7. [DOI] [PubMed] [Google Scholar]
  140. Visser L., Robinson N. C., Tanford C. The two-domain structure of cytochrome b5 in deoxycholate solution. Biochemistry. 1975 Mar 25;14(6):1194–1199. doi: 10.1021/bi00677a015. [DOI] [PubMed] [Google Scholar]
  141. Warncke J., Slayman C. L. Metabolic modulation of stoichiometry in a proton pump. Biochim Biophys Acta. 1980 Jul 8;591(2):224–233. doi: 10.1016/0005-2728(80)90154-1. [DOI] [PubMed] [Google Scholar]
  142. Webb M. R., Grubmeyer C., Penefsky H. S., Trentham D. R. The stereochemical course of phosphoric residue transfer catalyzed by beef heart mitochondrial ATPase. J Biol Chem. 1980 Dec 25;255(24):11637–11639. [PubMed] [Google Scholar]
  143. Wheeler T. J., Hinkle P. C. Kinetic properties of the reconstituted glucose transporter from human erythrocytes. J Biol Chem. 1981 Sep 10;256(17):8907–8914. [PubMed] [Google Scholar]
  144. Wikström M., Krab K. Proton-pumping cytochrome c oxidase. Biochim Biophys Acta. 1979 Aug 17;549(2):177–122. doi: 10.1016/0304-4173(79)90014-4. [DOI] [PubMed] [Google Scholar]
  145. Wikström M., Krab K., Saraste M. Proton-translocating cytochrome complexes. Annu Rev Biochem. 1981;50:623–655. doi: 10.1146/annurev.bi.50.070181.003203. [DOI] [PubMed] [Google Scholar]
  146. Wikström M. Pumping of protons from the mitochondrial matrix by cytochrome oxidase. Nature. 1984 Apr 5;308(5959):558–560. doi: 10.1038/308558a0. [DOI] [PubMed] [Google Scholar]
  147. Wilson D. B. Cellular transport mechanisms. Annu Rev Biochem. 1978;47:933–965. doi: 10.1146/annurev.bi.47.070178.004441. [DOI] [PubMed] [Google Scholar]
  148. Wolfenden R. Enzyme catalysis: conflicting requirements of substrate access and transition state affinity. Mol Cell Biochem. 1974 May 30;3(3):207–211. doi: 10.1007/BF01686645. [DOI] [PubMed] [Google Scholar]
  149. Wolfenden R. Transition state analogues for enzyme catalysis. Nature. 1969 Aug 16;223(5207):704–705. doi: 10.1038/223704a0. [DOI] [PubMed] [Google Scholar]
  150. Wyman J. The turning wheel: a study in steady states. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3983–3987. doi: 10.1073/pnas.72.10.3983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. de Meis L., Vianna A. L. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Annu Rev Biochem. 1979;48:275–292. doi: 10.1146/annurev.bi.48.070179.001423. [DOI] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES