Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1987 Mar;51(1):22–42. doi: 10.1128/mr.51.1.22-42.1987

Nickel utilization by microorganisms.

R P Hausinger
PMCID: PMC373090  PMID: 3104749

Full text

PDF
22

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. W., Mortenson L. E., Chen J. S. Hydrogenase. Biochim Biophys Acta. 1980 Dec;594(2-3):105–176. doi: 10.1016/0304-4173(80)90007-5. [DOI] [PubMed] [Google Scholar]
  2. Adams M. W., Mortenson L. E. The physical and catalytic properties of hydrogenase II of Clostridium pasteurianum. A comparison with hydrogenase I. J Biol Chem. 1984 Jun 10;259(11):7045–7055. [PubMed] [Google Scholar]
  3. Aggag M., Schlegel H. G. Studies on a gram-positive hydrogen bacterium, Nocardia opaca 1 b. III. Purification, stability and some properties of the soluble hydrogen dehydrogenase. Arch Microbiol. 1974;100(1):25–39. doi: 10.1007/BF00446303. [DOI] [PubMed] [Google Scholar]
  4. Akers H. A. Urease inhibition by hydroxamic acids. Experientia. 1981 Mar 15;37(3):229–230. doi: 10.1007/BF01991625. [DOI] [PubMed] [Google Scholar]
  5. Alagna L., Hasnain S. S., Piggott B., Williams D. J. The nickel ion environment in jack bean urease. Biochem J. 1984 Jun 1;220(2):591–595. doi: 10.1042/bj2200591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Albracht S. P., Graf E. G., Thauer R. K. The EPR properties of nickel in hydrogenase from Methanobacterium. FEBS Lett. 1982 Apr 19;140(2):311–313. doi: 10.1016/0014-5793(82)80921-6. [DOI] [PubMed] [Google Scholar]
  7. Andrews R. K., Blakeley R. L., Zerner B. Urea and urease. Adv Inorg Biochem. 1984;6:245–283. [PubMed] [Google Scholar]
  8. Ankel-Fuchs D., Thauer R. K. Methane formation from methyl-coenzyme M in a system containing methyl-coenzyme M reductase, component B and reduced cobalamin. Eur J Biochem. 1986 Apr 1;156(1):171–177. doi: 10.1111/j.1432-1033.1986.tb09563.x. [DOI] [PubMed] [Google Scholar]
  9. Arp D. J., McCollum L. C., Seefeldt L. C. Molecular and immunological comparison of membrane-bound, H2-oxidizing hydrogenases of Bradyrhizobium japonicum, Alcaligenes eutrophus, Alcaligenes latus, and Azotobacter vinelandii. J Bacteriol. 1985 Jul;163(1):15–20. doi: 10.1128/jb.163.1.15-20.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Arp D. J. Rhizobium japonicum hydrogenase: purification to homogeneity from soybean nodules, and molecular characterization. Arch Biochem Biophys. 1985 Mar;237(2):504–512. doi: 10.1016/0003-9861(85)90303-0. [DOI] [PubMed] [Google Scholar]
  11. BARTHA R., ORDAL E. J. NICKEL-DEPENDENT CHEMOLITHOTROPHIC GROWTH OF TWO HYDROGENOMONAS STRAINS. J Bacteriol. 1965 Apr;89:1015–1019. doi: 10.1128/jb.89.4.1015-1019.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Babich H., Stotzky G. Toxicity of nickel to microbes: environmental aspects. Adv Appl Microbiol. 1983;29:195–265. doi: 10.1016/s0065-2164(08)70358-7. [DOI] [PubMed] [Google Scholar]
  13. Baird M. L., Garber E. D. The genetics and biochemistry of urease in Ustilago violacea. Biochem Genet. 1981 Dec;19(11-12):1101–1114. doi: 10.1007/BF00484568. [DOI] [PubMed] [Google Scholar]
  14. Ballantine S. P., Boxer D. H. Isolation and characterisation of a soluble active fragment of hydrogenase isoenzyme 2 from the membranes of anaerobically grown Escherichia coli. Eur J Biochem. 1986 Apr 15;156(2):277–284. doi: 10.1111/j.1432-1033.1986.tb09578.x. [DOI] [PubMed] [Google Scholar]
  15. Ballantine S. P., Boxer D. H. Nickel-containing hydrogenase isoenzymes from anaerobically grown Escherichia coli K-12. J Bacteriol. 1985 Aug;163(2):454–459. doi: 10.1128/jb.163.2.454-459.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Benson E. W., Howe H. B., Jr Reversion and interallelic complementation at four urease loci in Neurospora crassa. Mol Gen Genet. 1978 Oct 24;165(3):277–282. doi: 10.1007/BF00332527. [DOI] [PubMed] [Google Scholar]
  17. Beveridge T. J., Murray R. G. Uptake and retention of metals by cell walls of Bacillus subtilis. J Bacteriol. 1976 Sep;127(3):1502–1518. doi: 10.1128/jb.127.3.1502-1518.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Bonam D., Murrell S. A., Ludden P. W. Carbon monoxide dehydrogenase from Rhodospirillum rubrum. J Bacteriol. 1984 Aug;159(2):693–699. doi: 10.1128/jb.159.2.693-699.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cammack R., Fernandez V. M., Schneider K. Activation and active sites of nickel-containing hydrogenases. Biochimie. 1986 Jan;68(1):85–91. doi: 10.1016/s0300-9084(86)81072-0. [DOI] [PubMed] [Google Scholar]
  20. Cammack R., Patil D. S., Fernandez V. M. Electron-spin-resonance/electron-paramagnetic-resonance spectroscopy of iron-sulphur enzymes. Biochem Soc Trans. 1985 Jun;13(3):572–578. doi: 10.1042/bst0130572. [DOI] [PubMed] [Google Scholar]
  21. Campbell P. M., Smith G. D. Transport and accumulation of nickel ions in the cyanobacterium Anabaena cylindrica. Arch Biochem Biophys. 1986 Feb 1;244(2):470–477. doi: 10.1016/0003-9861(86)90615-6. [DOI] [PubMed] [Google Scholar]
  22. Cheng K. J., Wallace R. J. The mechanism of passage of endogenous urea through the rumen wall and the role of ureolytic epithelial bacteria in the urea flux. Br J Nutr. 1979 Nov;42(3):553–557. doi: 10.1079/bjn19790147. [DOI] [PubMed] [Google Scholar]
  23. Christians S., Kaltwasser H. Nickel-content of urease from Bacillus pasteurii. Arch Microbiol. 1986 Jun;145(1):51–55. doi: 10.1007/BF00413026. [DOI] [PubMed] [Google Scholar]
  24. Cook A. R. Urease activity in the rumen of sheep and the isolation of ureolytic bacteria. J Gen Microbiol. 1976 Jan;92(1):32–48. doi: 10.1099/00221287-92-1-32. [DOI] [PubMed] [Google Scholar]
  25. Creaser E. H., Porter R. L. The purification of urease from Aspergillus nidulans. Int J Biochem. 1985;17(12):1339–1341. doi: 10.1016/0020-711x(85)90057-6. [DOI] [PubMed] [Google Scholar]
  26. Czechowski M. H., He S. H., Nacro M., DerVartanian D. V., Peck H. D., Jr, LeGall J. A cytoplasmic nickel-iron hydrogenase with high specific activity from Desulfovibrio multispirans sp. N., a new species of sulfate reducing bacterium. Biochem Biophys Res Commun. 1984 Dec 28;125(3):1025–1032. doi: 10.1016/0006-291x(84)91386-x. [DOI] [PubMed] [Google Scholar]
  27. Daniels L., Sparling R., Sprott G. D. The bioenergetics of methanogenesis. Biochim Biophys Acta. 1984 Sep 6;768(2):113–163. doi: 10.1016/0304-4173(84)90002-8. [DOI] [PubMed] [Google Scholar]
  28. Diakun G. P., Piggott B., Tinton H. J., Ankel-Fuchs D., Thauer R. K. An extended-X-ray-absorption-fine-structure (e.x.a.f.s.) study of coenzyme F430 from Methanobacterium thermoautotrophicum. Biochem J. 1985 Nov 15;232(1):281–284. doi: 10.1042/bj2320281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Diekert G. B., Thauer R. K. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J Bacteriol. 1978 Nov;136(2):597–606. doi: 10.1128/jb.136.2.597-606.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Diekert G., Gilles H. H., Jaenchen R., Thauer R. K. Incorporation of 8 succinate per mol nickel into factors F430 by Methanobacterium thermoautotrophicum. Arch Microbiol. 1980 Dec;128(2):256–262. doi: 10.1007/BF00406169. [DOI] [PubMed] [Google Scholar]
  31. Diekert G., Jaenchen R., Thauer R. K. Biosynthetic evidence for a nickel tetrapyrrole structure of factor F430 from Methanobacterium thermoautotrophicum. FEBS Lett. 1980 Sep 22;119(1):118–120. doi: 10.1016/0014-5793(80)81011-8. [DOI] [PubMed] [Google Scholar]
  32. Diekert G., Klee B., Thauer R. K. Nickel, a component of factor F430 from Methanobacterium thermoautotrophicum. Arch Microbiol. 1980 Jan;124(1):103–106. doi: 10.1007/BF00407036. [DOI] [PubMed] [Google Scholar]
  33. Diekert G., Konheiser U., Piechulla K., Thauer R. K. Nickel requirement and factor F430 content of methanogenic bacteria. J Bacteriol. 1981 Nov;148(2):459–464. doi: 10.1128/jb.148.2.459-464.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Diekert G., Ritter M. Nickel requirement of Acetobacterium woodii. J Bacteriol. 1982 Aug;151(2):1043–1045. doi: 10.1128/jb.151.2.1043-1045.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Diekert G., Ritter M. Purification of the nickel protein carbon monoxide dehydrogenase of Clostridium thermoaceticum. FEBS Lett. 1983 Jan 10;151(1):41–44. doi: 10.1016/0014-5793(83)80338-x. [DOI] [PubMed] [Google Scholar]
  36. Dixon N. E., Gazzola T. C., blakeley R. L., Zermer B. Letter: Jack bean urease (EC 3.5.1.5). A metalloenzyme. A simple biological role for nickel? J Am Chem Soc. 1975 Jul 9;97(14):4131–4133. doi: 10.1021/ja00847a045. [DOI] [PubMed] [Google Scholar]
  37. Drake H. L., Hu S. I., Wood H. G. Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. Properties of phosphotransacetylase. J Biol Chem. 1981 Nov 10;256(21):11137–11144. [PubMed] [Google Scholar]
  38. Drake H. L. Occurrence of nickel in carbon monoxide dehydrogenase from Clostridium pasteurianum and Clostridium thermoaceticum. J Bacteriol. 1982 Feb;149(2):561–566. doi: 10.1128/jb.149.2.561-566.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ellefson W. L., Whitman W. B., Wolfe R. S. Nickel-containing factor F430: chromophore of the methylreductase of Methanobacterium. Proc Natl Acad Sci U S A. 1982 Jun;79(12):3707–3710. doi: 10.1073/pnas.79.12.3707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ellefson W. L., Wolfe R. S. Component C of the methylreductase system of Methanobacterium. J Biol Chem. 1981 May 10;256(9):4259–4262. [PubMed] [Google Scholar]
  41. Fauque G., Teixeira M., Moura I., Lespinat P. A., Xavier A. V., Der Vartanian D. V., Peck H. D., Jr, Le Gall J., Moura J. G. Purification, characterization and redox properties of hydrogenase from Methanosarcina barkeri (DSM 800). Eur J Biochem. 1984 Jul 2;142(1):21–28. doi: 10.1111/j.1432-1033.1984.tb08245.x. [DOI] [PubMed] [Google Scholar]
  42. Friedrich B., Heine E., Finck A., Friedrich C. G. Nickel requirement for active hydrogenase formation in Alcaligenes eutrophus. J Bacteriol. 1981 Mar;145(3):1144–1149. doi: 10.1128/jb.145.3.1144-1149.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Friedrich B., Kortlüke C., Hogrefe C., Eberz G., Silber B., Warrelmann J. Genetics of hydrogenase from aerobic lithoautotrophic bacteria. Biochimie. 1986 Jan;68(1):133–145. doi: 10.1016/s0300-9084(86)81078-1. [DOI] [PubMed] [Google Scholar]
  44. Friedrich C. G., Schneider K., Friedrich B. Nickel in the catalytically active hydrogenase of Alcaligenes eutrophus. J Bacteriol. 1982 Oct;152(1):42–48. doi: 10.1128/jb.152.1.42-48.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Fuhrmann G. F., Rothstein A. The transport of Zn2+, Co2+ and Ni2+ into yeast cells. Biochim Biophys Acta. 1968 Nov 5;163(3):325–330. doi: 10.1016/0005-2736(68)90117-x. [DOI] [PubMed] [Google Scholar]
  46. Gilles H., Thauer R. K. Uroporphyrinogen III, an intermediate in the biosynthesis of the nickel-containing factor F430 in Methanobacterium thermoautotrophicum. Eur J Biochem. 1983 Sep 1;135(1):109–112. doi: 10.1111/j.1432-1033.1983.tb07624.x. [DOI] [PubMed] [Google Scholar]
  47. Gogotov I. N. Hydrogenases of phototrophic microorganisms. Biochimie. 1986 Jan;68(1):181–187. doi: 10.1016/s0300-9084(86)81082-3. [DOI] [PubMed] [Google Scholar]
  48. Griffith D. P., Musher D. M., Itin C. Urease. The primary cause of infection-induced urinary stones. Invest Urol. 1976 Mar;13(5):346–350. [PubMed] [Google Scholar]
  49. Gunsalus R. P., Wolfe R. S. Methyl coenzyme M reductase from Methanobacterium thermoautotrophicum. Resolution and properties of the components. J Biol Chem. 1980 Mar 10;255(5):1891–1895. [PubMed] [Google Scholar]
  50. Hammel K. E., Cornwell K. L., Diekert G. B., Thauer R. K. Evidence for a nickel-containing carbon monoxide dehydrogenase in Methanobrevibacter arboriphilicus. J Bacteriol. 1984 Mar;157(3):975–978. doi: 10.1128/jb.157.3.975-978.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Harker A. R., Zuber M., Evans H. J. Immunological homology between the membrane-bound uptake hydrogenases of Rhizobium japonicum and Escherichia coli. J Bacteriol. 1986 Feb;165(2):579–584. doi: 10.1128/jb.165.2.579-584.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Hartzell P. L., Wolfe R. S. Requirement of the nickel tetrapyrrole F430 for in vitro methanogenesis: reconstitution of methylreductase component C from its dissociated subunits. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6726–6730. doi: 10.1073/pnas.83.18.6726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Hausinger R. P. Purification of a nickel-containing urease from the rumen anaerobe Selenomonas ruminantium. J Biol Chem. 1986 Jun 15;261(17):7866–7870. [PubMed] [Google Scholar]
  54. Hornhardt S., Schneider K., Schlegel H. G. Characterization of a native subunit of the NAD-linked hydrogenase isolated from a mutant of Alcaligenes eutrophus H16. Biochimie. 1986 Jan;68(1):15–24. doi: 10.1016/s0300-9084(86)81063-x. [DOI] [PubMed] [Google Scholar]
  55. Hu S. I., Drake H. L., Wood H. G. Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes from Clostridium thermoaceticum. J Bacteriol. 1982 Feb;149(2):440–448. doi: 10.1128/jb.149.2.440-448.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Huynh B. H., Czechowski M. H., Krüger H. J., DerVartanian D. V., Peck H. D., Jr, LeGall J. Desulfovibrio vulgaris hydrogenase: a nonheme iron enzyme lacking nickel that exhibits anomalous EPR and Mössbauer spectra. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3728–3732. doi: 10.1073/pnas.81.12.3728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Hüster R., Gilles H. H., Thauer R. K. Is coenzyme M bound to factor F430 in methanogenic bacteria? Experiments with Methanobrevibacter ruminantium. Eur J Biochem. 1985 Apr 1;148(1):107–111. doi: 10.1111/j.1432-1033.1985.tb08813.x. [DOI] [PubMed] [Google Scholar]
  58. Jarrell K. F., Colvin J. R., Sprott G. D. Spontaneous protoplast formation in Methanobacterium bryantii. J Bacteriol. 1982 Jan;149(1):346–353. doi: 10.1128/jb.149.1.346-353.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Jarrell K. F., Sprott G. D. Nickel transport in Methanobacterium bryantii. J Bacteriol. 1982 Sep;151(3):1195–1203. doi: 10.1128/jb.151.3.1195-1203.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Johnson M. K., Zambrano I. C., Czechowski M. H., Peck H. D., Jr, DerVartanian D. V., LeGall J. Low temperature magnetic circular dichroism spectroscopy as a probe for the optical transitions of paramagnetic nickel in hydrogenase. Biochem Biophys Res Commun. 1985 Apr 16;128(1):220–225. doi: 10.1016/0006-291x(85)91667-5. [DOI] [PubMed] [Google Scholar]
  61. Kamel M. Y., Hamed R. R. Aerobacter aerogenes PRL-R3 urease. Purification and properties. Acta Biol Med Ger. 1975;34(6):971–979. [PubMed] [Google Scholar]
  62. Keltjens J. T., Caerteling C. G., Van Kooten A. M., Van Dijk H. F., Vogels G. D. Chromophoric derivatives of coenzyme MF430, a proposed coenzyme of methanogenesis in Methanobacterium thermoautotrophicum. Arch Biochem Biophys. 1983 May;223(1):235–253. doi: 10.1016/0003-9861(83)90589-1. [DOI] [PubMed] [Google Scholar]
  63. Keltjens J. T., Whitman W. B., Caerteling C. G., van Kooten A. M., Wolfe R. S., Vogels G. D. Presence of coenzyme M derivatives in the prosthetic group (coenzyme MF430) of methylcoenzyme M reductase from Methanobacterium thermoautotrophicum. Biochem Biophys Res Commun. 1982 Sep 30;108(2):495–503. doi: 10.1016/0006-291x(82)90856-7. [DOI] [PubMed] [Google Scholar]
  64. Klucas R. V., Hanus F. J., Russell S. A., Evans H. J. Nickel: A micronutrient element for hydrogen-dependent growth of Rhizobium japonicum and for expression of urease activity in soybean leaves. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2253–2257. doi: 10.1073/pnas.80.8.2253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Kojima N., Fox J. A., Hausinger R. P., Daniels L., Orme-Johnson W. H., Walsh C. Paramagnetic centers in the nickel-containing, deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum. Proc Natl Acad Sci U S A. 1983 Jan;80(2):378–382. doi: 10.1073/pnas.80.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Krzycki J. A., Lehman L. J., Zeikus J. G. Acetate catabolism by Methanosarcina barkeri: evidence for involvement of carbon monoxide dehydrogenase, methyl coenzyme M, and methylreductase. J Bacteriol. 1985 Sep;163(3):1000–1006. doi: 10.1128/jb.163.3.1000-1006.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Krzycki J. A., Zeikus J. G. Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri. J Bacteriol. 1984 Apr;158(1):231–237. doi: 10.1128/jb.158.1.231-237.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Krüger H. J., Huynh B. H., Ljungdahl P. O., Xavier A. V., Der Vartanian D. V., Moura I., Peck H. D., Jr, Teixeira M., Moura J. J., LeGall J. Evidence for nickel and a three-iron center in the hydrogenase of Desulfovibrio desulfuricans. J Biol Chem. 1982 Dec 25;257(24):14620–14623. [PubMed] [Google Scholar]
  69. Lalla-Maharajh W. V., Hall D. O., Cammack R., Rao K. K., Le Gall J. Purification and properties of the membrane-bound by hydrogenase from Desulfovibrio desulfuricans. Biochem J. 1983 Feb 1;209(2):445–454. doi: 10.1042/bj2090445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Lancaster J. R., Jr New biological paramagnetic center: octahedrally coordinated nickel(III) in the methanogenic bacteria. Science. 1982 Jun 18;216(4552):1324–1325. doi: 10.1126/science.216.4552.1324. [DOI] [PubMed] [Google Scholar]
  71. Lancaster J. R., Jr Soluble and membrane-bound paramagnetic centers in methanobacterium bryantii. FEBS Lett. 1980 Jun 30;115(2):285–288. doi: 10.1016/0014-5793(80)81188-4. [DOI] [PubMed] [Google Scholar]
  72. LeGall J., Ljungdahl P. O., Moura I., Peck H. D., Jr, Xavier A. V., Moura J. J., Teixera M., Huynh B. H., DerVartanian D. V. The presence of redox-sensitive nickel in the periplasmic hydrogenase from Desulfovibrio gigas. Biochem Biophys Res Commun. 1982 May 31;106(2):610–616. doi: 10.1016/0006-291x(82)91154-8. [DOI] [PubMed] [Google Scholar]
  73. Lissolo T., Choi E. S., LeGall J., Peck H. D., Jr The presence of multiple intrinsic membrane nickel-containing hydrogenases in Desulfovibrio vulgaris (Hildenborough). Biochem Biophys Res Commun. 1986 Sep 14;139(2):701–708. doi: 10.1016/s0006-291x(86)80047-x. [DOI] [PubMed] [Google Scholar]
  74. Lissolo T., Pulvin S., Thomas D. Reactivation of the hydrogenase from Desulfovibrio gigas by hydrogen. Influence of redox potential. J Biol Chem. 1984 Oct 10;259(19):11725–11729. [PubMed] [Google Scholar]
  75. Ljungdahl L. G. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol. 1986;40:415–450. doi: 10.1146/annurev.mi.40.100186.002215. [DOI] [PubMed] [Google Scholar]
  76. Mackay E. M., Pateman J. A. Nickel requirement of a urease-deficient mutant in Aspergillus nidulans. J Gen Microbiol. 1980 Jan;116(1):249–251. doi: 10.1099/00221287-116-1-249. [DOI] [PubMed] [Google Scholar]
  77. Mackay E. M., Pateman J. A. The regulation of urease activity in Aspergillus nidulans. Biochem Genet. 1982 Aug;20(7-8):763–776. doi: 10.1007/BF00483972. [DOI] [PubMed] [Google Scholar]
  78. Magaña-Plaza I., Montes C., Ruiz-Herrera J. Purification and biochemical characteristics of urease from Proteus rettgeri. Biochim Biophys Acta. 1971 Jul 21;242(1):230–237. doi: 10.1016/0005-2744(71)90103-3. [DOI] [PubMed] [Google Scholar]
  79. Mahadevan S., Sauer F. D., Erfle J. D. Purification and properties of urease from bovine rumen. Biochem J. 1977 Jun 1;163(3):495–501. doi: 10.1042/bj1630495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Mege R. M., Bourdillon C. Nickel controls the reversible anaerobic activation/inactivation of the Desulfovibrio gigas hydrogenase by the redox potential. J Biol Chem. 1985 Nov 25;260(27):14701–14706. [PubMed] [Google Scholar]
  81. Meyer O., Schlegel H. G. Biology of aerobic carbon monoxide-oxidizing bacteria. Annu Rev Microbiol. 1983;37:277–310. doi: 10.1146/annurev.mi.37.100183.001425. [DOI] [PubMed] [Google Scholar]
  82. Moura J. J., Moura I., Huynh B. H., Krüger H. J., Teixeira M., DuVarney R. C., DerVartanian D. V., Xavier A. V., Peck H. D., Jr, LeGall J. Unambiguous identification of the nickel EPR signal in 61Ni-enriched Desulfovibrio gigas hydrogenase. Biochem Biophys Res Commun. 1982 Oct 29;108(4):1388–1393. doi: 10.1016/s0006-291x(82)80060-0. [DOI] [PubMed] [Google Scholar]
  83. Nagle D. P., Jr, Wolfe R. S. Component A of the methyl coenzyme M methylreductase system of Methanobacterium: resolution into four components. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2151–2155. doi: 10.1073/pnas.80.8.2151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Neilands J. B. Microbial iron compounds. Annu Rev Biochem. 1981;50:715–731. doi: 10.1146/annurev.bi.50.070181.003435. [DOI] [PubMed] [Google Scholar]
  85. Nelson M. J., Brown D. P., Ferry J. G. FAD requirement for the reduction of coenzyme F420 by hydrogenase from Methanobacterium formicicum. Biochem Biophys Res Commun. 1984 May 16;120(3):775–781. doi: 10.1016/s0006-291x(84)80174-6. [DOI] [PubMed] [Google Scholar]
  86. Nelson M. J., Ferry J. G. Carbon monoxide-dependent methyl coenzyme M methylreductase in acetotrophic Methosarcina spp. J Bacteriol. 1984 Nov;160(2):526–532. doi: 10.1128/jb.160.2.526-532.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Nielsen F. H., Ollerich D. A. Proceedings: Nickel: a new essential trace element. Fed Proc. 1974 Jun;33(6):1767–1772. [PubMed] [Google Scholar]
  88. Nivière V., Forget N., Gayda J. P., Hatchikian E. C. Characterization of the soluble hydrogenase from Desulfovibrio africanus. Biochem Biophys Res Commun. 1986 Sep 14;139(2):658–665. doi: 10.1016/s0006-291x(86)80041-9. [DOI] [PubMed] [Google Scholar]
  89. Noll K. M., Rinehart K. L., Jr, Tanner R. S., Wolfe R. S. Structure of component B (7-mercaptoheptanoylthreonine phosphate) of the methylcoenzyme M methylreductase system of Methanobacterium thermoautotrophicum. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4238–4242. doi: 10.1073/pnas.83.12.4238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Noll K. M., Wolfe R. S. Component C of the methylcoenzyme M methylreductase system contains bound 7-mercaptoheptanoylthreonine phosphate (HS-HTP). Biochem Biophys Res Commun. 1986 Sep 30;139(3):889–895. doi: 10.1016/s0006-291x(86)80261-3. [DOI] [PubMed] [Google Scholar]
  91. Odom J. M., Peck H. D., Jr Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio. Annu Rev Microbiol. 1984;38:551–592. doi: 10.1146/annurev.mi.38.100184.003003. [DOI] [PubMed] [Google Scholar]
  92. Papen H., Kentemich T., Schmülling T., Bothe H. Hydrogenase activities in cyanobacteria. Biochimie. 1986 Jan;68(1):121–132. doi: 10.1016/s0300-9084(86)81077-x. [DOI] [PubMed] [Google Scholar]
  93. Partridge C. D., Yates M. G. Effect of chelating agents on hydrogenase in Azotobacter chroococcum. Evidence that nickel is required for hydrogenase synthesis. Biochem J. 1982 Apr 15;204(1):339–344. doi: 10.1042/bj2040339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Pearson R. M., Smith J. A. The utilization of urea in the bovine rumen. 2. The conversion of urea to ammonia. Biochem J. 1943 Apr;37(1):148–153. doi: 10.1042/bj0370148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Pederson D. M., Daday A., Smith G. D. The use of nickel to probe the role of hydrogen metabolism in cyanobacterial nitrogen fixation. Biochimie. 1986 Jan;68(1):113–120. doi: 10.1016/s0300-9084(86)81076-8. [DOI] [PubMed] [Google Scholar]
  96. Pezacka E., Wood H. G. Role of carbon monoxide dehydrogenase in the autotrophic pathway used by acetogenic bacteria. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6261–6265. doi: 10.1073/pnas.81.20.6261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Pezacka E., Wood H. G. The autotrophic pathway of acetogenic bacteria. Role of CO dehydrogenase disulfide reductase. J Biol Chem. 1986 Feb 5;261(4):1609–1615. [PubMed] [Google Scholar]
  98. Pezacka E., Wood H. G. The synthesis of acetyl-CoA by Clostridium thermoaceticum from carbon dioxide, hydrogen, coenzyme A and methyltetrahydrofolate. Arch Microbiol. 1984 Jan;137(1):63–69. doi: 10.1007/BF00425809. [DOI] [PubMed] [Google Scholar]
  99. Pinkwart M., Schneider K., Schlegel H. G. Purification and properties of the membrane-bound hydrogenase from N2-fixing Alcaligenes latus. Biochim Biophys Acta. 1983 Jun 29;745(3):267–278. doi: 10.1016/0167-4838(83)90058-4. [DOI] [PubMed] [Google Scholar]
  100. Ragsdale S. W., Clark J. E., Ljungdahl L. G., Lundie L. L., Drake H. L. Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfur protein. J Biol Chem. 1983 Feb 25;258(4):2364–2369. [PubMed] [Google Scholar]
  101. Ragsdale S. W., Ljungdahl L. G., DerVartanian D. V. 13C and 61Ni isotope substitutions confirm the presence of a nickel (III)-carbon species in acetogenic CO dehydrogenases. Biochem Biophys Res Commun. 1983 Sep 15;115(2):658–665. doi: 10.1016/s0006-291x(83)80195-8. [DOI] [PubMed] [Google Scholar]
  102. Ragsdale S. W., Ljungdahl L. G., DerVartanian D. V. EPR evidence for nickel-substrate interaction in carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochem Biophys Res Commun. 1982 Sep 30;108(2):658–663. doi: 10.1016/0006-291x(82)90880-4. [DOI] [PubMed] [Google Scholar]
  103. Ragsdale S. W., Ljungdahl L. G., DerVartanian D. V. Isolation of carbon monoxide dehydrogenase from Acetobacterium woodii and comparison of its properties with those of the Clostridium thermoaceticum enzyme. J Bacteriol. 1983 Sep;155(3):1224–1237. doi: 10.1128/jb.155.3.1224-1237.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Ragsdale S. W., Ljungdahl L. G. Hydrogenase from Acetobacterium woodii. Arch Microbiol. 1984 Nov;139(4):361–365. doi: 10.1007/BF00408380. [DOI] [PubMed] [Google Scholar]
  105. Ragsdale S. W., Wood H. G. Acetate biosynthesis by acetogenic bacteria. Evidence that carbon monoxide dehydrogenase is the condensing enzyme that catalyzes the final steps of the synthesis. J Biol Chem. 1985 Apr 10;260(7):3970–3977. [PubMed] [Google Scholar]
  106. Ragsdale S. W., Wood H. G., Antholine W. E. Evidence that an iron-nickel-carbon complex is formed by reaction of CO with the CO dehydrogenase from Clostridium thermoaceticum. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6811–6814. doi: 10.1073/pnas.82.20.6811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Rieder R., Cammack R., Hall D. O. Purification and properties of the soluble hydrogenase from Desulfovibrio desulfuricans (strain Norway 4). Eur J Biochem. 1984 Dec 17;145(3):637–643. doi: 10.1111/j.1432-1033.1984.tb08604.x. [DOI] [PubMed] [Google Scholar]
  108. Roon R. J., Levenberg B. An adenosine triphosphate-dependent, avidin-sensitive enzymatic cleavage of urea in yeast and green algae. J Biol Chem. 1968 Oct 10;243(19):5213–5215. [PubMed] [Google Scholar]
  109. Roon R. J., Levenberg B. Urea amidolyase. I. Properties of the enzyme from Candida utilis. J Biol Chem. 1972 Jul 10;247(13):4107–4113. [PubMed] [Google Scholar]
  110. Rosenstein I. J., Hamilton-Miller J. M. Inhibitors of urease as chemotherapeutic agents. Crit Rev Microbiol. 1984;11(1):1–12. doi: 10.3109/10408418409105901. [DOI] [PubMed] [Google Scholar]
  111. Sawers R. G., Ballantine S. P., Boxer D. H. Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme. J Bacteriol. 1985 Dec;164(3):1324–1331. doi: 10.1128/jb.164.3.1324-1331.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Sawers R. G., Boxer D. H. Purification and properties of membrane-bound hydrogenase isoenzyme 1 from anaerobically grown Escherichia coli K12. Eur J Biochem. 1986 Apr 15;156(2):265–275. doi: 10.1111/j.1432-1033.1986.tb09577.x. [DOI] [PubMed] [Google Scholar]
  113. Schneider K., Cammack R., Schlegel H. G. Content and localization of FMN, Fe-S clusters and nickel in the NAD-linked hydrogenase of Nocardia opaca 1b. Eur J Biochem. 1984 Jul 2;142(1):75–84. doi: 10.1111/j.1432-1033.1984.tb08252.x. [DOI] [PubMed] [Google Scholar]
  114. Schneider K., Piechulla B. Isolation and immunological characterization of the four non-identical subunits of the soluble NAD-linked hydrogenase from Alcaligenes eutrophus H16. Biochimie. 1986 Jan;68(1):5–13. doi: 10.1016/s0300-9084(86)81062-8. [DOI] [PubMed] [Google Scholar]
  115. Schneider K., Schlegel H. G., Jochim K. Effect of nickel on activity and subunit composition of purified hydrogenase from Nocardia opaca 1 b. Eur J Biochem. 1984 Feb 1;138(3):533–541. doi: 10.1111/j.1432-1033.1984.tb07948.x. [DOI] [PubMed] [Google Scholar]
  116. Schönheit P., Moll J., Thauer R. K. Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch Microbiol. 1979 Oct;123(1):105–107. doi: 10.1007/BF00403508. [DOI] [PubMed] [Google Scholar]
  117. Seefeldt L. C., Arp D. J. Purification to homogeneity of Azotobacter vinelandii hydrogenase: a nickel and iron containing alpha beta dimer. Biochimie. 1986 Jan;68(1):25–34. doi: 10.1016/s0300-9084(86)81064-1. [DOI] [PubMed] [Google Scholar]
  118. Spears J. W., Hatfield E. E. Nickel for ruminants. I. Influence of dietary nickel on ruminal urease activity. J Anim Sci. 1978 Dec;47(6):1345–1350. doi: 10.2527/jas1978.4761345x. [DOI] [PubMed] [Google Scholar]
  119. Spears J. W., Smith C. J., Hatfield E. E. Rumen bacterial urease requirement for nickel. J Dairy Sci. 1977 Jul;60(7):1073–1076. doi: 10.3168/jds.S0022-0302(77)83990-8. [DOI] [PubMed] [Google Scholar]
  120. Sprott G. D., Shaw K. M., Jarrell K. F. Isolation and chemical composition of the cytoplasmic membrane of the archaebacterium Methanospirillum hungatei. J Biol Chem. 1983 Mar 25;258(6):4026–4031. [PubMed] [Google Scholar]
  121. Stults L. W., Moshiri F., Maier R. J. Aerobic purification of hydrogenase from Rhizobium japonicum by affinity chromatography. J Bacteriol. 1986 Jun;166(3):795–800. doi: 10.1128/jb.166.3.795-800.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Stults L. W., O'Hara E. B., Maier R. J. Nickel is a component of hydrogenase in Rhizobium japonicum. J Bacteriol. 1984 Jul;159(1):153–158. doi: 10.1128/jb.159.1.153-158.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Stupperich E., Hammel K. E., Fuchs G., Thauer R. K. Carbon monoxide fixation into the carboxyl group of acetyl coenzyme A during autotrophic growth of Methanobacterium. FEBS Lett. 1983 Feb 7;152(1):21–23. doi: 10.1016/0014-5793(83)80473-6. [DOI] [PubMed] [Google Scholar]
  124. Tabillion R., Kaltwasser H. Energieabhängige 63Ni-Aufnahme bei Alcaligenes eutrophus Stamm H1 und H16. Arch Microbiol. 1977 May 13;113(1-2):145–151. doi: 10.1007/BF00428595. [DOI] [PubMed] [Google Scholar]
  125. Taylor R. T., Weissbach H. Escherichia coli B N5-methyltetrahydrofolate-homocysteine methyltransferase: sequential formation of bound methylcobalamin with S-adenosyl-L-methionine and N5-methyltetrahydrofolate. Arch Biochem Biophys. 1969 Feb;129(2):728–744. doi: 10.1016/0003-9861(69)90234-3. [DOI] [PubMed] [Google Scholar]
  126. Teixeira M., Moura I., Fauque G., Czechowski M., Berlier Y., Lespinat P. A., Le Gall J., Xavier A. V., Moura J. J. Redox properties and activity studies on a nickel-containing hydrogenase isolated from a halophilic sulfate reducer Desulfovibrio salexigens. Biochimie. 1986 Jan;68(1):75–84. doi: 10.1016/s0300-9084(86)81071-9. [DOI] [PubMed] [Google Scholar]
  127. Teixeira M., Moura I., Xavier A. V., Dervartanian D. V., Legall J., Peck H. D., Jr, Huynh B. H., Moura J. J. Desulfovibrio Gigas hydrogenase: redox properties of the nickel and iron-sulfur centers. Eur J Biochem. 1983 Feb 15;130(3):481–484. doi: 10.1111/j.1432-1033.1983.tb07175.x. [DOI] [PubMed] [Google Scholar]
  128. Teixeira M., Moura I., Xavier A. V., Huynh B. H., DerVartanian D. V., Peck H. D., Jr, LeGall J., Moura J. J. Electron paramagnetic resonance studies on the mechanism of activation and the catalytic cycle of the nickel-containing hydrogenase from Desulfovibrio gigas. J Biol Chem. 1985 Jul 25;260(15):8942–8950. [PubMed] [Google Scholar]
  129. Terlesky K. C., Nelson M. J., Ferry J. G. Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing corrinoid and nickel from acetate-grown Methanosarcina thermophila. J Bacteriol. 1986 Dec;168(3):1053–1058. doi: 10.1128/jb.168.3.1053-1058.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Unden G., Böcher R., Knecht J., Kröger A. Hydrogenase from Vibrio succinogenes, a nickel protein. FEBS Lett. 1982 Aug 23;145(2):230–234. doi: 10.1016/0014-5793(82)80173-7. [DOI] [PubMed] [Google Scholar]
  131. Vignais P. M., Colbeau A., Willison J. C., Jouanneau Y. Hydrogenase, nitrogenase, and hydrogen metabolism in the photosynthetic bacteria. Adv Microb Physiol. 1985;26:155–234. doi: 10.1016/s0065-2911(08)60397-5. [DOI] [PubMed] [Google Scholar]
  132. Wakim B. T., Uffen R. L. Membrane association of the carbon monoxide oxidation system in Rhodopseudomonas gelatinosa. J Bacteriol. 1983 Jan;153(1):571–573. doi: 10.1128/jb.153.1.571-573.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Waugh R., Boxer D. H. Pleiotropic hydrogenase mutants of Escherichia coli K12: growth in the presence of nickel can restore hydrogenase activity. Biochimie. 1986 Jan;68(1):157–166. doi: 10.1016/s0300-9084(86)81080-x. [DOI] [PubMed] [Google Scholar]
  134. Webb M. Interrelationships between the utilization of magnesium and the uptake of other bivalent cations by bacteria. Biochim Biophys Acta. 1970 Nov 24;222(2):428–439. doi: 10.1016/0304-4165(70)90133-9. [DOI] [PubMed] [Google Scholar]
  135. Whitman W. B., Wolfe R. S. Presence of nickel in factor F430 from Methanobacterium bryantii. Biochem Biophys Res Commun. 1980 Feb 27;92(4):1196–1201. doi: 10.1016/0006-291x(80)90413-1. [DOI] [PubMed] [Google Scholar]
  136. Willecke K., Gries E. M., Oehr P. Coupled transport of citrate and magnesium in Bacillus subtilis. J Biol Chem. 1973 Feb 10;248(3):807–814. [PubMed] [Google Scholar]
  137. Wong B. L., Shobe C. R. Single-step purification of urease by affinity chromatography. Can J Microbiol. 1974 Apr;20(4):623–630. doi: 10.1139/m74-095. [DOI] [PubMed] [Google Scholar]
  138. Wood H. G., Ragsdale S. W., Pezacka E. A new pathway of autotrophic growth utilizing carbon monoxide or carbon dioxide and hydrogen. Biochem Int. 1986 Mar;12(3):421–440. [PubMed] [Google Scholar]
  139. Wozny M. A., Bryant M. P., Holdeman L. V., Moore W. E. Urease assay and urease-producing species of anaerobes in the bovine rumen and human feces. Appl Environ Microbiol. 1977 May;33(5):1097–1104. doi: 10.1128/aem.33.5.1097-1104.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Wu L. F., Mandrand-Berthelot M. A. Genetic and physiological characterization of new Escherichia coli mutants impaired in hydrogenase activity. Biochimie. 1986 Jan;68(1):167–179. doi: 10.1016/s0300-9084(86)81081-1. [DOI] [PubMed] [Google Scholar]
  141. YAGI T. Enzymic oxidation of carbon monoxide. Biochim Biophys Acta. 1958 Oct;30(1):194–195. doi: 10.1016/0006-3002(58)90263-4. [DOI] [PubMed] [Google Scholar]
  142. Zeikus J. G., Kerby R., Krzycki J. A. Single-carbon chemistry of acetogenic and methanogenic bacteria. Science. 1985 Mar 8;227(4691):1167–1173. doi: 10.1126/science.3919443. [DOI] [PubMed] [Google Scholar]
  143. Zinoni F., Beier A., Pecher A., Wirth R., Böck A. Regulation of the synthesis of hydrogenase (formate hydrogen-lyase linked) of E. coli. Arch Microbiol. 1984 Nov;139(4):299–304. doi: 10.1007/BF00408370. [DOI] [PubMed] [Google Scholar]
  144. Zorin N. A. Redox properties and active center of phototrophic bacteria hydrogenases. Biochimie. 1986 Jan;68(1):97–101. doi: 10.1016/s0300-9084(86)81074-4. [DOI] [PubMed] [Google Scholar]
  145. van Wyk L., Steyn P. L. Ureolytic bacteria in sheep rumen. J Gen Microbiol. 1975 Dec;91(2):225–232. doi: 10.1099/00221287-91-2-225. [DOI] [PubMed] [Google Scholar]
  146. van der Zwaan J. W., Albracht S. P., Fontijn R. D., Slater E. C. Monovalent nickel in hydrogenase from Chromatium vinosum. Light sensitivity and evidence for direct interaction with hydrogen. FEBS Lett. 1985 Jan 7;179(2):271–277. doi: 10.1016/0014-5793(85)80533-0. [DOI] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES