Full text
PDF![274](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/a67f87473dbc/microrev00045-0128.png)
![275](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/9b7638c1516c/microrev00045-0129.png)
![276](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/824d7912870b/microrev00045-0130.png)
![277](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/e866e21673d4/microrev00045-0131.png)
![278](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/92e69040e0c1/microrev00045-0132.png)
![279](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/780ae297b574/microrev00045-0133.png)
![280](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/480fc293109a/microrev00045-0134.png)
![281](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/659e1a0440fb/microrev00045-0135.png)
![282](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/347049058056/microrev00045-0136.png)
![283](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/001ec489d97c/microrev00045-0137.png)
![284](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/2cdd5fcda3a4/microrev00045-0138.png)
![285](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/ac12c90e5d00/microrev00045-0139.png)
![286](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/3b20079f2645/microrev00045-0140.png)
![287](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/512313e07c8f/microrev00045-0141.png)
![288](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/8c2dead4c651/microrev00045-0142.png)
![289](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/d84f6da3e269/microrev00045-0143.png)
![290](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/e6e9e02d924a/microrev00045-0144.png)
![291](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/60b9d9a00523/microrev00045-0145.png)
![292](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/2ae43cee0606/microrev00045-0146.png)
![293](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/b717eabfc57e/microrev00045-0147.png)
![294](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/5b598b787dde/microrev00045-0148.png)
![295](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a14/373139/b4da6806c2ce/microrev00045-0149.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen C. M., Jr Biosynthesis of echinulin. Isoprenylation of cyclo-L-alanyl-L-tryptophanyl. Biochemistry. 1972 May 23;11(11):2154–2160. doi: 10.1021/bi00761a023. [DOI] [PubMed] [Google Scholar]
- Allen J. E., Forney F. W., Markovetz A. J. Microbial subterminal oxidation of alkanes and alk-1-enes. Lipids. 1971 Jul;6(7):448–452. doi: 10.1007/BF02531227. [DOI] [PubMed] [Google Scholar]
- Anderson M. S., Dutton M. F. Biosynthesis of versicolorin A. Appl Environ Microbiol. 1980 Oct;40(4):706–709. doi: 10.1128/aem.40.4.706-709.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson M. S., Dutton M. F. The use of cell free extracts derived from fungal protoplasts in the study of aflatoxin biosynthesis. Experientia. 1979 Jan 15;35(1):21–22. doi: 10.1007/BF01917850. [DOI] [PubMed] [Google Scholar]
- Bennett J. W., Christensen S. B. New perspectives on aflatoxin biosynthesis. Adv Appl Microbiol. 1983;29:53–92. doi: 10.1016/s0065-2164(08)70354-x. [DOI] [PubMed] [Google Scholar]
- Bennett J. W., Lee L. S., Shoss S. M., Boudreaux G. H. Identification of averantin as an aflatoxin B1 precursor: placement in the biosynthetic pathway. Appl Environ Microbiol. 1980 Apr;39(4):835–839. doi: 10.1128/aem.39.4.835-839.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhatnagar R. K., Ahmad S., Kohli K. K., Mukerji K. G., Venkitasubramanian T. A. Induction of polysubstrate monooxygenase and aflatoxin production by phenobarbitone in Aspergillus parasiticus NRRL 3240. Biochem Biophys Res Commun. 1982 Feb 26;104(4):1287–1292. doi: 10.1016/0006-291x(82)91389-4. [DOI] [PubMed] [Google Scholar]
- Bhatnagar R. K., Ahmad S., Mukerji K. G., Subramanian T. A. Pyridine nucleotides and redox state regulation of aflatoxin biosynthesis in Aspergillus parasiticus NRRL 3240. J Appl Bacteriol. 1986 Feb;60(2):135–141. doi: 10.1111/j.1365-2672.1986.tb03370.x. [DOI] [PubMed] [Google Scholar]
- Bhatnagar R. K., Ahmad S., Mukerji K. G., Venkitasubramanian T. A. Nitrogen metabolism in Aspergillus parasiticus NRRL 3240 and A. flavus NRRL 3537 in relation to aflatoxin production. J Appl Bacteriol. 1986 Mar;60(3):203–211. doi: 10.1111/j.1365-2672.1986.tb01074.x. [DOI] [PubMed] [Google Scholar]
- Biollaz M., Büchi G., Milne G. The biosynthesis of the aflatoxins. J Am Chem Soc. 1970 Feb 25;92(4):1035–1043. doi: 10.1021/ja00707a050. [DOI] [PubMed] [Google Scholar]
- Birch A. J. Biosynthesis of polyketides and related compounds. Science. 1967 Apr 14;156(3772):202–206. doi: 10.1126/science.156.3772.202. [DOI] [PubMed] [Google Scholar]
- Blumberg W. E. Enzymic modification of environmental intoxicants: the role of cytochrome P-450. Q Rev Biophys. 1978 Nov;11(4):481–542. doi: 10.1017/s0033583500005655. [DOI] [PubMed] [Google Scholar]
- Boyd D. R., Campbell R. M., Craig H. C., Watson C. G., Daly J. W., Jerina D. M. Mechanism of aromatic hydroxylation in fungi. Evidence for the formation of arene oxides. J Chem Soc Perkin 1. 1976;(22):2438–2443. doi: 10.1039/p19760002438. [DOI] [PubMed] [Google Scholar]
- Breskvar K., Hudnik-Plevnik T. A possible role of cytochrome P-450 in hydroxylation of progesterone by Rhizopus nigricans. Biochem Biophys Res Commun. 1977 Feb 7;74(3):1192–1198. doi: 10.1016/0006-291x(77)91644-8. [DOI] [PubMed] [Google Scholar]
- Buchanan R. L., Lewis D. F. Regulation of aflatoxin biosynthesis: effect of glucose on activities of various glycolytic enzymes. Appl Environ Microbiol. 1984 Aug;48(2):306–310. doi: 10.1128/aem.48.2.306-310.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cain R. B., Bilton R. F., Darrah J. A. The metabolism of aromatic acids by micro-organisms. Metabolic pathways in the fungi. Biochem J. 1968 Aug;108(5):797–828. doi: 10.1042/bj1080797. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell I. M. Secondary metabolism and microbial physiology. Adv Microb Physiol. 1984;25:1–60. doi: 10.1016/s0065-2911(08)60290-8. [DOI] [PubMed] [Google Scholar]
- Carlström K. Transformation of steroids by cell-free preparations of Penicillium lilacinum NRRL 895. V. Properties of 20-oxopregnane side chain cleavage and 20(alpha+beta)-oxidoreductase activities. Acta Chem Scand B. 1974;28(8):832–840. doi: 10.3891/acta.chem.scand.28b-0832. [DOI] [PubMed] [Google Scholar]
- Cerniglia C. E., Mahaffey W., Gibson D. T. Fungal oxidation of benzo[a]pyrene: formation of (-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by Cunninghamella elegans. Biochem Biophys Res Commun. 1980 May 14;94(1):226–232. doi: 10.1016/s0006-291x(80)80210-5. [DOI] [PubMed] [Google Scholar]
- Chen P. N., Kingston D. G., Vercellotti J. R. Reduction of sterigmatocystin and versicolorin A hemiacetals with sodium borohydride. J Org Chem. 1977 Oct 28;42(22):3599–3605. doi: 10.1021/jo00442a034. [DOI] [PubMed] [Google Scholar]
- Cleveland T. E., Lax A. R., Lee L. S., Bhatnagar D. Appearance of enzyme activities catalyzing conversion of sterigmatocystin to aflatoxin B1 in late-growth-phase Aspergillus parasiticus cultures. Appl Environ Microbiol. 1987 Jul;53(7):1711–1713. doi: 10.1128/aem.53.7.1711-1713.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curtis R. F., Hassall C. H., Parry D. R. The biosynthesis of phenols. XXIV. The conversion of the anthraquinone question into the benzophenone, sulochrin, in cultures of Aspergillus terreus. J Chem Soc Perkin 1. 1972;2:240–244. doi: 10.1039/p19720000240. [DOI] [PubMed] [Google Scholar]
- Davis N. D., Diener U. L., Agnihotri V. P. Production of aflatoxins B1 and G1 in chemically defined medium. Mycopathol Mycol Appl. 1967 Apr 28;31(3):251–256. doi: 10.1007/BF02053422. [DOI] [PubMed] [Google Scholar]
- Davis N. D., Diener U. L., Eldridge D. W. Production of aflatoxins B1 and G1 by Aspergillus flavus in a semisynthetic medium. Appl Microbiol. 1966 May;14(3):378–380. doi: 10.1128/am.14.3.378-380.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Detroy R. W., Hesseltine C. W. Aflatoxicol: structure of a new transformation product of aflatoxin B 1. Can J Biochem. 1970 Jul;48(7):830–832. doi: 10.1139/o70-130. [DOI] [PubMed] [Google Scholar]
- Detroy R. W., Hesseltine C. W. Transformation of aflatoxin B1 by steroid-hydroxylating fungi. Can J Microbiol. 1969 Jun;15(6):495–500. doi: 10.1139/m69-086. [DOI] [PubMed] [Google Scholar]
- Dimroth P., Ringelmann E., Lynen F. 6-Methylsalicylic acid synthetase from Penicillium patulum. Some catalytic properties of the enzyme and its relation to fatty acid synthetase. Eur J Biochem. 1976 Sep 15;68(2):591–596. doi: 10.1111/j.1432-1033.1976.tb10847.x. [DOI] [PubMed] [Google Scholar]
- Dimroth P., Walter H., Lynen F. Biosynthese von 6-Methylsalicylsäure. Eur J Biochem. 1970 Mar 1;13(1):98–110. doi: 10.1111/j.1432-1033.1970.tb00904.x. [DOI] [PubMed] [Google Scholar]
- Drew S. W., Demain A. L. Effect of primary metabolites on secondary metabolism. Annu Rev Microbiol. 1977;31:343–356. doi: 10.1146/annurev.mi.31.100177.002015. [DOI] [PubMed] [Google Scholar]
- Dunn J. J., Lee L. S., Ciegler A. Mutagenicity and toxicity of aflatoxin precursors. Environ Mutagen. 1982;4(1):19–26. doi: 10.1002/em.2860040104. [DOI] [PubMed] [Google Scholar]
- Dutton M. F., Anderson M. S. Role of versicolorin A and its derivatives in aflatoxin biosynthesis. Appl Environ Microbiol. 1982 Mar;43(3):548–551. doi: 10.1128/aem.43.3.548-551.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dutton M. F., Ehrlich K., Bennett J. W. Biosynthetic relationship among aflatoxins B1, B2, M1, and M2. Appl Environ Microbiol. 1985 Jun;49(6):1392–1395. doi: 10.1128/aem.49.6.1392-1395.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dutton M. F., Heathcote J. G. The structure, biochemical properties and origin of the aflatoxins B2a and G2a. Chem Ind. 1968 Mar 30;13:418–421. [PubMed] [Google Scholar]
- Ferris J. P., Fasco M. J., Stylianopoulou F. L., Jerina D. M., Daly J. W., Jeffrey A. M. Monooxygenase activity in Cunninghamella bainieri: evidence for a fungal system similar to liver microsomes. Arch Biochem Biophys. 1973 May;156(1):97–103. doi: 10.1016/0003-9861(73)90345-7. [DOI] [PubMed] [Google Scholar]
- Ferris J. P., MacDonald L. H., Patrie M. A., Martin M. A. Aryl hydrocarbon hydroxylase activity in the fungus Cunninghamella bainieri: evidence for the presence of cytochrome P-450. Arch Biochem Biophys. 1976 Aug;175(2):443–452. doi: 10.1016/0003-9861(76)90532-4. [DOI] [PubMed] [Google Scholar]
- Fitzell D. L., Singh R., Hsieh D. P., Motell E. L. Nuclear magnetic resonance identification of versiconal hemiacetal acetate as an intermediate in aflatoxin biosynthesis. J Agric Food Chem. 1977 Sep-Oct;25(5):1193–1197. doi: 10.1021/jf60213a024. [DOI] [PubMed] [Google Scholar]
- Forrester P. I., Gaucher G. M. m-Hydroxybenzyl alcohol dehydrogenase from Penicillium urticae. Biochemistry. 1972 Mar 14;11(6):1108–1114. doi: 10.1021/bi00756a026. [DOI] [PubMed] [Google Scholar]
- Ganapathy K., Khanchandani K. S., Bhattacharyya P. K. Microbiological transformations of terpenes. VII. Further studies on the mechanism of fungal oxygenation reactions with the aid of model substrates. Indian J Biochem. 1966 Jun;3(2):66–70. [PubMed] [Google Scholar]
- Gatenbeck S., Eriksson P. O., Hansson Y. Cell-free C-methylation in relation to aromatic biosynthesis. Acta Chem Scand. 1969;23(2):699–701. doi: 10.3891/acta.chem.scand.23-0699. [DOI] [PubMed] [Google Scholar]
- Gaucher G. M., Shepherd M. G. Isolation of orsellinic acid synthase. Biochem Biophys Res Commun. 1968 Aug 21;32(4):664–671. doi: 10.1016/0006-291x(68)90290-8. [DOI] [PubMed] [Google Scholar]
- Ghosh D., Samanta T. B. 11 alpha-Hydroxylation of progesterone by cell free preparation of Aspergillus ochraceus TS. J Steroid Biochem. 1981 Oct;14(10):1063–1067. doi: 10.1016/0022-4731(81)90217-x. [DOI] [PubMed] [Google Scholar]
- Grootwassink J. W., Gaucher G. M. De novo biosynthesis of secondary metabolism enzymes in homogeneous cultures of Penicillium urticae. J Bacteriol. 1980 Feb;141(2):443–455. doi: 10.1128/jb.141.2.443-455.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guengerich F. P., Snyder J. J., Broquist H. P. Biosynthesis of slaframine, (1S,6S,8aS)-1-acetoxy-6-aminooctahydroindolizine, a parasympathomimetic alkaloid of fungal origin. I. Pipecolic acid and slaframine biogenesis. Biochemistry. 1973 Oct 9;12(21):4264–4269. doi: 10.1021/bi00745a034. [DOI] [PubMed] [Google Scholar]
- Gupta S. K., Maggon K. K., Venkitasubramanian T. A. Regulation of aflatoxin biosynthesis. 1 Comparative study of mycelial composition and glycolysis in aflatoxigen and nonaflatoxigenic strains. Microbios. 1977;18(71):27–33. [PubMed] [Google Scholar]
- Gupta S. K., Maggon K. K., Venkitasubramanian T. A. Regulation of aflatoxin biosynthesis. 2 Comparative study of tricarboxylic acid cycle in aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavus. Microbios. 1977;19(75):7–15. [PubMed] [Google Scholar]
- HIGGINS E. S. Nitroaryl reductase of Aspergillus niger. Enzymologia. 1961 Jun 30;23:176–184. [PubMed] [Google Scholar]
- Hancock W. W., Atkins R. C. Immunohistological studies with monoclonal antibodies. Methods Enzymol. 1986;121:828–848. doi: 10.1016/0076-6879(86)21080-0. [DOI] [PubMed] [Google Scholar]
- Heinstein P. F., Lee S. I., Floss H. G. Isolation of dimethylallylpyrophosphate: tryptophan dimethylallyl transferase from the rgot fungus (Claviceps spec.). Biochem Biophys Res Commun. 1971 Sep;44(5):1244–1251. doi: 10.1016/s0006-291x(71)80219-x. [DOI] [PubMed] [Google Scholar]
- Hesseltine C. W., Sorenson W. G., Smith M. Taxonomic studies of the aflatoxin-producing strains in the aspergillus flavus group. Mycologia. 1970 Jan-Feb;62(1):123–132. [PubMed] [Google Scholar]
- Hollander I. J., Shen Y. Q., Heim J., Demain A. L., Wolfe S. A pure enzyme catalyzing penicillin biosynthesis. Science. 1984 May 11;224(4649):610–612. doi: 10.1126/science.6546810. [DOI] [PubMed] [Google Scholar]
- Hsieh D. P., Lin M. T., Yao R. C. Conversion of sterigmatocystin to aflatoxin B 1 by Aspergillus parasiticus. Biochem Biophys Res Commun. 1973 Jun 8;52(3):992–997. doi: 10.1016/0006-291x(73)91035-8. [DOI] [PubMed] [Google Scholar]
- Hsieh D. P., Lin M. T., Yao R. C., Singh R. Biosynthesis of aflatoxin. Conversion of norsolorinic acid and other hypothetical intermediates into aflatoxin B1. J Agric Food Chem. 1976 Nov-Dec;24(6):1170–1174. doi: 10.1021/jf60208a018. [DOI] [PubMed] [Google Scholar]
- Itagaki E. Studies on steroid monooxygenase from Cylindrocarpon radicicola ATCC 11011. Purification and characterization. J Biochem. 1986 Mar;99(3):815–824. doi: 10.1093/oxfordjournals.jbchem.a135541. [DOI] [PubMed] [Google Scholar]
- Jayanthi C. R., Madyastha P., Madyastha K. M. Microsomal 11 alpha-hydroxylation of progesterone in Aspergillus ochraceus: Part I: Characterization of the hydroxylase system. Biochem Biophys Res Commun. 1982 Jun 30;106(4):1262–1268. doi: 10.1016/0006-291x(82)91248-7. [DOI] [PubMed] [Google Scholar]
- Jeenah M. S., Dutton M. F. The conversion of sterigmatocystin to O-methylsterigmatocystin and aflatoxin B1 by a cell-free preparation. Biochem Biophys Res Commun. 1983 Nov 15;116(3):1114–1118. doi: 10.1016/s0006-291x(83)80257-5. [DOI] [PubMed] [Google Scholar]
- Kiser R. C., Niehaus W. G., Jr Purification and kinetic characterization of mannitol-1-phosphate dehydrogenase from Aspergillus niger. Arch Biochem Biophys. 1981 Oct 15;211(2):613–621. doi: 10.1016/0003-9861(81)90496-3. [DOI] [PubMed] [Google Scholar]
- Kohsaka M., Demain A. L. Conversion of penicillin N to cephalosporin(s) by cell-free extracts of Cephalosporium acremonium. Biochem Biophys Res Commun. 1976 May 17;70(2):465–473. doi: 10.1016/0006-291x(76)91069-x. [DOI] [PubMed] [Google Scholar]
- Krupinski V. M., Robbers J. E., Floss H. G. Physiological study of ergot: induction of alkaloid synthesis by tryptophan at the enzymatic level. J Bacteriol. 1976 Jan;125(1):158–165. doi: 10.1128/jb.125.1.158-165.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar A. A., Vaidyanathan C. S., Rao N. A. Mechanism of aromatic hydroxylation : the kinetic mechanism & the involvement of superoxide anions in the reaction catalyzed by m-hydroxybenzoate-4-hydroxylase from Aspergillus niger (UBC-814). Indian J Biochem Biophys. 1978 Feb;15(1):5–13. [PubMed] [Google Scholar]
- Lee L. S., Bennett J. W., Cucullu A. F., Ory R. L. Biosynthesis of aflatoxin B1. Conversion of versicolorin A to aflatoxin B1 by Aspergillus parasiticus. J Agric Food Chem. 1976 Nov-Dec;24(6):1167–1170. doi: 10.1021/jf60208a017. [DOI] [PubMed] [Google Scholar]
- Lee L. S., Bennett J. W., Cucullu A. F., Stanley J. B. Synthesis of versicolorin A by a mutant strain of Aspergillus parasiticus deficient in aflatoxin production. J Agric Food Chem. 1975 Nov-Dec;23(6):1132–1134. doi: 10.1021/jf60202a011. [DOI] [PubMed] [Google Scholar]
- Light R. J., Hager L. P. Molecular parameters of 6-methylsalicylic acid synthetase from gel filtration and sucrose density gradient centrifugation. Arch Biochem Biophys. 1968 Apr;125(1):326–333. doi: 10.1016/0003-9861(68)90668-1. [DOI] [PubMed] [Google Scholar]
- Light R. J., Vogel G. 6-Methylsalicylic acid (2,6-cresotic acid) decarboxylase. Methods Enzymol. 1975;43:530–540. doi: 10.1016/0076-6879(75)43115-9. [DOI] [PubMed] [Google Scholar]
- MATELES R. I., ADYE J. C. PRODUCTION OF AFLATOXINS IN SUBMERGED CULTURE. Appl Microbiol. 1965 Mar;13:208–211. doi: 10.1128/am.13.2.208-211.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maggon K. K., Gupta S. K., Venkitasubramanian T. A. Biosynthesis of aflatoxins. Bacteriol Rev. 1977 Dec;41(4):822–855. doi: 10.1128/br.41.4.822-855.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maggon K. K., Venkitasubramanian T. A. Metabolism of aflatoxins B1 and G1 by Aspergillus parasiticus. Experientia. 1973 Oct 15;29(10):1210–1211. doi: 10.1007/BF01935075. [DOI] [PubMed] [Google Scholar]
- Malmström B. G. Enzymology of oxygen. Annu Rev Biochem. 1982;51:21–59. doi: 10.1146/annurev.bi.51.070182.000321. [DOI] [PubMed] [Google Scholar]
- Marsh P. B., Simpson M. E., Trucksess M. W. Effects of trace metals on the production of aflatoxins by Aspergillus parasiticus. Appl Microbiol. 1975 Jul;30(1):52–57. doi: 10.1128/am.30.1.52-57.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin J. F., Demain A. L. Control of antibiotic biosynthesis. Microbiol Rev. 1980 Jun;44(2):230–251. doi: 10.1128/mr.44.2.230-251.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCormick S. P., Bhatnagar D., Lee L. S. Averufanin is an aflatoxin B1 precursor between averantin and averufin in the biosynthetic pathway. Appl Environ Microbiol. 1987 Jan;53(1):14–16. doi: 10.1128/aem.53.1.14-16.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minamikawa T., Jayasankar N. P., Bohm B. A., Taylor I. E., Towers G. H. An inducible hydrolase from Aspergillus niger, acting on carbon-carbon bonds, for phlorrhizin and other C-acylated phenols. Biochem J. 1970 Mar;116(5):889–897. doi: 10.1042/bj1160889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy G., Vogel G., Krippahl G., Lynen F. Patulin biosynthesis: the role of mixed-function oxidases in the hydroxylation of m-cresol. Eur J Biochem. 1974 Nov 15;49(2):443–455. doi: 10.1111/j.1432-1033.1974.tb03849.x. [DOI] [PubMed] [Google Scholar]
- Niehaus W. G., Jr, Dilts R. P., Jr Purification and characterization of glucose-6-phosphate dehydrogenase from Aspergillus parasiticus. Arch Biochem Biophys. 1984 Jan;228(1):113–119. doi: 10.1016/0003-9861(84)90052-3. [DOI] [PubMed] [Google Scholar]
- Niehaus W. G., Jr, Dilts R. P., Jr Purification and characterization of mannitol dehydrogenase from Aspergillus parasiticus. J Bacteriol. 1982 Jul;151(1):243–250. doi: 10.1128/jb.151.1.243-250.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oka T., Simpson F. J. Quercetinase, a dioxygenase containing copper. Biochem Biophys Res Commun. 1971 Apr 2;43(1):1–5. doi: 10.1016/s0006-291x(71)80076-1. [DOI] [PubMed] [Google Scholar]
- PRAIRIE R. L., TALALAY P. Enzymatic formation of testololactone. Biochemistry. 1963 Jan-Feb;2:203–208. doi: 10.1021/bi00901a039. [DOI] [PubMed] [Google Scholar]
- Pachler K. G., Steyn P. S., Vleggaar R., Wessels P. L. Carbon-13 nuclear magnetic resonance assignments and biosynthesis of aflatoxin B1 and sterigmatocystin. J Chem Soc Perkin 1. 1976;(11):1182–1189. doi: 10.1039/p19760001182. [DOI] [PubMed] [Google Scholar]
- Papa K. E. Mutant of Aspergillus flavus producing more aflatoxin B2 than B1. Appl Environ Microbiol. 1977 Jan;33(1):206–206. doi: 10.1128/aem.33.1.206-.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patterson D. S., Roberts B. A. Aflatoxin metabolism in duck-liver homogenates: the relative importance of reversible cyclopentenone reduction and hemiacetal formation. Food Cosmet Toxicol. 1972 Aug;10(4):501–512. doi: 10.1016/s0015-6264(72)80084-1. [DOI] [PubMed] [Google Scholar]
- Payne G. A., Hagler W. M., Jr Effect of specific amino acids on growth and aflatoxin production by Aspergillus parasiticus and Aspergillus flavus in defined media. Appl Environ Microbiol. 1983 Oct;46(4):805–812. doi: 10.1128/aem.46.4.805-812.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rao V. M., Maggon K. K., Venkitasubramanian T. A. Oxidases in Aspergillus parasiticus in relation to aflatoxin biosynthesis. Toxicon. 1980;18(3):279–283. doi: 10.1016/0041-0101(80)90006-9. [DOI] [PubMed] [Google Scholar]
- Reddy T. V., Viswanathan L., Venkitasubramanian T. A. High aflatoxin production on a chemically defined medium. Appl Microbiol. 1971 Sep;22(3):393–396. doi: 10.1128/am.22.3.393-396.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roland I., Froyshov O., Laland S. G. A rapid method for the preparation of the three enzymes of bacitracin synthetase essentially free from other proteins. FEBS Lett. 1977 Dec 1;84(1):22–24. doi: 10.1016/0014-5793(77)81048-x. [DOI] [PubMed] [Google Scholar]
- Scott R. E., Jones A., Gaucher G. M. Manganese and antibiotic biosynthesis. III. The site of manganese control of patulin production in Penicillium urticae. Can J Microbiol. 1986 Mar;32(3):273–279. doi: 10.1139/m86-053. [DOI] [PubMed] [Google Scholar]
- Sekiguchi J., Shimamoto T., Yamada Y., Gaucher G. M. Patulin biosynthesis: enzymatic and nonenzymatic transformations of the mycotoxin (E)-ascladiol. Appl Environ Microbiol. 1983 Jun;45(6):1939–1942. doi: 10.1128/aem.45.6.1939-1942.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shantha T., Murthy V. S. Influence of tricarboxylic acid cycle intermediates and related metabolites on the biosynthesis of aflatoxin by resting cells of Aspergillus flavus. Appl Environ Microbiol. 1981 Nov;42(5):758–761. doi: 10.1128/aem.42.5.758-761.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singh R., Hsieh D. P. Aflatoxin biosynthetic pathway: elucidation by using blocked mutants of Aspergillus parasiticus. Arch Biochem Biophys. 1977 Jan 15;178(1):285–292. doi: 10.1016/0003-9861(77)90193-x. [DOI] [PubMed] [Google Scholar]
- Singh R., Hsieh D. P. Enzymatic conversion of sterigmatocystin into aflatoxin B1 by cell-free extracts of Aspergillus parasiticus. Appl Environ Microbiol. 1976 May;31(5):743–745. doi: 10.1128/aem.31.5.743-745.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith R. V., Rosazza J. P. Microbial models of mammalian metabolism. Aromatic hydroxylation. Arch Biochem Biophys. 1974 Apr 2;161(2):551–558. doi: 10.1016/0003-9861(74)90338-5. [DOI] [PubMed] [Google Scholar]
- Steyn P. S., Vleggaar R. Austocystins. Six novel dihydrofuro (3',2':4,5)furo(3,2-b)xanthenones from Aspergillus ustus. J Chem Soc Perkin 1. 1974;(19):2250–2256. [PubMed] [Google Scholar]
- Stubblefield R. D., Shotwell O. L., Shannon G. M., Weisleder D., Rohwedder W. K. A new metabolite from Aspergillus parasiticus. J Agric Food Chem. 1970 May-Jun;18(3):391–393. doi: 10.1021/jf60169a025. [DOI] [PubMed] [Google Scholar]
- TANENBAUM S. W., BASSETT E. W. Cell-free biosynthesis of the tropolone ring. Biochim Biophys Acta. 1962 May 21;59:524–526. doi: 10.1016/0006-3002(62)90221-4. [DOI] [PubMed] [Google Scholar]
- Tyagi J. S., Venkitasubramanian T. A. The role of glycolysis in aflatoxin biosynthesis. Can J Microbiol. 1981 Dec;27(12):1276–1282. doi: 10.1139/m81-196. [DOI] [PubMed] [Google Scholar]
- Usui S., Beppu H., Hirose K., Tanabe H., Tsubaki T. [A family of spino-cerebellar degeneration with disturbance of ocular movement, choreoathetosis, amyotrophy and dementia--a consideration in clinical features]. No To Shinkei. 1988 Oct;40(10):953–961. [PubMed] [Google Scholar]
- Valcarcel R., Bennett J. W., Vitanza J. Effect of selected inhibitors on growth, pigmentation, and aflatoxin production by Aspergillus parasiticus. Mycopathologia. 1986 Apr;94(1):7–10. doi: 10.1007/BF00437255. [DOI] [PubMed] [Google Scholar]
- Vogel G., Lynen F. 6-Methylsalicylic acid synthetase. Methods Enzymol. 1975;43:520–530. doi: 10.1016/0076-6879(75)43114-7. [DOI] [PubMed] [Google Scholar]
- Wan N. C., Hsieh D. P. Enzymatic formation of the bisfuran structure in aflatoxin biosynthesis. Appl Environ Microbiol. 1980 Jan;39(1):109–112. doi: 10.1128/aem.39.1.109-112.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward A. C., Packter N. M. Relationship between fatty-acid and phenol synthesis in Aspergillus fumigatus. Eur J Biochem. 1974 Jul 15;46(2):323–333. doi: 10.1111/j.1432-1033.1974.tb03624.x. [DOI] [PubMed] [Google Scholar]
- White R. E., Coon M. J. Oxygen activation by cytochrome P-450. Annu Rev Biochem. 1980;49:315–356. doi: 10.1146/annurev.bi.49.070180.001531. [DOI] [PubMed] [Google Scholar]
- Wilson A. C., Miller R. W. Growth temperature-dependent stearoyl coenzyme A desaturase activity of Fusarium oxysporum microsomes. Can J Biochem. 1978 Dec;56(12):1109–1104. doi: 10.1139/o78-174. [DOI] [PubMed] [Google Scholar]
- Yao R. C., Hsieh D. P. Step of dichlorvos inhibition in the pathway of aflatoxin biosynthesis. Appl Microbiol. 1974 Jul;28(1):52–57. doi: 10.1128/am.28.1.52-57.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zamir L. O., Hufford K. D. Precursor recognition by kinetic pulse-labeling in a toxigenic aflatoxin B1-producing strain of Aspergillus. Appl Environ Microbiol. 1981 Jul;42(1):168–173. doi: 10.1128/aem.42.1.168-173.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]