Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1988 Dec;52(4):554–567. doi: 10.1128/mr.52.4.554-567.1988

Turnover of cell walls in microorganisms.

R J Doyle, J Chaloupka, V Vinter
PMCID: PMC373163  PMID: 3070324

Full text

PDF
554

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson A. J., Green R. S., Sturman A. J., Archibald A. R. Cell wall assembly in Bacillus subtilis: location of wall material incorporated during pulsed release of phosphate limitation, its accessibility to bacteriophages and concanavalin A, and its susceptibility to turnover. J Bacteriol. 1978 Dec;136(3):886–899. doi: 10.1128/jb.136.3.886-899.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Archibald A. R. Cell wall assembly in Bacillus subtilis: development of bacteriophage-binding properties as a result of the pulsed incorporation of teichoic acid. J Bacteriol. 1976 Aug;127(2):956–960. doi: 10.1128/jb.127.2.956-960.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Archibald A. R., Coapes H. E. Bacteriophage SP50 as a marker for cell wall growth in Bacillus subtilis. J Bacteriol. 1976 Mar;125(3):1195–1206. doi: 10.1128/jb.125.3.1195-1206.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BATES C. J., PASTERNAK C. A. FURTHER STUDIES ON THE REGULATION OF AMINO SUGAR METABOLISM IN BACILLUS SUBTILIS. Biochem J. 1965 Jul;96:147–154. doi: 10.1042/bj0960147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BATES C. J., PASTERNAK C. A. THE INCORPORATION OF LABELLED AMINO SUGARS BY BACILLUS SUBTILIS. Biochem J. 1965 Jul;96:155–158. doi: 10.1042/bj0960155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bahr G. M., Chedid L. Immunological activities of muramyl peptides. Fed Proc. 1986 Oct;45(11):2541–2544. [PubMed] [Google Scholar]
  7. Barnard M., Holt S. C. Effects of peptidoglycans from periodontal pathogens on selected biological activities of CD-1 murine peritoneal macrophages. Can J Microbiol. 1985 Feb;31(2):161–172. doi: 10.1139/m85-031. [DOI] [PubMed] [Google Scholar]
  8. Beveridge T. J. Ultrastructure, chemistry, and function of the bacterial wall. Int Rev Cytol. 1981;72:229–317. doi: 10.1016/s0074-7696(08)61198-5. [DOI] [PubMed] [Google Scholar]
  9. Blümel P., Uecker W., Giesbrecht P. Zero order kinetics of cell wall turnover in Staphylococcus aureus. Arch Microbiol. 1979 May;121(2):103–110. doi: 10.1007/BF00689972. [DOI] [PubMed] [Google Scholar]
  10. Boothby D., Daneo-Moore L., Higgins M. L., Coyette J., Shockman G. D. Turnover of bacterial cell wall peptidoglycans. J Biol Chem. 1973 Mar 25;248(6):2161–2169. [PubMed] [Google Scholar]
  11. Boschwitz H., Halvorson H. O., Keynan A., Milner Y. Trypsinlike enzymes from dormant and germinated spores of Bacillus cereus T and their possible involvement in germination. J Bacteriol. 1985 Oct;164(1):302–309. doi: 10.1128/jb.164.1.302-309.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Burdett I. D., Higgins M. L. Study of pole assembly in Bacillus subtilis by computer reconstruction of septal growth zones seen in central, longitudinal thin sections of cells. J Bacteriol. 1978 Feb;133(2):959–971. doi: 10.1128/jb.133.2.959-971.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Burman L. G., Park J. T. Molecular model for elongation of the murein sacculus of Escherichia coli. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1844–1848. doi: 10.1073/pnas.81.6.1844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Burman L. G., Raichler J., Park J. T. Evidence for diffuse growth of the cylindrical portion of the Escherichia coli murein sacculus. J Bacteriol. 1983 Sep;155(3):983–988. doi: 10.1128/jb.155.3.983-988.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Burman L. G., Reichler J., Park J. T. Evidence for multisite growth of Escherichia coli murein involving concomitant endopeptidase and transpeptidase activities. J Bacteriol. 1983 Oct;156(1):386–392. doi: 10.1128/jb.156.1.386-392.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. CHALOUPKA J., KRECKOVA P., RIHOVA L. Changes in the character of the cell wall in growth of Bacillus megaterium cultures. Folia Microbiol (Praha) 1962;7:269–274. doi: 10.1007/BF02928656. [DOI] [PubMed] [Google Scholar]
  17. CHALOUPKA J., KRECKOVA P., RIHOVA L. The mucopeptide turnover in the cell walls of growing cultures of Bacillus megaterium KM. Experientia. 1962 Aug 15;18:362–363. doi: 10.1007/BF02172250. [DOI] [PubMed] [Google Scholar]
  18. CHALOUPKA J., RIHOVA L., KRECKOVA P. DEGRADATION AND TURNOVER OF BACTERIAL CELL WALL MUCOPEPTIDES IN GROWING BACTERIA. Folia Microbiol (Praha) 1964 Jan;24:9–15. doi: 10.1007/BF02875894. [DOI] [PubMed] [Google Scholar]
  19. CLARKE J. S., PASTERNAK C. A. The regulation of amino sugar metabolism in Bacillus subtilis. Biochem J. 1962 Jul;84:185–191. doi: 10.1042/bj0840185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Chaloupka J., Krecková P. Characterization of degradation products of the cell wall released during growth and sporulation of Bacillus megaterium. Folia Microbiol (Praha) 1974;19(4):292–300. doi: 10.1007/BF02873221. [DOI] [PubMed] [Google Scholar]
  21. Chaloupka J., Krecková P., Cáslavská J., Strnadová M. Turnover of murein in cellular and filamentous populations of Bacillus megaterium. Folia Microbiol (Praha) 1974;19(4):257–263. doi: 10.1007/BF02873217. [DOI] [PubMed] [Google Scholar]
  22. Chaloupka J., Obdrzálek V., Krecková P., Nesmeyanova M. A., Zalabák V. Protease activity in cells of Bacillus megaterium during derepression. Folia Microbiol (Praha) 1975;20(4):277–288. doi: 10.1007/BF02878109. [DOI] [PubMed] [Google Scholar]
  23. Chaloupka J., Strnadová M. Turnover of murein in a diaminopimelic acid dependent mutant of Escherichia coli. Folia Microbiol (Praha) 1972;17(6):446–455. doi: 10.1007/BF02872729. [DOI] [PubMed] [Google Scholar]
  24. Chaloupka J. Synthesis and degradation of surface structures by growing and non-growing Bacillus megaterium. Folia Microbiol (Praha) 1967;12(3):264–273. doi: 10.1007/BF02868742. [DOI] [PubMed] [Google Scholar]
  25. Chaloupka J., Zalabák V., Babicka J. The effect of physiological conditions on the synthesis of the cell wall and disintegration of Bacillus megaterium. Biotechnol Bioeng Symp. 1974;0(4-2):985–993. [PubMed] [Google Scholar]
  26. Cheung H. Y., Freese E. Monovalent cations enable cell wall turnover of the turnover-deficient lyt-15 mutant of Bacillus subtilis. J Bacteriol. 1985 Mar;161(3):1222–1225. doi: 10.1128/jb.161.3.1222-1225.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Cheung H. Y., Vitković L., Freese E. Rates of peptidoglycan turnover and cell growth of Bacillus subtilis are correlated. J Bacteriol. 1983 Dec;156(3):1099–1106. doi: 10.1128/jb.156.3.1099-1106.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Chung K. L. Thickened cell walls of Bacillus cereus grown in the presence of chloramphenicol: their fate during cell growth. Can J Microbiol. 1971 Dec;17(12):1561–1565. doi: 10.1139/m71-249. [DOI] [PubMed] [Google Scholar]
  29. Clarke-Sturman A. J., Archibald A. R. Cell wall turnover in phosphate and potassium limited chemostat cultures of Bacillus subtilis W23. Arch Microbiol. 1982 Jun;131(4):375–379. doi: 10.1007/BF00411189. [DOI] [PubMed] [Google Scholar]
  30. Cooper S. Rate and topography of cell wall synthesis during the division cycle of Salmonella typhimurium. J Bacteriol. 1988 Jan;170(1):422–430. doi: 10.1128/jb.170.1.422-430.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. DAWES C., JENKINS G. N., HARDWICK J. L., LEACH S. A. THE RELATION BETWEEN THE FLUORIDE CONCENTRATIONS IN THE DENTAL PLAQUE AND IN DRINKING WATER. Br Dent J. 1965 Aug 17;119:164–167. [PubMed] [Google Scholar]
  32. Daneo-Moore L., Coyette J., Sayare M., Boothby D., Shockman G. D. Turnover of the cell wall peptidoglycan of Lactobacillus acidophilus. The presence of a fraction immune to turnover. J Biol Chem. 1975 Feb 25;250(4):1348–1353. [PubMed] [Google Scholar]
  33. De Boer W. R., Kruyssen F. J., Wouters J. T. Cell wall turnover in batch and chemostat cultures of Bacillus subtilis. J Bacteriol. 1981 Jan;145(1):50–60. doi: 10.1128/jb.145.1.50-60.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Dickens B. F., Ingram L. O. Peptidoglycan synthesis and turnover in cell division mutants of Agmenellum. J Bacteriol. 1976 Jul;127(1):334–340. doi: 10.1128/jb.127.1.334-340.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Doyle R. J., Koch A. L. The functions of autolysins in the growth and division of Bacillus subtilis. Crit Rev Microbiol. 1987;15(2):169–222. doi: 10.3109/10408418709104457. [DOI] [PubMed] [Google Scholar]
  36. Doyle R. J., Motley M. A., Carstens P. H. Turnover of cell wall in Listeria monocytogenes. Carbohydr Res. 1982 Jun 1;104(1):147–152. doi: 10.1016/s0008-6215(00)82227-2. [DOI] [PubMed] [Google Scholar]
  37. Fan D. P., Beckman B. E., Beckman M. M. Cell wall turnover at the hemispherical caps of Bacillus subtilis. J Bacteriol. 1974 Mar;117(3):1330–1334. doi: 10.1128/jb.117.3.1330-1334.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Fan D. P., Beckman B. E., Gardner-Eckstrom H. L. Mode of cell wall synthesis in gram-positive bacilli. J Bacteriol. 1975 Sep;123(3):1157–1162. doi: 10.1128/jb.123.3.1157-1162.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Fein J. E. Helical growth and macrofiber formation of Bacillus subtilis 168 autolytic enzyme deficient mutants. Can J Microbiol. 1980 Mar;26(3):330–337. doi: 10.1139/m80-054. [DOI] [PubMed] [Google Scholar]
  40. Fein J. E., Rogers H. J. Autolytic enzyme-deficient mutants of Bacillus subtilis 168. J Bacteriol. 1976 Sep;127(3):1427–1442. doi: 10.1128/jb.127.3.1427-1442.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Foster S. J., Johnstone K. Purification and properties of a germination-specific cortex-lytic enzyme from spores of Bacillus megaterium KM. Biochem J. 1987 Mar 1;242(2):573–579. doi: 10.1042/bj2420573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Freese E. Sporulation of bacilli, a model of cellular differentiation. Curr Top Dev Biol. 1972;7:85–124. doi: 10.1016/s0070-2153(08)60070-8. [DOI] [PubMed] [Google Scholar]
  43. Frehel C., Ryter A. Peptidoglycan turnover during growth of a Bacillus megaterium Dap- Lys- mutant. J Bacteriol. 1979 Feb;137(2):947–955. doi: 10.1128/jb.137.2.947-955.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Fréhel C., de Chastellier C., Ryter A. Peptidoglycan turnover during growth recovery after chloramphenicol treatment in a Dap-Lys-mutant of Bacillus megaterium. Can J Microbiol. 1980 Mar;26(3):308–317. doi: 10.1139/m80-051. [DOI] [PubMed] [Google Scholar]
  45. Giesbrecht P., Labischinski H., Wecke J. A special morphogenetic wall defect and the subsequent activity of "murosomes" as the very reason for penicillin-induced bacteriolysis in staphylococci. Arch Microbiol. 1985 May;141(4):315–324. doi: 10.1007/BF00428843. [DOI] [PubMed] [Google Scholar]
  46. Giesbrecht P., Wecke J., Reinicke B. On the morphogenesis of the cell wall of staphylococci. Int Rev Cytol. 1976;44:225–318. doi: 10.1016/s0074-7696(08)61651-4. [DOI] [PubMed] [Google Scholar]
  47. Gilpin R. W., Chatterjee A. N., Young F. E. Autolysis of microbial cells: salt activation of autolytic enzymes in a mutant of Staphylococcus aureus. J Bacteriol. 1972 Jul;111(1):272–283. doi: 10.1128/jb.111.1.272-283.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Gilpin R. W., Narrod S., Wong W., Young F. E., Chatterjee A. N. Autolysis in Staphylococcus aureus: preferential release of old cell walls. J Bacteriol. 1974 Sep;119(3):672–676. doi: 10.1128/jb.119.3.672-676.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Glaser L., Lindsay B. Relation between cell wall turnover and cell growth in Bacillus subtilis. J Bacteriol. 1977 May;130(2):610–619. doi: 10.1128/jb.130.2.610-619.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Gmeiner J., Kroll H. P. Murein biosynthesis and O-acetylation of N-acetylmuramic acid during the cell-division cycle of Proteus mirabilis. Eur J Biochem. 1981 Jun;117(1):171–177. doi: 10.1111/j.1432-1033.1981.tb06317.x. [DOI] [PubMed] [Google Scholar]
  51. Gmeiner J., Kroll H. P. N-acetylglucosaminyl-N-acetylmuramyl-dipeptide, a novel murein building block formed during the cell division cycle of Proteus mirabilis. FEBS Lett. 1981 Jun 29;129(1):142–144. doi: 10.1016/0014-5793(81)80776-4. [DOI] [PubMed] [Google Scholar]
  52. Goodell E. W., Fazio M., Tomasz A. Effect of benzylpenicillin on the synthesis and structure of the cell envelope of Neisseria gonorrhoeae. Antimicrob Agents Chemother. 1978 Mar;13(3):514–526. doi: 10.1128/aac.13.3.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Goodell E. W., Higgins C. F. Uptake of cell wall peptides by Salmonella typhimurium and Escherichia coli. J Bacteriol. 1987 Aug;169(8):3861–3865. doi: 10.1128/jb.169.8.3861-3865.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Goodell E. W. Recycling of murein by Escherichia coli. J Bacteriol. 1985 Jul;163(1):305–310. doi: 10.1128/jb.163.1.305-310.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Goodell E. W., Schwarz U. Release of cell wall peptides into culture medium by exponentially growing Escherichia coli. J Bacteriol. 1985 Apr;162(1):391–397. doi: 10.1128/jb.162.1.391-397.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Greenway D. L., Perkins H. R. Turnover of the cell wall peptidoglycan during growth of Neisseria gonorrhoeae and Escherichia coli. Relative stability of newly synthesized material. J Gen Microbiol. 1985 Feb;131(2):253–263. doi: 10.1099/00221287-131-2-253. [DOI] [PubMed] [Google Scholar]
  57. Guinand M., Vacheron M. J., Michel G. Relation between inhibition of Bacilli sporulation and synthesis of lytic enzymes. Biochem Biophys Res Commun. 1978 Jan 30;80(2):429–434. doi: 10.1016/0006-291x(78)90695-2. [DOI] [PubMed] [Google Scholar]
  58. Guinand M., Vacheron M. J., Michel G., Tipper D. J. Location of peptidoglycan lytic enzymes in Bacillus sphaericus. J Bacteriol. 1979 Apr;138(1):126–132. doi: 10.1128/jb.138.1.126-132.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Hebeler B. H., Young F. E. Autolysis of Neisseria gonorrhoeae. J Bacteriol. 1975 May;122(2):385–392. doi: 10.1128/jb.122.2.385-392.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Hebeler B. H., Young F. E. Chemical composition and turnover of peptidoglycan in Neisseria gonorrhoeae. J Bacteriol. 1976 Jun;126(3):1180–1185. doi: 10.1128/jb.126.3.1180-1185.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Hebeler B. H., Young F. E. Mechanism of autolysis of Neisseria gonorrhoeae. J Bacteriol. 1976 Jun;126(3):1186–1193. doi: 10.1128/jb.126.3.1186-1193.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Higgins M. L., Pooley H. M., Shockman G. D. Site of initiation of cellular autolysis in Streptococcus faecalis as seen by electron microscopy. J Bacteriol. 1970 Aug;103(2):504–512. doi: 10.1128/jb.103.2.504-512.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Higgins M. L., Shockman G. D. Early changes in the ultrastructure of Streptococcus faecalis after amino acid starvation. J Bacteriol. 1970 Jul;103(1):244–253. doi: 10.1128/jb.103.1.244-253.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Higgins M. L., Shockman G. D. Model for cell wall growth of Streptococcus faecalis. J Bacteriol. 1970 Feb;101(2):643–648. doi: 10.1128/jb.101.2.643-648.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Hisatsune K., DeCourcy S. J., Jr, Mudd S. The immunologically active cell wall peptide polymer of Staphylococcus aureus. Biochemistry. 1967 Feb;6(2):595–603. doi: 10.1021/bi00854a030. [DOI] [PubMed] [Google Scholar]
  66. Hitchins A. D., Slepecky R. A. Antibiotic inhibition of the septation stage in sporulation of Bacillus megaterium. J Bacteriol. 1969 Mar;97(3):1513–1515. doi: 10.1128/jb.97.3.1513-1515.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Hobot J. A., Carlemalm E., Villiger W., Kellenberger E. Periplasmic gel: new concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods. J Bacteriol. 1984 Oct;160(1):143–152. doi: 10.1128/jb.160.1.143-152.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Hsieh L. K., Vary J. C. Germination and peptidoglycan solubilization in Bacillus megaterium spores. J Bacteriol. 1975 Aug;123(2):463–470. doi: 10.1128/jb.123.2.463-470.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Johnstone K., Simion F. A., Ellar D. J. Teichoic acid and lipid metabolism during sporulation of Bacillus megaterium KM. Biochem J. 1982 Feb 15;202(2):459–467. doi: 10.1042/bj2020459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Jolliffe L. K., Doyle R. J., Streips U. N. Extracellular proteases increase tolerance of Bacillus subtilis to nafcillin. Antimicrob Agents Chemother. 1982 Jul;22(1):83–89. doi: 10.1128/aac.22.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Jolliffe L. K., Doyle R. J., Streips U. N. Extracellular proteases modify cell wall turnover in Bacillus subtilis. J Bacteriol. 1980 Mar;141(3):1199–1208. doi: 10.1128/jb.141.3.1199-1208.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Jolliffe L. K., Doyle R. J., Streips U. N. The energized membrane and cellular autolysis in Bacillus subtilis. Cell. 1981 Sep;25(3):753–763. doi: 10.1016/0092-8674(81)90183-5. [DOI] [PubMed] [Google Scholar]
  73. Jolliffe L. K., Langemeier S. O., Doyle R. J. Hydrogen ion control of autolysin-dependent functions in Bacillus subtilis. Microbios. 1983;38(153-154):187–194. [PubMed] [Google Scholar]
  74. Kashket S., Kashket E. R. Dissipation of the proton motive force in oral streptococci by fluoride. Infect Immun. 1985 Apr;48(1):19–22. doi: 10.1128/iai.48.1.19-22.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Kingan S. L., Ensign J. C. Isolation and characterization of three autolytic enzymes associated with sporulation of Bacillus thuringiensis var. thuringiensis. J Bacteriol. 1968 Sep;96(3):629–638. doi: 10.1128/jb.96.3.629-638.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Koch A. L., Burdett I. D. Normal pole formation during total inhibition of wall synthesis of Bacillus subtilis. J Gen Microbiol. 1986 Dec;132(12):3441–3449. doi: 10.1099/00221287-132-12-3441. [DOI] [PubMed] [Google Scholar]
  77. Koch A. L., Doyle R. J. Inside-to-outside growth and turnover of the wall of gram-positive rods. J Theor Biol. 1985 Nov 7;117(1):137–157. doi: 10.1016/s0022-5193(85)80169-7. [DOI] [PubMed] [Google Scholar]
  78. Koch A. L., Higgins M. L., Doyle R. J. Surface tension-like forces determine bacterial shapes: Streptococcus faecium. J Gen Microbiol. 1981 Mar;123(1):151–161. doi: 10.1099/00221287-123-1-151. [DOI] [PubMed] [Google Scholar]
  79. Koch A. L., Higgins M. L., Doyle R. J. The role of surface stress in the morphology of microbes. J Gen Microbiol. 1982 May;128(5):927–945. doi: 10.1099/00221287-128-5-927. [DOI] [PubMed] [Google Scholar]
  80. Koch A. L., Kirchner G., Doyle R. J., Burdett I. D. How does a Bacillus split its septum right down the middle? Ann Inst Pasteur Microbiol. 1985 Jan-Feb;136A(1):91–98. doi: 10.1016/s0769-2609(85)80028-4. [DOI] [PubMed] [Google Scholar]
  81. Koch A. L. The surface stress theory of microbial morphogenesis. Adv Microb Physiol. 1983;24:301–366. doi: 10.1016/s0065-2911(08)60388-4. [DOI] [PubMed] [Google Scholar]
  82. Kottel R., White D. Autolytic activity associated with myxospore formation in Myxococcus xanthus. Arch Mikrobiol. 1974 Mar 1;95(1):91–95. [PubMed] [Google Scholar]
  83. Kruyssen F. J., de Boer W. R., Wouters J. T. Cell wall metabolism in Bacillus subtilis subsp. niger: effects of changes in phosphate supply to the culture. J Bacteriol. 1981 Jun;146(3):867–876. doi: 10.1128/jb.146.3.867-876.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Krátký Z., Biely P., Bauer S. Wall mannan of Saccharomyces cerevisiae. Metabolic stability and release into growth medium. Biochim Biophys Acta. 1975 Sep 8;404(1):1–6. doi: 10.1016/0304-4165(75)90141-5. [DOI] [PubMed] [Google Scholar]
  85. Lesher R. J., Bender G. R., Marquis R. E. Bacteriolytic action of fluoride ions. Antimicrob Agents Chemother. 1977 Sep;12(3):339–345. doi: 10.1128/aac.12.3.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Leutgeb W., Schwarz U. Zur Biosynthese des formgebenden Elements der Bakterienzellwand. I. Abbau des Mureins als erster Schritt beim Wachstum des Sacculus. Z Naturforsch B. 1967 May;22(5):545–549. [PubMed] [Google Scholar]
  87. Mauck J., Chan L., Glaser L. Turnover of the cell wall of Gram-positive bacteria. J Biol Chem. 1971 Mar 25;246(6):1820–1827. [PubMed] [Google Scholar]
  88. Mauck J., Glaser L. On the mode of in vivo assembly of the cell wall of Bacillus subtilis. J Biol Chem. 1972 Feb 25;247(4):1180–1187. [PubMed] [Google Scholar]
  89. Mauck J., Glaser L. Turnover of the cell wall of Bacillus subtilis W-23 during logarithmic growth. Biochem Biophys Res Commun. 1970 May 22;39(4):699–706. doi: 10.1016/0006-291x(70)90261-5. [DOI] [PubMed] [Google Scholar]
  90. Meyer P. D., Wouters J. T. Lipoteichoic acid from Bacillus subtilis subsp. niger WM: isolation and effects on cell wall autolysis and turnover. J Bacteriol. 1987 Mar;169(3):973–980. doi: 10.1128/jb.169.3.973-980.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Mobley H. L., Koch A. L., Doyle R. J., Streips U. N. Insertion and fate of the cell wall in Bacillus subtilis. J Bacteriol. 1984 Apr;158(1):169–179. doi: 10.1128/jb.158.1.169-179.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. PARK J. T., HANCOCK R. A fractionation procedure for studies of the synthesis of cell-wall mucopeptide and of other polymers in cells of Staphylococcus aureus. J Gen Microbiol. 1960 Feb;22:249–258. doi: 10.1099/00221287-22-1-249. [DOI] [PubMed] [Google Scholar]
  93. Pastor F. I., Herrero E., Sentandreu R. Metabolism of Saccharomyces cerevisiae envelope mannoproteins. Arch Microbiol. 1982 Aug;132(2):144–148. doi: 10.1007/BF00508720. [DOI] [PubMed] [Google Scholar]
  94. Pearce S. M., Fitz-James P. C. Sporulation of a cortexless mutant of a variant of Bacillus cereus. J Bacteriol. 1971 Jan;105(1):339–348. doi: 10.1128/jb.105.1.339-348.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Pitel D. W., Gilvarg C. Mucopeptide metabolism during growth and sporulation in Bacillus megaterium. J Biol Chem. 1970 Dec 25;245(24):6711–6717. [PubMed] [Google Scholar]
  96. Pitel D. W., Gilvarg C. Timing of mucopeptide and phospholipid synthesis in sporulating Bacillus megaterium. J Biol Chem. 1971 Jun 10;246(11):3720–3724. [PubMed] [Google Scholar]
  97. Pooley H. M. Layered distribution, according to age, within the cell wall of bacillus subtilis. J Bacteriol. 1976 Mar;125(3):1139–1147. doi: 10.1128/jb.125.3.1139-1147.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Pooley H. M. Turnover and spreading of old wall during surface growth of Bacillus subtilis. J Bacteriol. 1976 Mar;125(3):1127–1138. doi: 10.1128/jb.125.3.1127-1138.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Reinicke B., Blümel P., Labischinski H., Giesbrecht P. Neither an enhancement of autolytic wall degradation nor an inhibition of the incorporation of cell wall material are pre-requisites for penicillin-induced bacteriolysis in staphylococci. Arch Microbiol. 1985 May;141(4):309–314. doi: 10.1007/BF00428842. [DOI] [PubMed] [Google Scholar]
  100. Rogers H. J., Pooley H. M., Thurman P. F., Taylor C. Wall and membrane growth in bacilli and their mutants. Ann Microbiol (Paris) 1974 Sep;125 B(2):135–147. [PubMed] [Google Scholar]
  101. Rogers H. J. The structure and biosynthesis of the components of the cell walls of gram-positive bacteria. Folia Microbiol (Praha) 1967;12(3):191–200. doi: 10.1007/BF02868731. [DOI] [PubMed] [Google Scholar]
  102. Rosenthal R. S. Release of soluble peptidoglycan from growing gonococci: hexaminidase and amidase activities. Infect Immun. 1979 Jun;24(3):869–878. doi: 10.1128/iai.24.3.869-878.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Rosner A. Control of lysine biosynthesis in Bacillus subtilis: inhibition of diaminopimelate decarboxylase by lysine. J Bacteriol. 1975 Jan;121(1):20–28. doi: 10.1128/jb.121.1.20-28.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Sargent M. G. Surface extension and the cell cycle in prokaryotes. Adv Microb Physiol. 1978;18:105–176. doi: 10.1016/s0065-2911(08)60416-6. [DOI] [PubMed] [Google Scholar]
  105. Schlaeppi J. M., Pooley H. M., Karamata D. Identification of cell wall subunits in bacillus subtilis and analysis of their segregation during growth. J Bacteriol. 1982 Jan;149(1):329–337. doi: 10.1128/jb.149.1.329-337.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Schlaeppi J. M., Schaefer O., Karamata D. Cell wall and DNA cosegregation in Bacillus subtilis studied by electron microscope autoradiography. J Bacteriol. 1985 Oct;164(1):130–135. doi: 10.1128/jb.164.1.130-135.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Shockman G. D., Barrett J. F. Structure, function, and assembly of cell walls of gram-positive bacteria. Annu Rev Microbiol. 1983;37:501–527. doi: 10.1146/annurev.mi.37.100183.002441. [DOI] [PubMed] [Google Scholar]
  108. Shockman G. D., Daneo-Moore L., Higgins M. L. Problems of cell wall and membrane growth, enlargement, and division. Ann N Y Acad Sci. 1974 May 10;235(0):161–197. doi: 10.1111/j.1749-6632.1974.tb43265.x. [DOI] [PubMed] [Google Scholar]
  109. Shockman G. D., Kessler R., Corentt J. B., Mychajlonka M. Turnover and excretion of streptococcal surface components. Adv Exp Med Biol. 1978;107:803–814. doi: 10.1007/978-1-4684-3369-2_90. [DOI] [PubMed] [Google Scholar]
  110. Sinha R. K., Rosenthal R. S. Release of soluble peptidoglycan from growing conococci: demonstration of anhydro-muramyl-containing fragments. Infect Immun. 1980 Sep;29(3):914–925. doi: 10.1128/iai.29.3.914-925.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Sonnenfeld E. M., Beveridge T. J., Doyle R. J. Discontinuity of charge on cell wall poles of Bacillus subtilis. Can J Microbiol. 1985 Sep;31(9):875–877. doi: 10.1139/m85-163. [DOI] [PubMed] [Google Scholar]
  112. Sonnenfeld E. M., Beveridge T. J., Koch A. L., Doyle R. J. Asymmetric distribution of charge on the cell wall of Bacillus subtilis. J Bacteriol. 1985 Sep;163(3):1167–1171. doi: 10.1128/jb.163.3.1167-1171.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Sowell M. O., Buchanan C. E. Changes in penicillin-binding proteins during sporulation of Bacillus subtilis. J Bacteriol. 1983 Mar;153(3):1331–1337. doi: 10.1128/jb.153.3.1331-1337.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Tao L., Tanzer J. M., MacAlister T. J. Bicarbonate and potassium regulation of the shape of Streptococcus mutans NCTC 10449S. J Bacteriol. 1987 Jun;169(6):2543–2547. doi: 10.1128/jb.169.6.2543-2547.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Thorne K. J., Oliver R. C., Glauert A. M. Synthesis and turnover of the regularly arranged surface protein of Acinetobacter sp. relative to the other components of the cell envelope. J Bacteriol. 1976 Jul;127(1):440–450. doi: 10.1128/jb.127.1.440-450.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Tipper D. J., Pratt I. Cell wall polymers of Bacillus sphaericus 9602. II. Synthesis of the first enzyme unique to cortex synthesis during sporulation. J Bacteriol. 1970 Aug;103(2):305–317. doi: 10.1128/jb.103.2.305-317.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Todd J. A., Bone E. J., Ellar D. J. The sporulation-specific penicillin-binding protein 5a from Bacillus subtilis is a DD-carboxypeptidase in vitro. Biochem J. 1985 Sep 15;230(3):825–828. doi: 10.1042/bj2300825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Tzagoloff H., Novick R. Geometry of cell division in Staphylococcus aureus. J Bacteriol. 1977 Jan;129(1):343–350. doi: 10.1128/jb.129.1.343-350.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Umeda A., Ueki Y., Amako K. Structure of the Staphylococcus aureus cell wall determined by the freeze-substitution method. J Bacteriol. 1987 Jun;169(6):2482–2487. doi: 10.1128/jb.169.6.2482-2487.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Uratani B., Lopez J. M., Freese E. Effect of decoyinine on peptidoglycan synthesis and turnover in Bacillus subtilis. J Bacteriol. 1983 Apr;154(1):261–268. doi: 10.1128/jb.154.1.261-268.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Vinter V. Spores of microorganisms. XVII. The fate of preexisting diaminopimelic acid-containing structures during germination and postgerminative development of bacterial spores. Folia Microbiol (Praha) 1965 Sep;10(5):280–287. doi: 10.1007/BF02871027. [DOI] [PubMed] [Google Scholar]
  122. Vitkovic L. Cell wall turnover in lyt mutants of Bacillus subtilis. Ann Inst Pasteur Microbiol. 1985 Jan-Feb;136A(1):67–72. doi: 10.1016/s0769-2609(85)80024-7. [DOI] [PubMed] [Google Scholar]
  123. Vitković L. Bacillus subtilis Lyt+ and Lyt- strains secrete peptidoglycan hydrolases. Can J Microbiol. 1987 Jun;33(6):563–565. doi: 10.1139/m87-095. [DOI] [PubMed] [Google Scholar]
  124. Vitković L., Cheung H. Y., Freese E. Absence of correlation between rates of cell wall turnover and autolysis shown by Bacillus subtilis mutants. J Bacteriol. 1984 Jan;157(1):318–320. doi: 10.1128/jb.157.1.318-320.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Vitković L. Wall turnover deficiency of Bacillus subtilis Ni15 is due to a decrease in teichoic acid. Can J Microbiol. 1987 Jun;33(6):566–568. doi: 10.1139/m87-096. [DOI] [PubMed] [Google Scholar]
  126. Voigt J. Macromolecules released into the culture medium during the vegetative cell cycle of the unicellular green alga Chlamydomonas reinhardii. Biochem J. 1985 Feb 15;226(1):259–268. doi: 10.1042/bj2260259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Wecke J., Lahav M., Ginsburg I., Giesbrecht P. Cell wall degradation of Staphylococcus aureus by lysozyme. Arch Microbiol. 1982 Mar;131(2):116–123. doi: 10.1007/BF01053992. [DOI] [PubMed] [Google Scholar]
  128. Wecke J., Lahav M., Ginsburg I., Kwa E., Giesbrecht P. Inhibition of wall autolysis of staphylococci by sodium polyanethole sulfonate "liquoid". Arch Microbiol. 1986 Mar;144(2):110–115. doi: 10.1007/BF00414719. [DOI] [PubMed] [Google Scholar]
  129. Westling-Häggström B., Elmros T., Normark S., Winblad B. Growth pattern and cell division in Neisseria gonorrhoeae. J Bacteriol. 1977 Jan;129(1):333–342. doi: 10.1128/jb.129.1.333-342.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Wireman J. W., Dworkin M. Morphogenesis and developmental interactions in myxobacteria. Science. 1975 Aug 15;189(4202):516–523. doi: 10.1126/science.806967. [DOI] [PubMed] [Google Scholar]
  131. Wong W., Chatterjee A. N., Young F. E. Regulation of bacterial cell walls: correlation between autolytic activity and cell wall turnover in Staphylococcus aureus. J Bacteriol. 1978 May;134(2):555–561. doi: 10.1128/jb.134.2.555-561.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Wong W., Young F. E., Chatterjee A. N. Regulation of bacterial cell walls: turnover of cell wall in Staphylococcus aureus. J Bacteriol. 1974 Nov;120(2):837–843. doi: 10.1128/jb.120.2.837-843.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. de Boer W. R., Meyer P. D., Jordens C. G., Kruyssen F. J., Wouters J. T. Cell wall turnover in growing and nongrowing cultures of Bacillus subtilis. J Bacteriol. 1982 Mar;149(3):977–984. doi: 10.1128/jb.149.3.977-984.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. de Boer W., Kruyssen F. J., Wouters J. T. Cell wall metabolism in Bacillus subtilis subsp. niger: accumulation of wall polymers in the supernatant of chemostat cultures. J Bacteriol. 1981 Jun;146(3):877–884. doi: 10.1128/jb.146.3.877-884.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. de Chastellier C., Frehel C., Ryter A. Cell wall growth of Bacillus megaterium: cytoplasmic radioactivity after pulse-labeling with tritiated diaminopimelic acid. J Bacteriol. 1975 Sep;123(3):1197–1207. doi: 10.1128/jb.123.3.1197-1207.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. de Chastellier C., Hellio R., Ryter A. Study of cell wall growth in Bacillus megaterium by high-resolution autoradiography. J Bacteriol. 1975 Sep;123(3):1184–1196. doi: 10.1128/jb.123.3.1184-1196.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES