Full text
PDF


























Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albrecht S. L., Okon Y., Burris R. H. Effects of Light and Temperature on the Association between Zea mays and Spirillum lipoferum. Plant Physiol. 1977 Oct;60(4):528–531. doi: 10.1104/pp.60.4.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson G. R. Identification of Beijerinckia from Pacific Northwest soils. J Bacteriol. 1966 May;91(5):2105–2106. doi: 10.1128/jb.91.5.2105-2106.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bach M. K., Magee W. E., Burris R. H. Translocation of Photosynthetic Products to Soybean Nodules and Their Role in Nitrogen Fixation. Plant Physiol. 1958 Mar;33(2):118–124. doi: 10.1104/pp.33.2.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balandreau J. P., Millier C. R., Dommergues Y. R. Diurnal variations of nitrogenase activity in the field. Appl Microbiol. 1974 Apr;27(4):662–665. doi: 10.1128/am.27.4.662-665.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barber L. E., Evans H. J. Characterization of a nitrogen-fixing bacterial strain from the roots of Digitaria sanguinalis. Can J Microbiol. 1976 Feb;22(2):254–260. doi: 10.1139/m76-034. [DOI] [PubMed] [Google Scholar]
- Barber L. E., Tjepkema J. D., Russell S. A., Evans H. J. Acetylene reduction (nitrogen fixation) associated with corn inoculated with Spirillum. Appl Environ Microbiol. 1976 Jul;32(1):108–113. doi: 10.1128/aem.32.1.108-113.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barea J. M., Brown M. E. Effects on plant growth produced by Azotobacter paspali related to synthesis of plant growth regulating substances. J Appl Bacteriol. 1974 Dec;37(4):583–593. doi: 10.1111/j.1365-2672.1974.tb00483.x. [DOI] [PubMed] [Google Scholar]
- Bishop P. E., McParland R. H., Evans H. J. Inhibition of the adenylylation of glutamine synthetase by methionine sulfone during nitrogenase derepression. Biochem Biophys Res Commun. 1975 Nov 17;67(2):774–781. doi: 10.1016/0006-291x(75)90880-3. [DOI] [PubMed] [Google Scholar]
- Boyd W. L., Boyd J. W. PRESENCE OF AZOTOBACTER SPECIES IN POLAR REGIONS. J Bacteriol. 1962 Feb;83(2):429–430. doi: 10.1128/jb.83.2.429-430.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown M. E., Burlingham S. K. Production of plant growth substances by Azotobacter chroococcum. J Gen Microbiol. 1968 Aug;53(1):135–144. doi: 10.1099/00221287-53-1-135. [DOI] [PubMed] [Google Scholar]
- Burns R. C., Hardy R. W. Nitrogen fixation in bacteria and higher plants. Mol Biol Biochem Biophys. 1975;(21):1–189. doi: 10.1007/978-3-642-80926-2. [DOI] [PubMed] [Google Scholar]
- David K. A., Fay P. Effects of long-term treatment with acetylene on nitrogen-fixing microorganisms. Appl Environ Microbiol. 1977 Dec;34(6):640–646. doi: 10.1128/aem.34.6.640-646.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diem H. G., Godbillon G., Schmidt E. L. Application of the fluorescent antibody technique to the study of an isolate of Beijerinckia in soil. Can J Microbiol. 1977 Feb;23(2):161–165. doi: 10.1139/m77-023. [DOI] [PubMed] [Google Scholar]
- Dobereiner J., Marriel I. E., Nery M. Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol. 1976 Oct;22(10):1464–1473. doi: 10.1139/m76-217. [DOI] [PubMed] [Google Scholar]
- Döbereiner J. Further research on Azotobacter paspali and its variety specific occurrence in the rhizosphere of Paspalum notatum Flugge. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg. 1970;124(3):224–230. [PubMed] [Google Scholar]
- Eskew D. L., Focht D. D., Ting I. P. Nitrogen fixation, denitrification, and pleomorphic growth in a highly pigmented Spirillum lipoferum. Appl Environ Microbiol. 1977 Nov;34(5):582–585. doi: 10.1128/aem.34.5.582-585.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans H. J., Barber L. E. Biological nitrogen fixation for food and fiber production. Science. 1977 Jul 22;197(4301):332–339. doi: 10.1126/science.197.4301.332. [DOI] [PubMed] [Google Scholar]
- Goldemberg J. Brazil: energy options and current outlook. Science. 1978 Apr 14;200(4338):158–164. doi: 10.1126/science.200.4338.158. [DOI] [PubMed] [Google Scholar]
- Gordon J. K., Brill W. J. Derepression of nitrogenase synthesis in the presence of excess NH4+. Biochem Biophys Res Commun. 1974 Aug 5;59(3):967–971. doi: 10.1016/s0006-291x(74)80074-4. [DOI] [PubMed] [Google Scholar]
- Hanson R. B. Comparison of Nitrogen Fixation Activity in Tall and Short Spartina alterniflora Salt Marsh Soils. Appl Environ Microbiol. 1977 Mar;33(3):596–602. doi: 10.1128/aem.33.3.596-602.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardy R. W., Havelka U. D. Nitrogen fixation research: a key to world food? Science. 1975 May 9;188(4188):633–643. doi: 10.1126/science.188.4188.633. [DOI] [PubMed] [Google Scholar]
- Hardy R. W., Holsten R. D., Jackson E. K., Burns R. C. The acetylene-ethylene assay for n(2) fixation: laboratory and field evaluation. Plant Physiol. 1968 Aug;43(8):1185–1207. doi: 10.1104/pp.43.8.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keister D. L. Acetylene reduction by pure cultures of Rhizobia. J Bacteriol. 1975 Sep;123(3):1265–1268. doi: 10.1128/jb.123.3.1265-1268.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipman C. B., Taylor J. K. PROOF OF THE POWER OF THE WHEAT PLANT TO FIX ATMOSPHERIC NITROGEN. Science. 1922 Nov 24;56(1456):605–606. doi: 10.1126/science.56.1456.605. [DOI] [PubMed] [Google Scholar]
- Ludden P. W., Okon Y., Burris R. H. The nitrogenase system of Spirillum lipoferum. Biochem J. 1978 Sep 1;173(3):1001–1003. doi: 10.1042/bj1731001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magalhães L. M., Neyra C. A., Döbereiner J. Nitrate and nitrite reductase negative mutants of N2-fixing Azospirillum spp. Arch Microbiol. 1978 Jun 26;117(3):247–252. doi: 10.1007/BF00738542. [DOI] [PubMed] [Google Scholar]
- Mortenson L. E. Regulation of nitrogen fixation. Curr Top Cell Regul. 1978;13:179–232. doi: 10.1016/b978-0-12-152813-3.50010-0. [DOI] [PubMed] [Google Scholar]
- Nagatani H., Shimizu M., Valentine R. C. The mechanism of ammonia assimilation in nitrogen fixing Bacteria. Arch Mikrobiol. 1971;79(2):164–175. doi: 10.1007/BF00424923. [DOI] [PubMed] [Google Scholar]
- Nelson L. M., Knowles R. Effect of oxygen and nitrate on nitrogen fixation and denitrification by Azospirillum brasilense grown in continuous culture. Can J Microbiol. 1978 Nov;24(11):1395–1403. doi: 10.1139/m78-223. [DOI] [PubMed] [Google Scholar]
- Neyra C. A., Döbereiner J. Denitrification by N2-fixing Sprillum lipoferum. Can J Microbiol. 1977 Mar;23(3):300–305. doi: 10.1139/m77-044. [DOI] [PubMed] [Google Scholar]
- Neyra C. A., Hageman R. H. Pathway for Nitrate Assimilation in Corn (Zea mays L.) Leaves: Cellular Distribution of Enzymes and Energy Sources for Nitrate Reduction. Plant Physiol. 1978 Oct;62(4):618–621. doi: 10.1104/pp.62.4.618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neyra C. A., Hageman R. H. Relationships between Carbon Dioxide, Malate, and Nitrate Accumulation and Reduction in Corn (Zea mays L.) Seedlings. Plant Physiol. 1976 Dec;58(6):726–730. doi: 10.1104/pp.58.6.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neyra C. A., Van Berkum P. Nitrate reduction nitrogenase activity in Spirillum lipoferum1. Can J Microbiol. 1977 Mar;23(3):306–310. doi: 10.1139/m77-045. [DOI] [PubMed] [Google Scholar]
- Okon Y., Albrecht S. L., Burris R. H. Carbon and ammonia metabolism of Spirillum lipoferum. J Bacteriol. 1976 Nov;128(2):592–597. doi: 10.1128/jb.128.2.592-597.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okon Y., Albrecht S. L., Burris R. H. Factors affecting growth and nitrogen fixation of Spirillum lipoferum. J Bacteriol. 1976 Sep;127(3):1248–1254. doi: 10.1128/jb.127.3.1248-1254.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okon Y., Albrecht S. L., Burris R. H. Methods for Growing Spirillum lipoferum and for Counting It in Pure Culture and in Association with Plants. Appl Environ Microbiol. 1977 Jan;33(1):85–88. doi: 10.1128/aem.33.1.85-88.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okon Y., Houchins J. P., Albrecht S. L., Burris R. H. Growth of Spirillum lipoferum at constant partial pressures of oxygen, and the properties of its nitrogenase in cell-free extracts. J Gen Microbiol. 1977 Jan;98(1):87–93. doi: 10.1099/00221287-98-1-87. [DOI] [PubMed] [Google Scholar]
- Patriquin D. G., Döbereiner J. Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Can J Microbiol. 1978 Jun;24(6):734–742. doi: 10.1139/m78-122. [DOI] [PubMed] [Google Scholar]
- Pedersen W. L., Chakrabarty K., Klucas R. V., Vidaver A. K. Nitrogen fixation (acetylene reduction) associated with roots of winter wheat and sorghum in Nebraska. Appl Environ Microbiol. 1978 Jan;35(1):129–135. doi: 10.1128/aem.35.1.129-135.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rice W. A., Paul E. A., Wetter L. R. The role of anaerobiosis in asymbiotic nitrogen fixation. Can J Microbiol. 1967 Jul;13(7):829–836. doi: 10.1139/m67-109. [DOI] [PubMed] [Google Scholar]
- Schubert K. R., Engelke J. A., Russell S. A., Evans H. J. Hydrogen reactions of nodulated leguminous plants: I. Effect of rhizobial strain and plant age. Plant Physiol. 1977 Nov;60(5):651–654. doi: 10.1104/pp.60.5.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schubert K. R., Evans H. J. Hydrogen evolution: A major factor affecting the efficiency of nitrogen fixation in nodulated symbionts. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1207–1211. doi: 10.1073/pnas.73.4.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schöllhorn R., Burris R. H. Acetylene as a competitive inhibitor of N-2 fixation. Proc Natl Acad Sci U S A. 1967 Jul;58(1):213–216. doi: 10.1073/pnas.58.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shanmugam K. T., Chan I., Morandi C. Regulation of nitrogen fixation. Nitrogenase-derepressed mutants of Klebsiella pneumoniae. Biochim Biophys Acta. 1975 Nov 11;408(2):101–111. doi: 10.1016/0005-2728(75)90002-x. [DOI] [PubMed] [Google Scholar]
- Shanmugam K. T., Valentine R. C. Molecular biology of nitrogen fixation. Science. 1975 Mar 14;187(4180):919–924. doi: 10.1126/science.238283. [DOI] [PubMed] [Google Scholar]
- Smith R. L., Bouton J. H., Schank S. C., Quesenberry K. H., Tyler M. E., Milam J. R., Gaskins M. H., Littell R. C. Nitrogen Fixation in Grasses Inoculated with Spirillum lipoferum. Science. 1976 Sep 10;193(4257):1003–1005. doi: 10.1126/science.193.4257.1003. [DOI] [PubMed] [Google Scholar]
- Streicher S. L., Shanmugam K. T., Ausubel F., Morandi C., Goldberg R. B. Regulation of nitrogen fixation in Klebsiella pneumoniae: evidence for a role of glutamine synthetase as a regulator of nitrogenase synthesis. J Bacteriol. 1974 Nov;120(2):815–821. doi: 10.1128/jb.120.2.815-821.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tarrand J. J., Krieg N. R., Döbereiner J. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol. 1978 Aug;24(8):967–980. doi: 10.1139/m78-160. [DOI] [PubMed] [Google Scholar]
- Tchan Y. T., de Ville R. Application de l'immunofluorescence à l'étude des Azotobacter du sol. Ann Inst Pasteur (Paris) 1970 May;118(5):665–673. [PubMed] [Google Scholar]
- Tempest D. W., Meers J. L., Brown C. M. Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route. Biochem J. 1970 Apr;117(2):405–407. doi: 10.1042/bj1170405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tjepkema J., Evans H. J. Nitrogen fixation by free-living Rhizobium in a defined liquid medium. Biochem Biophys Res Commun. 1975 Jul 22;65(2):625–628. doi: 10.1016/s0006-291x(75)80192-6. [DOI] [PubMed] [Google Scholar]
- Tjepkema J., Van Berkum P. Acetylene reduction by soil cores of maize and sorghum in Brazil. Appl Environ Microbiol. 1977 Mar;33(3):626–629. doi: 10.1128/aem.33.3.626-629.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tubb R. S. Glutamine synthetase and ammonium regulation of nitrogenase synthesis in Klebsiella. Nature. 1974 Oct 11;251(5475):481–485. doi: 10.1038/251481a0. [DOI] [PubMed] [Google Scholar]
- Von Bülow J. F., Döbereiner J. Potential for nitrogen fixation in maize genotypes in Brazil. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2389–2393. doi: 10.1073/pnas.72.6.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe I., Barraquio W. L., De Guzman M. R., Cabrera D. A. Nitrogen-fixing (acetylene redution) activity and population of aerobic heterotrophic nitrogen-fixing bacteria associated with wetland rice. Appl Environ Microbiol. 1979 May;37(5):813–819. doi: 10.1128/aem.37.5.813-819.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe I., Cabrera D. R. Nitrogen fixation associated with the rice plant grown in water culture. Appl Environ Microbiol. 1979 Mar;37(3):373–378. doi: 10.1128/aem.37.3.373-378.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Ville R. R., Tchan Y. T. Etude quantitative de la population Azotobactérienne du sol par la méthode d'immunofluorescence. Ann Inst Pasteur (Paris) 1970 Oct;119(4):492–497. [PubMed] [Google Scholar]
- deBont J. A. Bacterial degradation of ethylene and the acetylene reduction test. Can J Microbiol. 1976 Jul;22(7):1060–1062. doi: 10.1139/m76-155. [DOI] [PubMed] [Google Scholar]
- van Berkum P., Sloger C. Immediate acetylene reduction by excised grass roots not previously preincubated at low oxygen tensions. Plant Physiol. 1979 Nov;64(5):739–743. doi: 10.1104/pp.64.5.739. [DOI] [PMC free article] [PubMed] [Google Scholar]